HomeMy WebLinkAboutAttachment 7.d.iv. - Appendices D -Geotechnical Evaluation
Geotechnical Evaluation
Proposed Acadia San Diego Medical Facility
830 Showroom Place
Chula Vista, California
Acadia Health Care
6100 Tower Circle, Suite 1000 | Franklin, Tennessee 37067
March 6, 2019 | Project No. 108727001
Geotechnical | Environmental | Construction Inspection & Testing | Forensic Engineering & Expert Witness
Geophysics | Engineering Geology | Laboratory Testing | Industrial Hygiene | Occupational Safety | Air Quality | GIS
CONTENTS
1 INTRODUCTION 1
2 SCOPE OF SERVICES 1
3 SITE DESCRIPTION 1
4 PROPOSED CONSTRUCTION 2
5 SUBSURFACE EVALUATION AND LABORATORY TESTING 2
6 INFILTRATION TESTING 3
7 GEOLOGY AND SUBSURFACE CONDITIONS 4
7.1 Regional Geologic Setting 4
7.2 Site Geology 5
7.2.1 Fill 5
7.2.2 Otay Formation 5
7.3 Groundwater 6
8 GEOLOGIC HAZARDS 6
8.1 Faulting and Seismicity 6
8.2 Surface Fault Rupture 7
8.3 Ground Motion 7
8.4 Liquefaction and Seismically Induced Settlement 8
8.5 Landslides 8
8.5.2 Surficial Slope Stability Analysis 10
8.6 Flood and Dam Inundation Hazards 10
8.7 Tsunamis and Seiches 10
9 CONCLUSIONS 11
10 RECOMMENDATIONS 12
10.1 Earthwork 12
10.1.1 Construction Plan Review and Pre-Construction Conference 12
10.1.2 Site Preparation 13
10.1.3 Excavation Characteristics 13
10.1.4 Remedial Grading and Treatment of Near-Surface Soils 13
10.1.5 Temporary Excavations 14
10.1.6 Temporary Shoring 15
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 i
10.1.7 Materials for Fill and Trench Backfill 16
10.1.8 Fill Placement and Compaction 17
10.1.9 Pipe Bedding 18
10.1.10 Lateral Pressures for Thrust Blocks 19
10.1.11 Modulus of Soil Reaction 19
10.2 Seismic Design Considerations 19
10.3 Site-Specific Ground Response Analysis 19
10.4 Foundations 21
10.4.1 Spread Footings 21
10.4.2 Lateral Resistance 21
10.4.3 Static Settlement 22
10.5 Slabs-On-Grade 22
10.6 Retaining Walls 22
10.7 Exterior Flatwork 23
10.8 Corrosion 23
10.9 Concrete 24
10.10 Preliminary Pavement Recommendations 24
10.11 Drainage 25
11 CONSTRUCTION OBSERVATION 26
12 LIMITATIONS 27
13 REFERENCES 29
TABLES
1 – Infiltration Test Results Summary 4
2 – Principal Active Faults 7
3 – Historical Earthquakes that Affected the Site 7
4 – Strength Parameters Used in Stability Evaluation 9
5 – Summary of Remedial Grading Recommendations 14
6 – Fill Material Criteria 17
7 – 2016 California Building Code Seismic Design Criteria 19
8 – Preliminary Pavement Recommendations 25
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 ii
FIGURES
1 – Site Location
2 – Exploration Locations - Aerial Plan
3 – Exploration Locations - Site Plan
4 – Fault Locations
5 – Regional Geology
6A-6C – Geologic Cross Sections A-A’ through C-C’
7 – Lateral Earth Pressures for Temporary Cantilevered Shoring
8 – Thrust Block Lateral Earth Pressure Diagram
9 – Acceleration Response Spectra
10 – Lateral Earth Pressures for Yielding Retaining Walls
11 – Retaining Wall Drainage Detail
APPENDICES
A – Boring and Test Pit Logs
B – Geotechnical Laboratory Testing
C – Infiltration Testing Results
D – Geotechnical Map (Geotechnics, 2003)
E – Slope Stability Analyses
F – Derivation of Pseudostatic Coefficient
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 iii
1 INTRODUCTION
In accordance with your request and authorization, we have performed a geotechnical
evaluation for the proposed Acadia San Diego Medical Facility located at 830 Showroom Place
in Chula Vista, California (Figure 1). The purpose of our study was to evaluate the soil and
geologic conditions at the site and to develop geotechnical recommendations regarding the
design and construction of the proposed improvements. This report presents our findings,
conclusions, and recommendations for the project based on our background review, site
reconnaissance, subsurface evaluation, laboratory testing, and geotechnical analyses.
2 SCOPE OF SERVICES
Our scope of services included the following:
• Review of readily available background materials, including a previous geotechnical report for the site (Ninyo & Moore, 2006), published geologic maps, fault and seismic hazards maps, groundwater data, topographic maps, and stereoscopic aerial photographs.
• Coordination and mobilization for subsurface exploration, including a geotechnical reconnaissance of the site to observe the existing site conditions, coordinate with site personnel, and mark the proposed boring locations for utility clearance.
• Acquisition of a boring permit with the County of San Diego Department of Environmental Health for our subsurface exploration.
• Subsurface exploration consisting of drilling, logging, and sampling 16 small-diameter, hollow-stem auger borings and the excavation, logging, and sampling of 14 test pits. The borings and test pits were logged by a representative from our firm and soil samples were
collected at selected intervals for laboratory testing.
• Field infiltration testing in general accordance with the City of Chula Vista BMP Design
Manual (2017)
• Laboratory testing of selected soil samples, including tests to evaluate in-situ moisture and dry density, gradation analysis, Atterberg limits, consolidation, expansion index, direct shear strength, Proctor density, R-value, and corrosivity.
• Data compilation and engineering analysis of the information obtained from our background review, field reconnaissance, subsurface evaluation, and laboratory testing.
• Preparation of this geotechnical report presenting our findings, conclusions, and recommendations for the design and construction of the proposed improvements at the site.
3 SITE DESCRIPTION
The project site includes two contiguous, previously graded properties located at the northern
terminus of Showroom Place in the Eastlake area of Chula Vista, California (Figures 1 and 2).
The two properties are designated as Assessor’s Parcel Numbers 595-710-11 and 595-710-12
and were graded in 2002 and 2003 as part of the Eastlake Business Center II development
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 1
(Geotechnics, 2003). Current access to the site is afforded by Showroom Place, which abuts the
southerly property line. The project site is currently vacant and is generally covered with sparse
vegetation. An approximately 10- to 15-foot high stockpile of soil is situated within the east-
central portion of the site, and two retention basins are located in the southern portion of the
property that are up to approximately 10 feet in depth. Graded slopes up to approximately
90 feet in height descend from the northern and eastern property lines to residential
developments which bound the property to the north and east. An approximately 25-foot high
graded slope descends from the western property line to a commercial development. A boat and
RV storage lot and a retail development bound the site to the south.
The existing ground surface in the area where the proposed medical facility is to be constructed
is relatively level with a gentle gradient down to the south. Ground surface elevations in the
vicinity of the proposed facility building range from approximately 705 feet above mean sea
level (MSL) to approximately 715 MSL. The global project site coordinates are approximately
32.6554°N latitude and 116.9553°W longitude
4 PROPOSED CONSTRUCTION
We understand that the proposed Acadia San Diego Medical Facility will consist of an
approximately 89,500 square-foot, single-story structure (SWA, 2018). The facility is anticipated
to accommodate various administration and medical offices, nurse stations, patient rooms,
treatment rooms, and a gymnasium. Additional site improvements will include a parking area
south of the proposed building, an access road surrounding the perimeter of the proposed
building, underground utilities, and landscaping. Four stormwater basins are also planned – one
in the northeast corner of the site, one in the northwest corner, and two in the southern portion
of the site. Site excavations are anticipated for subgrade preparation associated with shallow
foundations for the new building, hardscape and pavement construction, and excavations for
underground utility installation.
5 SUBSURFACE EVALUATION AND LABORATORY TESTING
Our subsurface exploration was conducted January 28 through January 30, 2019 and consisted
of drilling of sixteen small-diameter, hollow-stem auger borings (B-1 through B-8, and IT-1
through IT-8) and the excavation of 14 test pits (TP-1 through TP-14). The borings were drilled
to depths of up to 46 feet using a truck-mounted drill rig equipped with hollow-stem augers. The
test pits were excavated to depths of up to 8 feet using a rubber-tired backhoe. A representative
from Ninyo & Moore logged the borings and test pits and obtained bulk and relatively
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2
undisturbed soil samples at selected depths for laboratory testing. The exploration locations are
shown on Figures 2 and 3. The logs of the borings and test pits are presented in Appendix A.
Geotechnical laboratory testing was performed on representative samples to evaluate the in-situ
moisture and dry density, gradation analysis, Atterberg limits, consolidation, direct shear
strength, expansion index, Proctor density, corrosivity, and R-value. In-situ moisture content and
dry density test results are presented on the boring logs in Appendix A. The remaining
laboratory test results are presented in Appendix B.
6 INFILTRATION TESTING
Field infiltration testing was performed on January 29 and January 30, 2019 within the areas
of the proposed infiltration basins. Eight infiltration test holes (IT-1 through IT-8) were
excavated with a truck-mounted drill rig to depths of approximately 5 feet at the locations
shown on Figures 2 and 3. Following the excavation of borings IT-1 through IT-8 on January
29, 2019, the locations were prepared for infiltration testing by placing approximately 2 inches
of gravel on the bottom of each boring, installing a 2-inch diameter, perforated PVC pipe in the
hole, and backfilling the annulus with pea gravel. As part of the test procedure, presoaking of
each hole was performed to represent adverse conditions for infiltration. The presoak
consisted of maintaining approximately 1 to 2 feet of water in each boring for approximately
4 hours. The water levels were then allowed to drop overnight.
Infiltration testing was then performed on January 30, 2019 in general accordance with the City of
Chula Vista BMP Design Manual (2017). The infiltration test holes were filled with approximately 1
to 2½ feet of water and the water depth was measured in 30-minute intervals during the
duration of the tests. As necessary, the borings were refilled to maintain the water level until the
infiltration rate stabilized.
Infiltration rates were calculated from the field measurements using the Porchet method.
Infiltration test measurements and calculations are included in Appendix C. The Suitability
Assessment Safety Factor (SA) presented in Table 1 was calculated based on the guidelines
presented in Appendix D of the City of Chula Vista BMP Design Manual (2017). Appendix C of
this report also includes copies of the Categorization of Infiltration Feasibility worksheet
(Worksheet C.4-1) and Factor of Safety and Design Infiltration Rate worksheet (Worksheet
D.5-1) including responses to the suitability assessment questions. The rates presented in
Table 1 are to be used for preliminary design purposes. The design safety factor shall be
determined by the design engineer.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 3
Table 1 – Infiltration Test Results Summary
Infiltration
Test
Approximate
Test Depth
(feet)
Description
(Geologic Unit)
Observed
Infiltration
Rate
(in/hr)
Suitability
Assessment
Safety
Factor, SA1
Design
Safety
Factor, SB2
SA Factored
Infiltration
Rate3
(in/hr)
IT-1 5 Silty Sandstone
(Otay Formation) 0.21 2.25 TBD 0.09
IT-2 5 Silty Sandstone
(Otay Formation) 0.29 2.25 TBD 0.13
IT-3 5 Silty Sandstone
(Otay Formation) 0.04 2.25 TBD 0.02
IT-4 5 Silty Sandstone
(Otay Formation) 0.04 2.25 TBD 0.02
IT-5 5 Sandy Silt
(Fill) 0.02 2.25 TBD 0.01
IT-6 5 Sandy Silt
(Fill) 0.04 2.25 TBD 0.02
IT-7 5 Silty Sandstone
(Otay Formation) 0.47 2.25 TBD 0.21
IT-8 5 Silty Sandstone
(Otay Formation) 0.27 2.25 TBD 0.12
Notes:
in/hr = inches per hour
TBD = to be determined 1 Calculated in accordance with Appendix D of the City of Chula Vista BMP Design Manual (2017) 2 Design safety factor to be determined by the design engineer in accordance with Appendix D of the City of Chula Vista BMP
Design Manual (2017)
3 Factored infiltration rate shall be divided by the design safety factor to obtain the design infiltration rate
Other areas of the site not specifically tested may or may not accommodate partial infiltration of
storm water. Additional infiltration testing would be needed in these other areas to evaluate whether
infiltration in these areas/depths are feasible.
7 GEOLOGY AND SUBSURFACE CONDITIONS
7.1 Regional Geologic Setting
The project area is situated in the western portion of the Peninsular Ranges Geomorphic
Province. This geomorphic province encompasses an area that extends approximately
900 miles from the Transverse Ranges and the Los Angeles Basin south to the southern tip of
Baja California (Norris and Webb, 1990; Harden, 2004). The province varies in width from
approximately 30 to 100 miles and generally consists of rugged mountains underlain by Jurassic
metavolcanic and metasedimentary rocks, and Cretaceous igneous rocks of the southern
California batholith. The portion of the province in western San Diego County that includes the
project area consists generally of uplifted and dissected coastal plain underlain by Upper
Cretaceous-, Tertiary-, and Quaternary-age sedimentary rocks.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 4
The Peninsular Ranges Province is traversed by a group of sub-parallel faults and fault zones
trending roughly northwest. Several of these faults are considered to be active. The active fault
systems located in the vicinity of the project area include the Rose Canyon, Elsinore,
San Jacinto, San Andreas, Coronado Bank, San Diego Trough, and San Clemente faults. The
location of the site relative to these regional faults is shown on Figure 4. Major tectonic activity
associated with these and other faults within this regional tectonic framework consists primarily
of right-lateral, strike-slip movement. The Rose Canyon Fault Zone, the nearest active fault
system, has been mapped approximately 12 miles west of the project site.
7.2 Site Geology
Geologic units encountered during our field reconnaissance and subsurface exploration
included fill and materials of the Otay Formation. Generalized descriptions of the earth units
encountered during our subsurface exploration are provided below. The geology of the site
vicinity is shown on Figure 5. Additional descriptions are provided on the boring and test pit logs
in Appendix A. Geologic cross sections were prepared at the locations shown on Figure 3 and
are shown on Figures 6A through 6C.
7.2.1 Fill
Fill materials were encountered at the ground surface in each of our borings and test pits.
The depth of fill materials encountered in our borings ranged from approximately 1 foot to
approximately 43 feet. Fill depths up to approximately 65 feet are anticipated in the
northeastern corner of the site, near the top of the slope that descends to the adjacent
residential development. As encountered, the fill materials generally consisted of various
shades of brown and gray, moist, stiff to hard, sandy silt, clayey silt, elastic silt, lean clay,
and sandy clay, along with medium dense to very dense silty sand and clayey sand. With
the exception of the stockpile in the in the east-central portion of the site, these fill materials
were placed under the observation and testing of Geotechnics, Inc. (2003) and are
considered to be engineered fill. A copy of the Geotechnical Map prepared by Geotechnics
is included in Appendix D.
7.2.2 Otay Formation
Materials comprising the Otay Formation (Todd, 2004), were encountered in each of our
exploratory borings and test pits with the exception of IT-5 and IT-6. The Otay Formation was
encountered underlying the fill and extending to the total depths explored. As encountered,
the Otay Formation generally consisted of various shades of brown, light gray, and gray,
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 5
moist, moderately to strongly cemented, silty sandstone, and moderately to strongly
indurated clayey siltstone and silty claystone. Scattered bentonite lenses were observed
within the upper portions of the Otay Formation. Bentonite typically possesses a high
expansion potential and poor strength characteristics when wetted or exposed to moisture.
7.3 Groundwater
Groundwater was not encountered in our exploratory borings or test pits. Based on our review
of available data, we estimate that the groundwater table is situated at depths greater than
60 feet below the site. Perched water and/or seepage due to the presence of clayey material
and/or near the contact between the fill and the Otay Formation may be encountered during
construction excavations. Fluctuations in the level of groundwater may occur due to variations in
ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and other
factors which may not have been evident at the time of our field evaluation.
8 GEOLOGIC HAZARDS
In general, hazards associated with seismic activity include strong ground motion, ground
surface rupture, and liquefaction. These considerations and other geologic hazards, such as
landsliding and flooding, are discussed in the following sections.
8.1 Faulting and Seismicity
Based on our review of the referenced geologic maps and stereoscopic aerial photographs, as
well as on our geologic field mapping, the subject site is not underlain by known active or
potentially active faults (i.e., faults that exhibit evidence of ground displacement in the last
11,000 years and 2,000,000 years, respectively). The site is not located within a State of
California Earthquake Fault Zone (Hart and Bryant, 1997). However, like the majority of
southern California, the site is located in a seismically active area and the potential for strong
ground motion is considered significant during the design life of the proposed structures. The
nearest known active fault is the Rose Canyon fault, located approximately 12 miles west of the
site. Table 2 lists selected principal known active faults that may affect the subject site, including
the approximate fault-to-site distances, and the maximum moment magnitudes (Mmax) as
published by the USGS (2019).
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 6
Table 2 – Principal Active Faults
Fault
Approximate
Fault-to-Site Distance
miles (kilometers)
Maximum Moment
Magnitude
(Mmax)
Rose Canyon 12 (19) 6.9
Coronado Bank 21 (34) 7.4
Elsinore (Julian Segment) 37 (60) 7.4
Earthquake Valley 41 (66) 6.8
Elsinore (Coyote Mountain Segment) 42 (68) 6.9
Newport-Inglewood (Offshore) 44 (71) 7.0
Elsinore (Temecula) 47 (76) 7.1
San Jacinto (Coyote Creek) 57 (92) 7.0
San Jacinto (Borrego) 58 (93) 6.8
Principal seismic hazards evaluated at the subject site are surface ground rupture, ground
shaking, seismically induced liquefaction, and various manifestations of liquefaction related
hazards (e.g., dynamic settlement). A brief description of these and other hazards and the
potential for their occurrences at the site are discussed below.
8.2 Surface Fault Rupture
Surface fault rupture is the offset or rupturing of the ground surface by relative displacement across
a fault during an earthquake. Based on our review of referenced geologic and fault hazard data, the
project site is not transected by known active or potentially active faults. Therefore, the probability of
damage from surface fault rupture is considered to be low. However, lurching or cracking of the
ground surface as a result of nearby seismic events is possible.
8.3 Ground Motion
Based on our review of background information, data pertaining to the historical seismicity of the
San Diego area are summarized in Table 3. This table presents historic earthquake data within a
radius of approximately 62 miles of the site with a magnitude of 6.0 or greater, as obtained from
the CGS Earthquake History and Catalogs website (CGS, 2018) and in-house proprietary data.
Table 3 – Historical Earthquakes that Affected the Site
Date Magnitude
(M)
Approximate Epicentral Distance
miles (kilometers)
October 23, 1894 6.1 14 (22)
May 27, 1862 6.2 14 (22)
November 22, 1800 6.3 52 (84)
May 28, 1892 6.5 58 (93)
April 9, 1968 6.6 61 (97)
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 7
The 2016 California Building Code (CBC) specifies that the Risk-Targeted, Maximum Considered
Earthquake (MCER) ground motion response accelerations be used to evaluate seismic loads for
design of buildings and other structures. The MCER ground motion response accelerations are
based on the spectral response accelerations for 5 percent damping in the direction of maximum
horizontal response and incorporate a target risk for structural collapse equivalent to 1 percent in
50 years with deterministic limits for near-source effects. The horizontal peak ground
acceleration (PGA) that corresponds to the MCER for the site was calculated as 0.385g using a web -
based seismic design tool (SEAOC/OSHPD, 2019). Spectral response acceleration parameters,
consistent with the 2016 CBC, are also provided in the Recommendations section of this report for
the evaluation of seismic loads on buildings and other structures.
The 2016 CBC specifies that the potential for liquefaction and soil strength loss be evaluated,
where applicable, for the Maximum Considered Earthquake Geometric Mean (MCEG) peak
ground acceleration with adjustment for site class effects in accordance with the American
Society of Civil Engineers (ASCE) 7-10 Standard. The MCEG peak ground acceleration is based
on the geometric mean peak ground acceleration with a 2 percent probability of exceedance in
50 years. The MCEG peak ground acceleration with adjustment for site class effects (PGAM) was
calculated as 0.374g using a web-based seismic design tool (SEAOC/OSHPD, 2019) that
yielded a mapped MCEG peak ground acceleration of 0.316g for the site and a site
coefficient (FPGA) of 1.171 for Site Class D.
8.4 Liquefaction and Seismically Induced Settlement
Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes.
Research and historical data indicate that loose granular soils and non-plastic silts that are saturated
by a relatively shallow groundwater table are susceptible to liquefaction. Based on the relatively
dense nature of the underlying formational materials and the anticipated depth of groundwater, it is
our opinion that the potential for liquefaction and seismically induced settlement to occur at the site
is not a design consideration.
8.5 Landslides
Our review of referenced geologic maps, literature, topographic maps, and stereoscopic aerial
photographs, no landslides or indications of deep-seated landsliding underlie the subject site (Todd,
2004; Tan, 1992). In addition, no indications of landsliding were observed during our site
reconnaissance or subsurface exploration. As such, the potential for significant large-scale slope
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 8
instability at the site is not a design consideration. The slopes that descend from the project site
were evaluated with regards to deep-seated and surficial slope stability, as discussed below.
8.5.1 Deep-Seated Slope Stability Analysis
To evaluate the deep-seated stability of the slopes that descend from the east and west property
lines, slope stability calculations were performed on geologic cross sections A-A’ and B-B’
developed at the locations shown on Figure 3. Our slope stability calculations focused on the
stability fill that exists on the west property line and the large graded slope that descends from
the northeast and east portions of the site. The cross sections were created using topographic
survey data provided by K&S Engineering, Inc. (2019), as-graded geotechnical information
reported by Geotechnics (2003), and the findings and results from our subsurface evaluation.
A two -dimensional stability analysis program, Geostase (Gregory, 2019), was used for our slope
stability calculations. Our evaluation utilized search routines that incorporate Spencer Method of
Slices to define the most critical failure surface within potential block failures and potential
rotational failures. Spencer’s Method of Slices was utilized in our analyses in order to satisfy
force equilibrium and moment equilibrium conditions.
For our analysis, the soil and formational materials were assigned with homogeneous, isotropic
properties. The shear strength parameters for the fill materials and materials comprising the Otay
Formation were selected based on our laboratory direct shear testing and our experience with similar
materials. In keeping with standard practice, our slope stability calculations incorporated ultimate shear
strengths for the formational materials and fill materials under static conditions, while peak shear
strengths were used for these materials under static/pseudo-static. The relevant shear strength
parameters used in our stability calculations for the different material types are presented in Table 4.
Table 4 – Strength Parameters Used in Stability Evaluation
Earth Material
Unit
Weight
(pcf)
Shear Strength Parameters
Peak Ultimate
Cohesion
(psf)
Friction
Angle
(degrees)
Cohesion
(psf)
Friction Angle
(degrees)
Otay Formation 120 500 30 300 28
Artificial Fill 120 350 30 200 30
A factor of safety of at least 1.5 under static conditions is generally considered adequate as per the
guidelines of Special Publication 117A (CGS, 2008a) and accepted engineering practices. Results
of our slope stability analyses yielded factors of safety of 1.5 or more under static conditions for the
existing slopes as shown on geologic cross sections A-A’ through B-B’ (Appendix E).
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 9
Our analyses of existing slopes also included an evaluation of the slopes’ stability when subjected to
seismic loading. Our evaluation was performed utilizing a “screening analysis” to evaluate
whether a more involved displacement analysis is warranted, as recommended by CGS Special
Publication 117A (CGS, 2008). This procedure also incorporates a pseudo-static analysis that is
based on site-specific ground motion parameters (Bray, et. al, 1998; Blake, et. al, 2002; Stewart,
et. al, 2003). Calculations showing the derivation of the pseudo-static coefficient used in the
screening analysis are presented in Appendix F. Results of our “screening analysis,” which
incorporates a pseudo-static coefficient of 0.20, yielded pseudo-static factors of safety of 1.0 or
more for each of the evaluated slopes (Appendix E), which CGS (2008a) considers to be
adequate for seismic conditions.
8.5.2 Surficial Slope Stability Analysis
We evaluated the shallow stability of the proposed cut and fill slopes at the site. Our evaluation
was based on a slope inclination of 2:1 and assumed a 4-foot thick zone of seepage parallel to
the slope face. Using the above shear strength parameters for the onsite materials, our
analyses indicate a factor of safety of at least 1.50 with respect to shallow slope stability for the
proposed slopes (Appendix E).
8.6 Flood and Dam Inundation Hazards
Based on review of the Federal Emergency Management Agency Flood Insurance Rate Map
([FIRM], FEMA, 2012), the site and immediate surrounding areas are mapped as lying outside of
100- and 500-year flood zones. Accordingly, the potential for flooding of the site is considered low.
We have also a reviewed dam inundation map of the area (Chula Vista, 2005). Based on the
review, the site is mapped as lying outside of dam failure inundation zones.
8.7 Tsunamis and Seiches
Tsunamis are long wavelength seismic sea waves (long compared to the ocean depth)
generated by sudden movements of the ocean bottom during submarine earthquakes,
landslides, or volcanic activity. Seiches are similar oscillating waves on inland or enclosed
bodies of water. Based on the inland location and elevation of the site, and the relative distance
to nearby lakes or reservoirs, the potential for a tsunami or seiche to affect the site is not a
design consideration.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 10
9 CONCLUSIONS
Based on our geotechnical evaluation, it is our opinion that the proposed project is feasible from
a geotechnical standpoint provided that the following recommendations are incorporated into
the design and construction of the project.
In general, the following conclusions were made:
• Based on our recent subsurface exploration, the site is underlain by fill soils and materials of
the Otay Formation. The upper portions of the fill soils are considered to be potentially
compressible and are not suitable for the proposed improvements in their present condition.
Recommendations for remedial grading are presented in the following sections
• A significant cut-fill transition between the fill soils and the Otay Formation exists below the
proposed building pad area. Recommendations to mitigate differential settlement across this
cut-fill transition are provided in the following sections of this report.
• The existing fill soils and materials of the Otay Formation encountered on the site should be
generally excavatable with heavy-duty earth moving equipment in good working condition.
However, portions of the Otay Formation can be expected to contain moderately to strongly
cemented zones. Because of this, additional efforts including heavy ripping should be
anticipated. Disposal, crushing, pulverizing, or special processing of the resulting oversize
material generated from excavations should be anticipated.
• Groundwater was not encountered during our subsurface evaluation. Depth to groundwater may
vary due ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and
other factors which may not have been evident at the time of our field evaluation.
• Results of our laboratory testing indicate that the onsite fill and materials of the Otay
Formation are expansive.
• Results of our slope stability analyses (Appendix E) indicate that the existing slopes that
descend from the eastern, northeastern, and western portion of the site possess adequate
factors of safety with respect to static and seismic conditions.
• In general, on-site excavations are anticipated to generate soils with a high expansion
potential. These materials are not considered suitable for reuse beneath the proposed
building or the upper 2 feet of subgrade soils beneath flatwork. Therefore, we anticipate that
imported material will be needed for use as fill.
• Excavations performed within the on-site materials are anticipated to generate oversized
materials that are not suitable for reuse within the engineered fill soils. Cemented materials
and cobbles should be crushed, screened and processed prior to their reuse as fill. The
contractor should anticipate disposing of the oversized materials generated during excavation.
• The subject site is not located within a State of California Earthquake Fault Zone. The
probability of surface fault rupture at the site is considered to be low.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 11
• Although potential infiltration rates of the onsite soils may be suitable for partial infiltration,
we do not recommend infiltration for this site from a geotechnical standpoint. Based on our
geotechnical laboratory testing, the onsite fill materials and materials derived from the Otay
Formation are clayey in nature and possess a high potential for expansion. In addition,
infiltration within 50 feet of the top of a slope is anticipated to induce seepage on the slope
face and increase the risk of slope failures in these areas.
• Our limited laboratory corrosion testing indicates that the onsite soils are corrosive based on
California Department of Transportation (Caltrans, 2018) corrosion guidelines. As such, we
recommend that a corrosion engineer be consulted for further evaluation of these soils.
10 RECOMMENDATIONS
The recommendations presented in the following sections provide general geotechnical criteria
regarding the design and construction of the proposed Acadia San Diego Medical Facility and
associated improvements. The recommendations are based on the results of our subsurface
evaluation, laboratory testing, review of referenced geologic materials, experience in the general
vicinity of the project area, and geotechnical analyses. The proposed work should be performed
in conformance with the recommendations presented in this report, project specifications, and
appropriate agency standards.
10.1 Earthwork
Earthwork at the site is anticipated to include foundation excavations, trenching and backfilling
for new utilities, pavement construction, and finish grading for establishment of site drainage.
Earthwork should be performed in accordance with the requirements of applicable governing
agencies and the recommendations presented in the following sections.
10.1.1 Construction Plan Review and Pre-Construction Conference
We recommend that the grading and foundation plans, and project specifications, be
submitted to Ninyo & Moore for review to evaluate for conformance to the
recommendations provided in this report. We further recommend that a pre-construction
conference be held. The owner and/or their representative, the governing agencies’
representatives, the civil engineer, the geotechnical engineer, and the contractor should be
in attendance to discuss the work plan and project schedule.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 12
10.1.2 Site Preparation
Prior to commencing earthwork operations, the project areas for the new improvements
should be cleared of existing structures and improvements, vegetation, utility lines, asphalt,
concrete, and other deleterious debris from areas to be graded. The existing stockpile of
soil within the east-central portion of the site should be removed to accommodate
construction of the proposed improvements. Tree stumps and roots should be removed to
such a depth that organic material is generally not present. Clearing and grubbing should
extend to the outside of the proposed excavation and fill areas. The debris and unsuitable
material generated during clearing and grubbing should be removed from areas to be
graded and disposed of at a legal dumpsite away from the project area.
10.1.3 Excavation Characteristics
The results of our field exploration program indicate that the project site, as presently
proposed, is underlain by fill soils and materials comprising the Otay Formation. These soils
should be generally excavatable with heavy-duty earth working equipment. Moderately- to
strongly-cemented formational materials may be encountered and additional efforts
including heavy ripping should be anticipated.
10.1.4 Remedial Grading and Treatment of Near-Surface Soils
As noted, based on the results of our subsurface and laboratory evaluation, the existing fill
and upper portions of the Otay Formation are considered to be potentially compressible,
expansive, and corrosive. As such, we do not consider these upper soils to be suitable for
structural support of buildings and improvements in their present condition. In addition, a
significant cut-fill transition between the fill soils and Otay Formation is present beneath the
proposed building pad, which could result in considerable differential settlements across the
building. Consequently, we recommend that the existing fill and upper portions of the Otay
Formation be removed to a depth of 8 feet below the bottoms of the proposed foundations
within planned building pads. For the purposes of this report, the building pad is defined as
the structural footprint plus a horizontal distance of 5 feet or the depth of the excavation
below pad grade, whichever is greater. Depths of these recommended removals will vary,
but should extend to a sufficient depth in order to provide 10 feet or more of fill soils, with
the upper 5 feet or more possessing a very low to low expansion potential beneath the
building pad. The extent and depths of removals should be evaluated by Ninyo & Moore’s
representative in the field based on the materials exposed. Based on our field
representative’s observations, deeper removals in some areas may be recommended.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 13
Near-horizontal benching of the removal surface should be performed where the surface
gradient exceeds 3:1 (horizontal:vertical). The existing fills may be reused as compacted fill
materials provided they meet with the criteria for fill materials.
Where flatwork, concrete pavement, or segmental concrete pavers are proposed, the upper
1 foot of subgrade materials should be removed and replaced with compacted fill material
exhibiting a very low to low expansion potential. Remedial grading for site pavements and
should consist of scarifying and moisture conditioning the upper 1 foot of subgrade materials.
Our recommendations for removals and placement of structural backfill are summarized on
Table 5.
Table 5 – Summary of Remedial Grading Recommendations
Improvement Type Estimated Depth1,2
of Remedial Grading Fill Material
Building Improvements 8 feet below bottoms of
foundations
Select Fill3 in upper 3 ft4
On-site Material beneath 3 ft4
Retaining Walls 3 feet below bottom of footing Select Fill3
Flatwork,
Concrete Pavement and Pavers 1 foot below subgrade Select Fill3
Asphalt Concrete
Pavement
Scarify and moisture condition
the upper 1 foot of subgrade On-site Materials
Notes: 1 Actual depth to be evaluated during grading by the geotechnical representative.
2 Lateral extent of remedial grading removals equal to 5 feet or the depth of the excavation below pad grade, whichever is
greater. 3 Select Fill is granular and exhibits a very low expansion potential and properties as defined in Fill Materials. 4 Below bottom of foundation
Existing underground utilities may be present within the project site that that could impact the
recommended remedial grading. The presence of underground utilities located under or
adjacent to the proposed building pads, which cannot be relocated, may hinder the
performance of the recommended remedial grading operations. Ninyo & Moore should be
contacted for additional recommendations regarding such conflicts on a case-by-case basis.
10.1.5 Temporary Excavations
For temporary excavations, we recommend that the following Occupational Safety and
Health Administration (OSHA) soil classifications be used:
Fill Type C
Otay Formation Type B
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 14
Upon making the excavations, the soil classifications and excavation performance should
be evaluated in the field by the geotechnical consultant in accordance with the OSHA
regulations. Temporary excavations should be constructed in accordance with OSHA
recommendations. For trenches or other excavations, OSHA requirements regarding
personnel safety should be met using appropriate shoring (including trench boxes) or by
laying back the slopes to no steeper than 1.5:1 (horizontal to vertical) in fill and 1:1 for Otay
Formation materials. Temporary excavations that encounter seepage may be shored or
stabilized by placing sandbags or gravel along the base of the seepage zone. Excavations
encountering seepage should be evaluated on a case-by-case basis. On-site safety of
personnel is the responsibility of the contractor.
10.1.6 Temporary Shoring
Based on our understanding of the proposed construction, the proposed structure will not
include a subterranean level. If deep excavations are planned where temporary sloping of
the walls of the excavation is not feasible, it may be necessary to install a temporary
shoring system. The shoring plans should clearly depict the site constraints and the shoring
system. The shoring plans should be signed and stamped by a professional engineer
registered in the State of California experienced in the design the shoring systems. Ninyo &
Moore should be given the opportunity to review the project plans to check its compliance
with design and construction recommendations presented herein.
A cantilever shoring system consisting of soldier piles and lagging can be utilized to
facilitate construction staging (Figure 7). The soldier piles may be comprised of structural
concrete below the bottom of the excavation and lean concrete slurry backfill above the
bottom. H-piles inserted in the drilled shafts, during the placement of concrete, are to act as
reinforcement below the bottom of the excavation. Lagging spans the distance between the
H-piles, transferring the soil lateral pressure to the H-piles.
Lateral earth pressures exerted on cantilever shoring are indicated on Figure 7. These
lateral earth pressures should be evaluated by a structural engineer for the design of the
temporary shoring system. These design earth pressures assume that spoils from the
excavations, or other surcharge loads, will not be placed above the excavations within a
1:1 plane extending up and back from the base of the excavation. For shoring subjected to
surcharge loads, such as soil stockpiles or construction materials/equipment, an additional
horizontal uniform pressure of 0.5q may be applied to the full height of the excavation,
where “q” is the vertical surcharge pressure. Street traffic or construction traffic may be
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 15
assumed to induce a surcharge pressure “q” of 240 pounds per square foot (psf). If a
braced shoring system is planned for the site, we would be pleased to provide
recommendations for their design and construction upon request.
10.1.7 Materials for Fill and Trench Backfill
Material for fill may be obtained from on-site excavations, may be processed from on-site
excavations, or may be import materials. On-site soils (other than plastic clays) with an
organic content of less than approximately 3 percent by volume (or 1 percent by weight) are
suitable for reuse as general fill material in building areas (at depths of more than 3 feet
below foundations), in non-structural areas, and in areas where asphalt concrete pavements
are proposed. Fill material should not contain rocks or lumps over approximately 3 inches in
diameter, and not more than approximately 30 percent larger than ¾ inch. Oversize
materials, if encountered, should be crushed, screened, processed, or separated from
material to be used for compacted fill and removed from the site. Moisture conditioning
(including drying) of existing on-site materials is anticipated if reused as fill.
As recommended in Section 10.1.4, the upper soils (within 3 feet of the bottom of proposed
foundations) in the proposed building area, and in areas to receive retaining walls, flatwork,
concrete pavement, and pavers, should be overexcavated, exported, and backfilled with
imported select fill. Select fill and imported fill materials should generally be granular soils with
very low to low expansion potential (i.e., an expansion index of 50 or less as evaluated by
ASTM International [ASTM] Test Method D 4829). Select fill and imported fill material should
also be tested for corrosive potential and exhibit a minimum resistivity value greater than
1,100 ohm-centimeters, chloride content of less than 500 parts per million (ppm), a sulfate
content of less than 1,000 ppm and pH greater than 5.5. The contractor should be responsible
for the uniformity of import material brought to the site. We recommend that materials proposed
for use as select fill be evaluated from a contractor’s stockpile rather than in place materials.
Once an evaluation of a stockpile is requested, three days should be anticipated for results of
the material evaluation. Utility trench backfill material should not contain rocks or lumps over
approximately 3 inches in general. In general, soils classified as silts or clays should not be
used for backfill in the pipe zone. Larger chunks, if generated during excavation, may be
broken into acceptably sized pieces or disposed of offsite. A summary of the recommended fill
material criteria is presented in Table 6.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 16
Table 6 – Fill Material Criteria
Fill Material Criteria
General Site Fill <3 inches
<30 percent retained on ¾ inch sieve
Select Fill
<3 inches
<30 percent retained on ¾ inch sieve
Expansion Index <50, considered
non-corrosive
Trench Backfill <3 inches
<30 percent retained on ¾ inch sieve
Additionally, concrete and AC materials generated from the demolition of the existing
improvements may be crushed and reused within the fill materials. These materials are
considered suitable, provided they are processed and mixed with onsite soils to meet the
gradation recommendations provided above. However, AC materials may not be reused
within the engineered fills placed beneath a building pad.
Retaining wall backfill material should also consist of select fill soils as defined in Table 6.
To reduce the potential of importing contaminated materials to the site, prior to delivery, soil
materials obtained from off-site sources shall be sampled and tested in compliance with
California EPA Department of Toxic Substances Control “Information Advisory, Clean
Imported Fill Material”, dated October 2001. Do not import soils that exhibit a known risk to
human health, the environment, or both.
10.1.8 Fill Placement and Compaction
Prior to placement of compacted fill, the contractor should request an evaluation of the
exposed ground surface by Ninyo & Moore. Unless otherwise recommended, the exposed
ground surface should then be scarified to a depth of approximately 8 inches and watered
or dried, as needed, to achieve moisture contents generally above the optimum moisture
content. The scarified materials should then be compacted to a relative compaction of
90 percent as evaluated in accordance with ASTM D 1557. The evaluation of compaction
by the geotechnical consultant should not be considered to preclude any requirements for
observation or approval by governing agencies. It is the contractor's responsibility to notify
this office and the appropriate governing agency when project areas are ready for
observation, and to provide reasonable time for that review.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 17
Fill materials should be moisture conditioned to generally above the laboratory optimum
moisture content prior to placement. The optimum moisture content will vary with material
type and other factors. Moisture conditioning of fill soils should be generally consistent
within the soil mass.
Prior to placement of additional compacted fill material following a delay in the grading
operations, the exposed surface of previously compacted fill should be prepared to receive
fill. Preparation may include scarification, moisture conditioning, and recompaction.
Compacted fill should be placed in horizontal lifts of approximately 8 inches in loose
thickness. Prior to compaction, each lift should be watered or dried as needed to achieve a
moisture content generally above the laboratory optimum, mixed, and then compacted by
mechanical methods, to a relative compaction of 90 percent as evaluated by ASTM D 1557.
Successive lifts should be treated in a like manner until the desired finished grades are
achieved. The upper 12 inches of the subgrade and aggregate base materials underneath
the pavements should be compacted to a relative compaction of 95 percent relative density
as evaluated by the current version of ASTM D 1557.
10.1.9 Pipe Bedding
Pipe bedding should be constructed in general accordance with the “Greenbook” Standard
Specifications. We recommend that utility lines be supported 6 inches or more of granular
bedding material such as sand with a sand equivalent value of 30 or more in accordance
with ASTM D 2419. Bedding material should be placed and compacted around the pipe,
and 12 inches or more above the top of the pipe. We do not recommend the use of crushed
rock for bedding material. It has been our experience that the voids within a crushed rock
material are sufficiently large enough to allow fines to migrate into the voids, thereby
creating the potential for sinkholes and depressions to develop at the ground surface.
Special care should be taken not to allow voids beneath and around the pipe. Bedding
material and compaction requirements should be in accordance with the recommendations
of this report, the project specifications, and applicable requirements of the appropriate
agencies. Compaction of the bedding material and backfill should proceed evenly up both
sides of the pipe and be compacted to 90 percent or more relative compaction as evaluated
by ASTM D 1557.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 18
10.1.10 Lateral Pressures for Thrust Blocks
Thrust restraint for buried pipelines may be achieved by transferring the thrust force to the
soil outside the pipe through a thrust block. Thrust blocks may be designed using the
magnitude and distribution of passive lateral earth pressures presented on Figure 8. Thrust
blocks should be backfilled with granular backfill material and compacted following the
recommendations presented in this report.
10.1.11 Modulus of Soil Reaction
The modulus of soil reaction is used to characterize the stiffness of soil backfill placed at the sides
of buried pipelines for the purpose of evaluating deflection caused by the weight of the backfill
above the pipe. A soil reaction modulus of 1,000 pounds per square inch (psi) may be used for
excavation depths up to 5 feet and 1,400 psi may be used for excavation depths more than 5 feet
and backfilled with granular soil and compacted to 90 percent based on ASTM D 1557.
10.2 Seismic Design Considerations
Design of the proposed improvements should be performed in accordance with the
requirements of governing jurisdictions and applicable building codes. Table 7 presents the
seismic design parameters for the sites in accordance with CBC (2016) guidelines and adjusted
MCER spectral response acceleration parameters (SEAOC/OSHPD, 2019).
Table 7 – 2016 California Building Code Seismic Design Criteria
Site Coefficients and Spectral Response Acceleration Parameters Values
Site Class D
Site Coefficient, Fa 1.171
Site Coefficient, Fv 1.762
Mapped Spectral Response Acceleration at 0.2-second Period, Ss 0.822g
Mapped Spectral Response Acceleration at 1.0-second Period, S1 0.319g
Spectral Response Acceleration at 0.2-second Period Adjusted for Site Class, SMs 0.963g
Spectral Response Acceleration at 1.0-second Period Adjusted for Site Class, SM1 0.562g
Design Spectral Response Acceleration at 0.2-second Period, SDs 0.642g
Design Spectral Response Acceleration at 1.0-second Period, SD1 0.375g
10.3 Site-Specific Ground Response Analysis
We have performed a site-specific ground response analysis in accordance with
Section 1616A.1.3 of the California Building Code (CBC, 2016) and Section 21 of American
Society of Civil Engineers (ASCE) Standard 7-10 (ASCE, 2010). The analysis consisted of a
review of available seismologic information for nearby faults and performance of probabilistic
and deterministic seismic hazard analyses to provide an acceleration response spectrum (ARS)
to model building response to seismic ground shaking for design of the proposed structure.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 19
We conducted a probabilistic seismic hazard analysis to evaluate the horizontal ground motion
with a recurrence interval of approximately 2,500 years or a 2 percent probability of exceedance
in 50 years, also known as the ground motion associated with the Maximum Considered
Earthquake (MCE). We conducted our analysis using the hazard spectrum calculator program
OpenSHA (Field, et al., 2003) and the online database of fault locations, rupture areas, and
recurrence intervals (Cao, et al., 2003). We considered several attenuation relationships in our
analysis to model spectral response acceleration at the site and selected the relationships by
Chiou & Young (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) in
evaluating the probabilistic MCE ARS.
We conducted a deterministic seismic hazard analysis to evaluate ground shaking wherein we
computed the 5 percent damped, median ARS for characteristic earthquakes acting individually
on known active faults within the region. In our analysis, we used the National Seismic Hazard
Maps - Fault Parameters tool (USGS, 2019) to evaluate the fault to site distance for the
database of fault locations and magnitude published by the USGS/CGS (Cao et al., 2003). We
found that the ARS at the site for a moment magnitude 6.8 earthquake event on the Rose
Canyon fault (approximately 17.5 kilometers southwest of the site) exceeds the ARS at the site
due to seismic events on other regional faults using published estimates of earthquake
magnitude (Cao et al., 2003). We considered several attenuation relationships and modeled the
MCE ground motion for a magnitude 6.8 event on the Rose Canyon fault. In accordance with
Section 21.2.2 of ASCE 7-10, we constructed the deterministic MCE ground motion from the
largest scaled median spectral response acceleration at each period evaluated and the lower
limit specified in Section 21.2.2.
The site-specific design ARS is presented on Figure 9. In accordance with Section 21.2.3 of
ASCE 7-10, the site-specific design ARS is the lesser of the probabilistic and deterministic MCE
ARS at each period evaluated reduced by a factor of one-third. The design ARS for a Site
Class D computed in accordance with Section 1613A of the CBC and Section 11.4.5 of
ASCE 7-10 is presented on Figure 9 for comparison. The site-specific design ARS presented on
Figure 9 meets or exceeds 80 percent of the design ARS for a Site Class D in accordance with
Section 21.3 of ASCE 7-10. The spectral ordinates for the site-specific design ARS are
tabulated on Figure 9.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 20
10.4 Foundations
Based on our understanding that the proposed Acadia San Diego Medical Facility building will
be a single-story structure of slab-on-grade construction, we are providing the following
preliminary foundation recommendations. The proposed building may be supported on shallow,
spread, or continuous footings bearing on compacted fill prepared, observed, and tested in
accordance with the recommendations presented in this report. Foundations should be
designed in accordance with structural considerations and the following recommendations. In
addition, requirements of the appropriate governing jurisdictions and applicable building codes
should be considered in the design of the structures.
10.4.1 Spread Footings
Shallow, spread, or continuous footings, bearing on 3 feet of compacted select fill materials
may be designed using an allowable bearing capacity of 2,500 pounds per square foot
(psf). The allowable bearing capacity may be increased by one-third when considering
loads of short duration such as wind or seismic forces. The allowable bearing capacity is
based on a factor of safety of roughly three.
Spread footings should be founded 24 inches below the lowest adjacent grade. Continuous
footings should have a width of 15 inches and isolated footings should be 24 inches in width.
The allowable bearing capacity recommended above can also be increased by 450 psf for
each additional foot of embedment and 150 psf for each additional foot of width to a value of up
to 3,500 psf for footings bearing within compacted fill. The spread footings should be reinforced
in accordance with the recommendations of the project structural engineer.
10.4.2 Lateral Resistance
For resistance of footings to lateral loads, bearing on compacted fill, we recommend an
allowable passive pressure of 300 psf of depth be used with a value of up to 3,000 psf. This
value assumes that the ground is horizontal for a distance of 10 feet, or three times the
height generating the passive pressure, whichever is greater. We recommend that the
upper 1 foot of soil not protected by pavement or a concrete slab be neglected when cal-
culating passive resistance.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 21
For frictional resistance to lateral loads, we recommend a coefficient of friction of 0.35 be used
between soil and concrete. The allowable lateral resistance can be taken as the sum of the
frictional resistance and passive resistance provided the passive resistance does not exceed
one-half of the total allowable resistance. The passive resistance values may be increased by
one-third when considering loads of short duration such as wind or seismic forces.
10.4.3 Static Settlement
We estimate that the proposed structures, designed and constructed as recommended herein,
and founded in compacted fill will undergo total settlement on the order of 1 inch. Differential
settlement on the order of ½ inch over a horizontal span of 40 feet should be expected.
10.5 Slabs-On-Grade
We recommend that conventional, slab-on-grade floors, underlain by 5 feet or more of
compacted fill materials of very low to low expansion potential, be 5 inches in thickness and be
reinforced with No. 4 reinforcing bars spaced 18 inches on center each way. The reinforcing
bars should be placed near the middle of the slab. As a means to help reduce shrinkage cracks,
we recommend that the slabs be provided with control joints at intervals of approximately
12 feet each way. The slab reinforcement and expansion joint spacing should be designed by
the project structural engineer.
If moisture sensitive floor coverings are to be used, we recommend that slabs be underlain by a
vapor retarder and capillary break system consisting of a 15-mil polyethylene (or equivalent)
membrane (installed per the manufacturers recommendations) placed over 4 inches of medium to
coarse, clean sand or pea gravel. The exposed subgrade should be moistened just prior to the
placement of concrete.
10.6 Retaining Walls
We understand that retaining walls may be constructed as part of the project. For the design of
a yielding retaining wall that is not restrained against movement by rigid corners or structural
connections, an active pressure represented by an equivalent fluid weight of 75 pounds per
cubic foot (pcf) may be assumed for 2:1 (horizontal to vertical) backfill and 45 pcf for level
backfill as shown on Figure 10. Restrained walls (non-yielding) may be designed for at-rest
pressure represented by an equivalent fluid weight of 95 pcf for 2:1 (horizontal to vertical)
backfill and 65 pcf for level backfill. Should dynamic earth pressures be considered in the
design, a triangular pressure distribution with a magnitude of 17H pcf may be used. These
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 22
pressures do not include surcharge loads. The designer should evaluate the surcharge
pressures from the buildings, traffic, and other structures. These pressures assume low-
expansive, granular retaining wall backfill material as defined in the Materials for Fill section of
this report. Wall backfill should be moisture conditioned and compacted to a relative compaction
of 90 percent at a moisture content near the optimum as evaluated by ASTM D 1557. A drain
should be provided behind the wall as shown on Figure 11. The drain should be connected to
an appropriate outlet.
10.7 Exterior Flatwork
Exterior concrete flatwork should be 5 inches in thickness and should be reinforced with No. 3
reinforcing bars placed at 24 inches on-center both ways. Exterior slabs should be underlain by
4 inches of clean sand, which is in turn underlain by a 1-foot thickness of select fill (as
discussed in Section 10.1.4). A vapor retarder is not needed for exterior flatwork. To reduce the
potential manifestation of distress to exterior concrete flatwork due to movement of the
underlying soil, we recommend that such flatwork be installed with crack-control joints at
appropriate spacing as designed by the structural engineer. Before placement of concrete, the
subgrade soils should be scarified to a depth of 8 inches, moisture conditioned to generally
above the laboratory optimum moisture content, and compacted to a relative compaction of
90 percent as evaluated by ASTM D 1557. Positive drainage should be established and
maintained adjacent to flatwork.
10.8 Corrosion
The corrosion potential of the site soils was evaluated based on laboratory testing of a
representative sample of the upper soils obtained from our exploratory boring B-6 and test pits TP-2
and TP-9. Laboratory testing was performed to evaluate pH, electrical resistivity, chloride, and
sulfate content. The soil pH and minimum resistivity tests were performed in accordance with
California Test Method (CT) 643. The test for chloride content of the soils was performed using
CT 422. Sulfate testing was performed in general accordance with CT 417. The laboratory results
are presented in Appendix B.
The soil pH was measured to range from approximately 8.3 to 9.0 and the electrical resistivity
ranged from approximately 700 to 1,000 ohm-cm. The chloride contents of the samples ranged
from approximately 30 parts per million (ppm) to 1035 ppm. The sulfate contents of the tested
samples ranged from approximately 0.001 to 0.004 (10 to 40 ppm). Based on the laboratory test
results and Caltrans (2018) corrosion criteria, the onsite samples would be classified as
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 23
corrosive, which is defined as having earth materials with more than 500 ppm chlorides, more
than 0.15 percent sulfates (i.e., 1,500 ppm), an electrical resistivity of 1,100 ohm-cm or less, or
a pH of 5.5 or less. If corrosion susceptible improvements are planned on site, we recommend
that a corrosion engineer be consulted for further evaluation and recommendations.
10.9 Concrete
Concrete in contact with soil or water that contains high concentrations of soluble sulfates can be
subject to chemical deterioration. Laboratory testing indicated the sulfate contents of the samples
tested were approximately 0.001 to 0.004 percent. Based on ACI 318 criteria, the potential for
sulfate attack is negligible for water-soluble sulfate contents in soils ranging from about 0.00 to
0.10 percent by weight. Therefore, the site soils may be considered to have a negligible potential for
sulfate attack. However, due to the potential variability of site soils, consideration should be given to
using Type II/V cement for normal weight concrete in contact with soil.
In order to reduce the potential for shrinkage cracks in the concrete during curing, we
recommend that the concrete for the proposed improvements be placed with a slump of
4 inches based on ASTM C 143. The slump should be checked periodically at the site prior to
concrete placement. We further recommend that concrete cover over reinforcing steel for
foundations be provided in accordance with CBC (2016). The structural engineer should be
consulted for additional concrete specifications.
10.10 Preliminary Pavement Recommendations
We understand that new pavements will be constructed on site. New pavement sections were
evaluated based on the encountered subgrade soil conditions and our laboratory testing. Laboratory
testing of representative soil samples were performed and indicated R-values ranging from
approximately 35 and 39 for the on-site subgrade soils. For preliminary design purposes, an R-value
of 30 was used for the evaluation of preliminary pavement structural sections. Actual pavement
recommendations should be based on R value tests performed on bulk samples of the soils
exposed at the finished subgrade elevations once grading operations have been performed.
It is anticipated that traffic conditions will consist of relatively light passenger vehicles,
maintenance/service vehicles, as well as occasional emergency vehicles. As such, our
evaluation of pavement structural sections utilized assumed Traffic Ind ices (TIs) of 5, 6, and 7.
Our pavement analysis was performed using the methodology outlined by the Highway Design
Manual (Caltrans, 2017). The analysis assumes an approximate 20-year design life for new
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 24
pavements. Based on the design R value and assumed TIs, our calculated pavement structural
section is provided in Table 7.
Table 8 – Preliminary Pavement Recommendations
Traffic Index Design
R-Value
Asphalt Concrete
(inches)
Caltrans 2 Aggregate
Base
(inches)
5 30 3.0 6.0
6 30 3.5 7.5
7 30 4.0 9.5
As indicated, the above pavement structural sections assume traffic indices of 7.0 or less for
site pavements. If traffic loads are different from those assumed, the pavement design should
be re-evaluated. In addition, we recommend that the upper 12 inches of the subgrade and
aggregate base materials be compacted to a relative compaction of 95 percent as evaluated by
the current version of ASTM D 1557.
We suggest that consideration be given to using Portland cement concrete pavements in areas
where dumpsters will be stored and where refuse trucks will stop and load. Experience indicates
that refuse truck traffic can significantly shorten the useful life of asphalt concrete sections. We
recommend that in these areas, 6 inches of 600 psi flexural strength Portland cement concrete
reinforced with No. 3 bars, 18 inches on center, be placed over 6 inches or more of Class 2
aggregate base compacted to a relative compaction of 95 percent (based on ASTM D 1557),
placed over 1 or more feet of very low to low expansion potential fill materials compacted to the
recommendations presented herein. The above section may also be used for fire lane PCC
pavements. For light duty vehicle pavements, we recommend 5 inches of PCC over 4 inches of
aggregate base.
10.11 Drainage
Roof, pad, and slope drainage should be conveyed such that runoff water is diverted away from
slopes and structures to suitable discharge areas by nonerodible devices (e.g., gutters,
downspouts, concrete swales, etc.). Positive drainage adjacent to structures should be
established and maintained. Positive drainage may be accomplished by providing drainage
away from the foundations of the structure at a gradient of 2 percent or steeper for a distance of
5 feet or more outside building perimeters, and further maintained by a graded swale leading to
an appropriate outlet, in accordance with the recommendations of the project civil engineer
and/or landscape architect.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 25
Surface drainage on the site should be provided so that water is not permitted to pond. A
gradient of 2 percent or steeper should be maintained over the pad area and drainage patterns
should be established to divert and remove water from the site to appropriate outlets.
Care should be taken by the contractor during grading to preserve any berms, drainage
terraces, interceptor swales or other drainage devices of a permanent nature on or adjacent to
the property. Drainage patterns established at the time of grading should be maintained for the
life of the project. The property owner and the maintenance personnel should be made aware
that altering drainage patterns might be detrimental to foundation performance.
11 CONSTRUCTION OBSERVATION
The recommendations provided in this report are based on our understanding of the proposed
project and our evaluation of the data collected based on subsurface conditions observed in our
exploratory borings. It is imperative that the geotechnical consultant checks the subsurface
conditions during construction.
During construction, we recommend that the duties of the geotechnical consultant include, but
not be limited to:
• Observing clearing, grubbing, and removals.
• Observing excavation bottoms and the placement and compaction of fill, including trench backfill.
• Evaluating imported materials, if any, prior to their use as fill.
• Performing field tests to evaluate fill compaction.
• Observing foundation excavations for bearing materials and cleaning prior to placement of
reinforcing steel or concrete.
• Performing material testing services including concrete compressive strength and steel
tensile strength tests and inspections.
The recommendations provided in this report are based on the assumption that Ninyo & Moore
will provide geotechnical observation and testing services during construction. In the event that
the services of Ninyo & Moore are not utilized during construction, we request that the selected
consultant provide the owner with a letter (with a copy to Ninyo & Moore) indicating that they
fully understand Ninyo & Moore’s recommendations, and that they are in full agreement with the
design parameters and recommendations contained in this report.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 26
12 LIMITATIONS
The field evaluation, laboratory testing, and geotechnical analyses presented in this
geotechnical report have been conducted in general accordance with current practice and the
standard of care exercised by geotechnical consultants performing similar tasks in the project
area. No warranty, expressed or implied, is made regarding the conclusions, recommendations,
and opinions presented in this report. There is no evaluation detailed enough to reveal every
subsurface condition. Variations may exist and conditions not observed or described in this
report may be encountered during construction. Uncertainties relative to subsurface conditions
can be reduced through additional subsurface exploration. Additional subsurface evaluation will
be performed upon request. Please also note that our evaluation was limited to assessment of
the geotechnical aspects of the project, and did not include evaluation of structural issues,
environmental concerns, or the presence of hazardous materials.
This document is intended to be used only in its entirety. No portion of the document, by itself, is
designed to completely represent any aspect of the project described herein. Ninyo & Moore
should be contacted if the reader requires additional information or has questions regarding the
content, interpretations presented, or completeness of this document.
This report is intended for design purposes only. It does not provide sufficient data to prepare
an accurate bid by contractors. It is suggested that the bidders and their geotechnical
consultant perform an independent evaluation of the subsurface conditions in the project
areas. The independent evaluations may include, but not be limited to, review of other
geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional
exploration and laboratory testing.
Our conclusions, recommendations, and opinions are based on an analysis of the observed site
conditions. If geotechnical conditions different from those described in this report are
encountered, our office should be notified, and additional recommendations, if warranted, will be
provided upon request. It should be understood that the conditions of a site could change with
time as a result of natural processes or the activities of man at the subject site or nearby sites.
In addition, changes to the applicable laws, regulations, codes, and standards of practice may
occur due to government action or the broadening of knowledge. The findings of this report may,
therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore
has no control.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 27
This report is intended exclusively for use by the client. Any use or reuse of the findings,
conclusions, and/or recommendations of this report by parties other than the client is
undertaken at said parties’ sole risk.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 28
13 REFERENCES
Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models, report prepared for
Brookhaven National Laboratory, New York, NY, 144 p.
American Concrete Institute (ACI), 2016, ACI Manual of Concrete Practice.
American Society of Civil Engineers (ASCE), 2010, Minimum Design Loads for Building and
other Structures, Standard ASCE/SEI 7-10.
ASTM International (ASTM), 2016, Annual Book of ASTM Standards, West Conshohocken,
Pennsylvania.
Atik, Linda L. and Sitar, N., 2010, Seismic Earth Pressures on Cantilever Retaining Structures,
ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 10:
dated October 1.
Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., 2002, Recommended Procedures for
Implementation of DMG Special Publication 117-Guidelines for Analyzing and Mitigating
Landslide Hazards in California: Committee Organized Through the ASCE, Los Angeles
Section Geotechnical Group, Document Published by the Southern California
Earthquake Center, 101p.
Bowles, J.E., 1996, Foundation Analysis and Design, Fifth Edition, The McGraw-Hill
Companies, Inc.
Boore, D. M., Atkinson, G. M., 2008, Ground-motion prediction equations for the average
horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between
0.01 s and 10.0 s, Earthquake Spectra, Volume 24, Issue 1.
Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified Seismic Design
Procedure for Geosynthetic-Lined Solid Waste Landfills: Geosynthetics International,
V.5, No. 1-2, pp. 203-235.
Building News, 2018, “Greenbook,” Standard Specifications for Public Works Construction: BNI
Publications.
Building Seismic Safety Council, 2009, National Earthquake Hazards Reduction Program
(NEHRP) Recommended Seismic Provisions for New Buildings and Other Structures
(FEMA P -750).
California Building Standards Commission, 2016, California Building Code (CBC): California
Code of Regulations.
California Department of Transportation (Caltrans), 2017, Highway Design Manual, Chapter
630-Flexible Pavement: dated November 20.
California Department of Transportation (Caltrans), 2018, Corrosion Guidelines (Version 3.0),
Division of Engineering and Testing Services, Corrosion Technology Branch: dated
March.
California Geological Survey (CGS), 2008a, Guidelines for Evaluating and Mitigating Seismic
Hazards in California, CGS Special Publication 117A.
California Geological Survey (CGS), 2008b (revised), Earthquake Shaking Potential for
California: Map Sheet 48.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 29
California Geological Survey (CGS), 2018, California Earthquake History and Catalogs –
Downloadable California Earthquake Catalogs,
http://www.conservation.ca.gov/cgs/rghm/quakes: accessed in March.
Campbell, K.W., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and
Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-
Absolute Acceleration Response Spectra, Seismological Research Letters, Volume 68,
Number 1, pp. 154-179.
Campbell, K.W., and Bozorgnia, Y., 2008, NGA Ground Motion Model for the Geometric Mean
Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response
Spectra for Periods Ranging from 0.01 to 10 s, Earthquake Spectra Volume 24, Issue 1,
pp. 139-172: dated February.
Cao, T., Bryant, W. A., Rowshandel, B., Branum, D., and Willis, C. J., 2003, The Revised 2002
California Probabilistic Seismic Hazards Maps: California Geological Survey: dated June.
Chiou, B. S.-J., and Youngs, R.R., 2008, An NGA Model for the Average Horizontal Component
of Peak Ground Motion and Response Spectra, Earthquake Spectra Volume 24, Issue 1, pp. 173-216: dated February.
City of Chula Vista, 2005, General Plan, Chapter 9 – Environmental Element: updated
December 13.
City of Chula Vista, 2017, BMP Design Manual, For Permanent Site Design, Storm Water
Treatment and Hydromodification Management: updated May.
Geotechnics Incorporated, 2003, As-Graded Geotechnical Report, Eastlake Business Center
(Phase 2), Chula Vista Tract No. 00-02, Chula Vista, California: dated March 10.
Google Earth, 2019, http://earth.google.com.
Gregory, G.H., 2019, Geostase, Slope Stability Analyses Software, Version 2.7: dated January.
Harden, D.R., 2004, California Geology, Second Edition: Prentice Hall, Inc.
Hart, E.W., and Bryant, W.A., 1997, Fault-Rupture Hazard Zones in California, Alquist-Priolo
Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California
Department of Conservation, California Geological Survey, Special Publication 42, with
Supplement 1 added in 2012, Supplement 2 added in 2014, Supplement 3 added in
2015, and Supplement 4 added in 2016.
Historical Aerials, 2019, Website for Viewing Aerial Photographs, www.historicaerials.com.
Ishihara, K. (1985). “Stability of natural deposits during earthquakes,” Proceedings of the 11th
Int. Conference of Soil Mechanics and Foundation Engineering, San Francisco, CA,
Vol. 1, 321-376.
Jennings, C.W., and Bryant, W.A., 2010, Fault Activity Map: California Geological Survey,
California Geologic Data Map Series, Map No. 6, Scale 1:750,000.
Mononobe, N. and Matsuo, H., 1929, On the Determination of Earth Pressure during
Earthquakes, Proceedings of the World Engineering Conference, No. 9.
Ninyo & Moore, 2006, Geotechnical Evaluation, Eastlake Design Center II, Showroom Place
and Fenton Street, Chula Vista, California, Project 105627001: dated February 24,
revised August 28.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 30
Ninyo & Moore, 2018, Proposal for Geotechnical Evaluation, Proposed Acadia San Diego
Medical Facility, 830 Showroom Place, Chula Vista, California: dated November 15.
Norris, R.M., and Webb, R.W., 1990, Geology of California, Second Edition: John Wiley & Sons.
Okabe, S., 1926, General Theory of Earth Pressures, Journal of Japan Society of Civil
Engineering, Vol. 12, No. 1.
SEAOC/OSHPD, 2019, Seismic Design Maps, https://seismicmaps.org/: accessed February.
Stewart, J.P., Blake, T.F. and Hollingsworth, R.A., 2003, A Screen Analysis Procedure for
Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp. 697-712.
SWA Architects, 2018, Site Plan, Acadia San Diego, Chula Vista, California 91914, Sheet
No. T.001: dated August 13.
Tan, S.S., 1992, Landslide Hazards in the Jamul Mountains Quadrangle, San Diego County,
California, California Geologic Survey Open File Report 92-12, Scale 1:24,000.
Todd, V.R., 2004, Preliminary Geologic Map of the El Cajon 30’ X 60’ Quadrangle, Southern
California, Version 1.0, United States Geologic Survey, Open File Report 2004-1361.
United States Department of Agriculture (USDA), Aerial Photographs, Date 4-14-53, Flight
AXN-9M, Numbers 59 and 60, Scale 1:20,000.
United States Federal Emergency Management Agency (FEMA), 2012, Flood Insurance Rate
Map (FIRM), No. 06073C1939G: dated May 16.
United States Geological Survey (USGS), 2018, Jamul Mountains, California Quadrangle Map,
7.5-Minute Series: Scale 1:24,000.
United States Geological Survey (USGS), 2019, 2008 National Seismic Hazard Maps - Fault
Parameters website,
https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm.
Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn,
W.D., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F.,
Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and
Stokoe, K.H., II., 2001, Liquefaction Resistance of Soils: Summary Report from the 1996
NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of
Soils, Journal of Geotechnical and Geoenvironmental Engineering: American Society of
Civil Engineering 124(10), pp. 817-833.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 31
Appendix A
Photographic Documentation
FIGURES
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
SITE
"!o 0 1,500 3,000
FEET
MAP INDEX
S a n D i e g oCounty
1_108727001_SL.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. | SOURCE: ESRI WORLD TOPO, 2017
SITE LOCATION
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE 1ShowroomPl
ED
ED
ED
ED
ED ED
ED
ED
ED
ED
ED ED
ED
ED @A
@A
@A
@A
@A @A @A
@A
@?@?
@?@?
@?
@?@?
@?
LEGEND
SITE BOUNDARY
2_108727001_EL.mxd 3/6/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. | SOURCE: GOOGLE EARTH, 2017
EXPLORATION LOCATIONS - AERIAL PLAN
FIGURE 2
!o 0 150 300
FEET
@A B-8TD=15.4 BORINGTD=TOTAL DEPTH IN FEET
@?IT-8TD=5.0
TP-14TD=3.0
TEST PITTD=TOTAL DEPTH IN FEETED
INFILTRATION TESTTD=TOTAL DEPTH IN FEET
108727001 | 3/19
TP-14TD=3.0
B-8TD=15.4
IT-8TD=5.0
TP-13TD=3.0
TP-12TD=7.0
TP-11TD=6.0
TP-10TD=6.0
TP-9TD=5.0
TP-8TD=6.0
TP-7TD=6.0 TP-6TD=6.0
TP-5TD=6.0
TP-4TD=5.0
TP-3TD=5.0
TP-2TD=7.0 TP-1TD=8.0
IT-7TD=5.0
IT-1TD=5.0
IT-2TD=5.0
IT-4TD=5.0
IT-3TD=5.0
IT-6TD=5.0 IT-5TD=5.0
B-7TD=15.8
B-6TD=25.8
B-5TD=25.3
B-4TD=25.4
B-3TD=35.8
B-2TD=35.3
B-1TD=46.0
PROPOSED BUILDING FOOTPRINT
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
BUILDING
LOADING DOCK
SIDEWALK
B
B'
A A'
C
C'
EXPLORATION LOCATIONS - SITE PLAN
FIGURE 3
NOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0
FEET
150 300
N
B-8
TD=15.4
BORING
TD=TOTAL DEPTH IN FEET
LEGEND
3 108727001 ELSP.DWG AOBPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 I 3/19
Geotechnical & Environmental Sciences Consultants
IT-8
TD=5.0
BORING
TD=TOTAL DEPTH IN FEET
TP-14
TD=3.0
BORING
TD=TOTAL DEPTH IN FEET
IT-4
TD=5.0
B-1
TD=46.0
B-2
TD=35.3
B-3
TD=35.8
B-4
TD=25.4
B-5
TD=25.3
B-6
TD=25.8
B-7
TD=15.8
B-8
TD=15.4
IT-1
TD=5.0
IT-2
TD=5.0
IT-3
TD=5.0
IT-5
TD=5.0
IT-6
TD=5.0
IT-7
TD=5.0
IT-8
TD=5.0
TP-1
TD=8.0
TP-2
TD=7.0
TP-3
TD=5.0
TP-4
TD=5.0
TP-5
TD=6.0
TP-6
TD=6.0
TP-7
TD=6.0TP-8
TD=6.0
TP-9
TD=5.0
TP-10
TD=6.0
TP-11
TD=6.0
TP-12
TD=7.0
TP-13
TD=3.0
TP-14
TD=3.0
SITE BOUNDARY
GEOLOGIC CROSS SECTIONCC'
SITE BOUNDARY
PROPOSED BUILDING
FOOTPRINT
M E X I C OUSA
P a c i f i c O c e a n
NEVADA
CALIFORNIA
S
A
N
JACINTO
ELSIN
O
RE
I
M
P
E
R
I
A
L
WHITTIER
N
E
W
P
O
RT-INGLE
W
OOD
C
O
R
O
N
A
D
O
B
A
N
K
S
A
N
D
I
E
G
O
T
R
O
U
G
H
S
A
N
CLE
M
E
NTE
S
A
N
T
A
C
R
UZ-SANTACATALINARIDGE
P
A
L
O
S
VERDES
OFFSHORE ZONE
OF DEFOR
MATIONGARLOCKCLEARWATER
S
A
N
GABRIEL
SIERRAMADRE
B AN NING
MISSION CREEK
B
L
A
C
K
W
A
T
E
RHARPER
LOCKHART
L
E
N
W
O
O
D
CAMP
R
OC
K
C
ALIC
O LUDLOW
P
I
S
GAHBULLIO
N
M
O
U
N
T
A
I
N
J
O
H
N
S
O
N
VALLEY
E
M
E
R
S
O
N
P IN T O M O U N TA INMANIX
MIRAGEVALLEY
NORTHHELE
N
D
ALE
FRONTAL
C
HIN
O
S A N J O S ECUCAMO N G A
MALIBU C O A S T SA N T A M ONICA
SA NCAYETANO
SANTASUSAN ASANTA
R O S A
N O R T H R ID G E
C
H
A
R
N
O
C
K
S A W P IT
C A N Y O N
SUPERSTITION
HIL
L
S
R
O
S
E
C
ANYONPINEMOUNTAIN
W HITEW OLFSAN ANDREAS FAULT ZONEPLEITOWHEELER
POSO
CREEK
B L UE C U T
S A L T O N C R E E K
SAN ANDREAS FAULT ZONECOYOTE
CREEK
CLARK
GLEN
IVY
EARTHQUAKE
VALLEY ELMORERANCHLA
G
U
N
A
S
A
LA
D
ABRAWLEY SEI
SMI
CZ
ONES a n B e r n a r d i n o C o u n t y
K e r n C o u n t y
R i v e r s i d e C o u n t y
S a n D i e g o C o u n t y
I m p e r i a l C o u n t y
L o s A n g e l e s C o u n t y
I n y o C o u n t yTulare C o u n t y
V e n t u r a C o u n t y
O r a n g e C o u n t y
C A L I F O R N I A
HOLOCENE ACTIVE
CALIFORNIA FAULT ACTIVITY
HISTORICALLY ACTIVE
LATE QUATERNARY (POTENTIALLY ACTIVE)STATE/COUNTY BOUNDARY
QUATERNARY (POTENTIALLY ACTIVE)
SOURCE: U.S. GEOLOGICAL SURVEY AND CALIFORNIA GEOLOGICAL SURVEY, 2006,QUATERNARY FAULT AND FOLD DATABASE FOR THE UNITED STATES.
SITE
"4_108727001_FL.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE.
FAULT LOCATIONS
FIGURE 4
!o 0 30 60
MILES
LEGEND
!
108727001 | 3/19
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
SITE
"REFERENCE: TODD, V.R., 2004, PRELIMINARY GEOLOGIC MAP OF THE EL CAJON 30 X 60-MINUTEQUADRANGLE, SOUTHERN CALIFORNIA
5_108727001_G.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE.
GEOLOGY
FIGURE 5
!o 0 2,000 4,000
FEET
Tf
Ksp Ksp
Qya
LEGEND_______________________________
TERRACE DEPOSITS
SANTIAGO PEAK VOLCANICSKsp
YOUNG ALLUVIUM
""
"""
""
"
"
"
""
""
"
"Qya
FANGLOMERATETf
OTAY FORMATIONTo
STRIKE AND DIP OF BEDS5
"
"
"""
"
"
"
"
"
""
"
"
"
"
Qt
108727001 | 3/19
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
GEOLOGIC CROSS SECTION A-A'FIGURE 6ANOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006A 108727001 CS A-A'.DWGGeotechnical & Environmental Sciences Consultants720680AMATCHLINE, SEE BELOW
ELEVATION (FEET, MSL)760640ELEVATION (FEET, MSL)720680760640600PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19PROPOSEDBUILDINGAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGQafToTP-3TD=5.0'TP-2TD=7.0'TP-1TD=8.0'QafTo????????????LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?TP-3TD=5.0'TEST PITTD=TOTAL DEPTH IN FEET??????????KEY PERGEOTECHNICS (2003)GEOTECHNICS, 2003.MATCHLINE, SEE ABOVE WESTA'WESTB-1TD=46.0'B-1TD=46.0'BORINGTD=TOTAL DEPTH IN FEET?
GEOLOGIC CROSS SECTION B-B'FIGURE 6BNOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006B 108727001 CS B-B'.DWGGeotechnical & Environmental Sciences Consultants720680ELEVATION (FEET, MSL)760640ELEVATION (FEET, MSL)720680760640600PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?B-7TD=15.8'BORINGTD=TOTAL DEPTH IN FEETGEOTECHNICS, 2003.TP-10TD=6.0'TP-11TD=6.0'TP-12TD=7.0'B-7TD=15.8'B-4TD=25.4'B-3TD=35.8'APPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGPROPOSEDBUILDINGPROPOSEDBUILDINGAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGKEY PERGEOTECHNICS (2003)QafToQafQafTo??????????????????????????STABILITY FILL PERGEOTECHNICS (2003)TP-12TD=7.0'TEST PITTD=TOTAL DEPTH IN FEETMATCHLINE, SEE ABOVE
MATCHLINE, SEE BELOW BWESTB'WEST
GEOLOGIC CROSS SECTION C-C'FIGURE 6CNOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006C 108727001 CS C-C'.DWGGeotechnical & Environmental Sciences Consultants720680ELEVATION (FEET, MSL)760640PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?GEOTECHNICS, 2003.TP-12TD=7.0'TEST PITTD=TOTAL DEPTH IN FEETELEVATION (FEET, MSL)720680760640CSOUTHTP-12TD=7.0'TP-2TD=7.0'TP-5TD=6.0'TP-6TD=6.0'C'NORTHAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGPROPOSEDBUILDINGToQaf
pP
D
H
Pa
NOTES:
ACTIVE LATERAL EARTH PRESSURE, P
P = 45 H psf
1.
3.
P = 300 D psf
PASSIVE LATERAL EARTH PRESSURE, P
5.H AND D ARE IN FEET
a
a
p
p
SHORING
Ps
2.
s
s
P = 120 psf
CONSTRUCTION TRAFFIC INDUCED SURCHARGE PRESSURE, P
ASSUMES GROUNDWATER IS NOT PRESENT4.
+
LATERAL EARTH PRESSURES FOR TEMPORARY CANTILEVERED SHORING
FIGURE 7
Geotechnical & Environmental Sciences Consultants7 108727001 D-CS.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 I 3/19
NOTES:
GROUNDWATER BELOW BLOCK
GROUNDWATER ABOVE BLOCK2.
1.
P = 150p (D -d )2 2 lb/ft
THRUST
BLOCK
d (VARIES)
P
Pp
p
D (VARIES)
3.ASSUMES BACKFILL IS GRANULAR MATERIAL
4.ASSUMES THRUST BLOCK IS ADJACENT TO COMPETENT MATERIAL
1
Pp2
pP = 1.3 ( D - d )[ 124.8h + 57.6 ( D+d )]
GROUNDWATER TABLE6.
D, d AND h ARE IN FEET5.
h
lb/ft
THRUST BLOCK LATERAL EARTH PRESSURE DIAGRAM
FIGURE 8
Geotechnical & Environmental Sciences Consultants8 108727001 D-TB.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 I 3/19
SDS = SD1 =
NOTES:
1
In 50 years using Chiou & Youngs (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) attenuation relationships andthe risk coeff.
2 Deterministic ARS is 84th percentile of the median values from attenuation relationships by Chiou & Youngs (2008), Campbell & Bozorgnia (2008),
and Boore & Atkinson (2008) for deep soils considering a Mw 6.8 event on the Rose Canyon fault located 17.5 kilometers from the site.
It conforms with the lower bound limit per ASCE 7-10 Section 21.2.2 as modified by 2009 NEHRP Recommended Seismic Provisions.
3 Site-Specific MCER is the lesser of spectral ordinates of deterministic and probabilistic ARS at each period per ASCE 7-10 Section 21.2.3.
Site-Specific Design Response Spectrum conforms with lower bound limit per ASCE 7-10 Section 21.3.
4 Mapped Design Response Spectrum is computed from mapped spectral ordinates modified for Site Class D (stiff soil profile) per ASCE 7-10
Section 11.4. It is presented for comparison.
0.553
0.091
7.500 0.054
0.400 0.543
0.250 0.552
10.000 0.0350.300
0.533
0.461
0.400
0.294
2.000
4.000
0.222
0.146
0.109
3.000
0.403
0.469
0.513
0.546
0.500
0.750
1.000
1.500
5.000
PERIOD
(seconds)
SITE-SPECIFIC
DESIGN RESPONSE
SPECTRUM
Sa, (g)
0.075
0.100
0.150
0.200
0.235
0.258
0.284
0.337
0.010
0.020
0.030
0.050
PERIOD
(seconds)
SITE-SPECIFIC
DESIGN RESPONSE
SPECTRUM
Sa, (g)
3/19108727001 9Acadia San Diego Medical Facility
830 Showroom Place
Chula Vista, California
0.546 0.445
Probabilistic Ground Motion is for Risk-targeted Maximum Considered Earthquake (MCER) with ground motion having 2% probability of exceedance
PGAM =0.321
0.0
0.5
1.0
012345678910SPECTRAL ACCELERATION, Sa (g)PERIOD, T (seconds)
Mapped Design Response Spectrum
Site-Specific Design Response Spectrum
ACCELERATION RESPONSE SPECTRA
PROJECT NO. DATE
FIGURE
Acadia 108727001_Site Specific Response ASCE 7-10
H+
APPP
D
PASSIVE
PRESSURE
ACTIVE
PRESSURE
DYNAMIC
PRESSURE
RESULTANT
H/3
RESULTANT
D/3
NOTES:
ASSUMES NO HYDROSTATIC PRESSURE BUILD-UP
BEHIND THE RETAINING WALL
1.
STRUCTURAL, GRANULAR BACKFILL MATERIALS
AS SPECIFIED IN SECTION 10.1.7 SHOULD BE USED
2.
FOR RETAINING WALL BACKFILL
BEHIND THE RETAINING WALL
WALL DRAINAGE DETAIL SHOULD BE INSTALLED
DRAINS AS RECOMMENDED IN THE RETAINING3.
BASED ON A PEAK GROUND ACCELERATION OF 0.374g
DYNAMIC LATERAL EARTH PRESSURE IS4.
RECOMMENDED GEOTECHNICAL DESIGN PARAMETERS
Equivalent Fluid Pressure (lb/ft /ft)
Lateral
Earth
Pressure
Level Backfill
with Granular Soils
2 (1)
(2)with Granular Soils
2H:1V Sloping Backfill
(2)
AP
PP
300 D 120 D
EP
45 H 75 H
Level Ground 2H:1V Descending Ground
17 H
H AND D ARE IN FEET7.
SETBACK SHOULD BE IN ACCORDANCE WITH8.
FIGURE 1808.7.1 OF THE IBC (2015)
RETAINING
WALL
SURCHARGE PRESSURES CAUSED BY VEHICLES6.
OR NEARBY STRUCTURES ARE NOT INCLUDED
EP
RESULTANT
H/3
P IS CALCULATED IN ACCORDANCE WITH THE5.
RECOMMENDATIONS OF MONONOBE AND MATSUO
(1929), AND ATIK AND SITAR (2010).
E
LATERAL EARTH PRESSURES FOR YIELDING RETAINING WALLS
FIGURE 10
Geotechnical & Environmental Sciences Consultants10 108727001 D-YRW.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 I 3/19
SOIL BACKFILL COMPACTED TO 90%
RELATIVE COMPACTION *
OUTLET
4-INCH-DIAMETER PERFORATED
SCHEDULE 40 PVC PIPE OR EQUIVALENT
INSTALLED WITH PERFORATIONS DOWN;
1% GRADIENT OR MORE TO A SUITABLE
3/4-INCH OPEN-GRADED GRAVEL WRAPPED
IN AN APPROVED GEOFABRIC.
3 INCHES
WALL FOOTING
FINISHED GRADE
RETAINING WALL
12 INCHES
12 INCHES
VARIESGEOFABRIC
*BASED ON ASTM D1557
RETAINING WALL DRAINAGE DETAIL
FIGURE 11
Geotechnical & Environmental Sciences Consultants11 108727001 D-RW.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 I 3/19
APPENDIX A
Boring and Test Pit Logs
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
APPENDIX A
BORING AND TEST PIT LOGS
Field Procedure for the Collection of Disturbed Samples
Disturbed soil samples were obtained in the field using the following methods.
Bulk Samples
Bulk samples of representative earth materials were obtained from the exploratory
BORINGS AND TEST PITS. The samples were bagged and transported to the laboratory
for testing.
The Standard Penetration Test (SPT) Sampler
Disturbed drive samples of earth materials were obtained by means of a Standard
Penetration Test sampler. The sampler is composed of a split barrel with an external
diameter of 2 inches and an unlined internal diameter of 1-3/8 inches. The sampler was
driven into the ground 12 to 18 inches with a 140-pound hammer falling freely from a height
of 30 inches in general accordance with ASTM D 1586. The blow counts were recorded for
every 6 inches of penetration; the blow counts reported on the log are those for the last
12 inches of penetration. Soil samples were observed and removed from the sampler,
bagged, sealed and transported to the laboratory for testing.
Field Procedure for the Collection of Relatively Undisturbed Samples
Relatively undisturbed soil samples were obtained in the field using the following method.
The Modified Split-Barrel Drive Sampler
The sampler, with an external diameter of 3 inches, was lined with 1-inch-long, thin brass rings
with inside diameters of approximately 2.4 inches. The sample barrel was driven into the
ground with the weight of a hammer in general accordance with ASTM D 3550. The driving
weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer,
and the number of blows per foot of driving are presented on the boring logs as an index to the
relative resistance of the materials sampled. The samples were removed from the sample
barrel in the brass rings, sealed, and transported to the laboratory for testing.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
Soil Classification Chart Per ASTM D 2488
Primary Divisions Secondary Divisions
Group Symbol Group Name
COARSE-
GRAINED
SOILS
more than
50% retained
on No. 200
sieve
GRAVEL
more than
50% of
coarse
fraction
retained on
No. 4 sieve
CLEAN GRAVEL
less than 5% fines
GW well-graded GRAVEL
GP poorly graded GRAVEL
GRAVEL with
DUAL
CLASSIFICATIONS
5% to 12% fines
GW-GM well-graded GRAVEL with silt
GP-GM poorly graded GRAVEL with silt
GW-GC well-graded GRAVEL with clay
GP-GC poorly graded GRAVEL with
GRAVEL with
FINES
more than
12% fines
GM silty GRAVEL
GC clayey GRAVEL
GC-GM silty, clayey GRAVEL
SAND
50% or more
of coarse
fraction
passes
No. 4 sieve
CLEAN SAND
less than 5% fines
SW well-graded SAND
SP poorly graded SAND
SAND with
DUAL
CLASSIFICATIONS
5% to 12% fines
SW-SM well-graded SAND with silt
SP-SM poorly graded SAND with silt
SW-SC well-graded SAND with clay
SP-SC poorly graded SAND with clay
SAND with FINES
more than
12% fines
SM silty SAND
SC clayey SAND
SC-SM silty, clayey SAND
FINE-
GRAINED
SOILS
50% or
more passes
No. 200 sieve
SILT and
CLAY
liquid limit
less than 50%
INORGANIC
CL lean CLAY
ML SILT
CL-ML silty CLAY
ORGANIC
OL (PI > 4)organic CLAY
OL (PI < 4)organic SILT
SILT and
CLAY
liquid limit
50% or more
INORGANIC
CH fat CLAY
MH elastic SILT
ORGANIC
OH (plots on or
above “A”-line)organic CLAY
OH (plots
below “A”-line)organic SILT
Highly Organic Soils PT Peat
USCS METHOD OF SOIL CLASSIFICATION
Apparent Density - Coarse-Grained Soil
Apparent
Density
Spooling Cable or Cathead Automatic Trip Hammer
SPT (blows/foot)
Modified Split Barrel (blows/foot)
SPT (blows/foot)
Modified Split Barrel (blows/foot)
Very Loose < 4 < 8 < 3 < 5
Loose 5 - 10 9 - 21 4 - 7 6 - 14
Medium
Dense 11 - 30 22 - 63 8 - 20 15 - 42
Dense 31 - 50 64 - 105 21 - 33 43 - 70
Very Dense > 50 > 105 > 33 > 70
Consistency - Fine-Grained Soil
Consis-tency
Spooling Cable or Cathead Automatic Trip Hammer
SPT (blows/foot)
Modified Split Barrel
(blows/foot)
SPT (blows/foot)
Modified Split Barrel (blows/foot)
Very Soft < 2 < 3 < 1 < 2
Soft 2 - 4 3 - 5 1 - 3 2 - 3
Firm 5 - 8 6 - 10 4 - 5 4 - 6
Stiff 9 - 15 11 - 20 6 - 10 7 - 13
Very Stiff 16 - 30 21 - 39 11 - 20 14 - 26
Hard > 30 > 39 > 20 > 26
LIQUID LIMIT (LL), %PLASTICITY INDEX (PI), %0 10
107
4
20
30
40
50
60
70
0 20 30 40 50 60 70 80 90 100
MH or OH
ML or OLCL - ML
Plasticity Chart
Grain Size
Description Sieve
Size Grain Size Approximate
Size
Boulders > 12”> 12”Larger than
basketball-sized
Cobbles 3 - 12”3 - 12”Fist-sized to
basketball-sized
Gravel
Coarse 3/4 - 3”3/4 - 3”Thumb-sized to
fist-sized
Fine #4 - 3/4”0.19 - 0.75”Pea-sized to
thumb-sized
Sand
Coarse #10 - #4 0.079 - 0.19”Rock-salt-sized to
pea-sized
Medium #40 - #10 0.017 - 0.079”Sugar-sized to
rock-salt-sized
Fine #200 - #40 0.0029 -
0.017”
Flour-sized to
sugar-sized
Fines Passing
#200 < 0.0029”Flour-sized and
smaller
CH or OH
CL or OL
0
5
10
15
20
XX/XX
SM
CL
Bulk sample.
Modified split-barrel drive sampler.
No recovery with modified split-barrel drive sampler.
Sample retained by others.
Standard Penetration Test (SPT).
No recovery with a SPT.
Shelby tube sample. Distance pushed in inches/length of sample recovered in inches.
No recovery with Shelby tube sampler.
Continuous Push Sample.
Seepage.
Groundwater encountered during drilling.
Groundwater measured after drilling.
MAJOR MATERIAL TYPE (SOIL):
Solid line denotes unit change.
Dashed line denotes material change.
Attitudes: Strike/Dip
b: Bedding
c: Contact
j: Joint
f: Fracture
F: Fault
cs: Clay Seam
s: Shear
bss: Basal Slide Surface
sf: Shear Fracture
sz: Shear Zone
sbs: Shear Bedding Surface
The total depth line is a solid line that is drawn at the bottom of the boring.
BORING LOG
Explanation of Boring Log Symbols
PROJECT NO.DATE FIGUREDEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.BORING LOG EXPLANATION SHEET
Updated Nov. 2011
BORING LOG
20
0
10
20
30
40
50/5"
50
77
62
50/5"
53
64
23.7
19.6
22.3
22.0
93.8
91.7
93.1
ML
SM
ML
MH
FILL:Light brown to gray, moist, stiff, sandy SILT; trace clay; scattered roots.
Hard.
Light brown to gray, very dense, silty fine to coarse SAND.
Scattered fragments of siltstone and sandstone.
Light brown to gray, moist, hard, sandy SILT.
Gray; cohesionless.
Scattered clay nodules.
Brown to gray, moist, very stiff to hard, elastic SILT.
BORING LOG FIGURE A- 1
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.B-1
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
40
50
60
70
80
40
50/5"
25.1 MH FILL: (Continued)Brown to gray, moist, hard, elastic SILT; strong organic/hydrocarbon odor; scattered
fragments of siltstone and sandstone.
OTAY FORMATION:Light gray, moist, strongly cemented, silty fine-grained SANDSTONE.
Total Depth = 46 feet. (Refusal)
Groundwater not encountered during drilling.
Backfilled with approximately 16 cubic feet of bentonite cement grout shortly after drilling
on 1/29/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 2
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.B-1
GROUND ELEVATION 710' (MSL)SHEET 2 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
0
10
20
30
40
45
90/10"
51
50/5"
81
50/5"
50/4"
22.3
21.6 99.0
CL-ML
ML
FILL:Brown, moist, stiff, lean CLAY to SILT; scattered roots.
Hard.
Brown, moist, hard, SILT; scattered clay pockets.
Scattered fragments of siltstone and sandstone.
Organic odor.
Dark brown.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; slightly
micaceous.
Total Depth = 35.3 feet.
Groundwater not encountered during drilling.
Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling
on 1/29/19.
BORING LOG FIGURE A- 3
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.B-2
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
40
50
60
70
80
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 4
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.B-2
GROUND ELEVATION 710' (MSL)SHEET 2 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
0
10
20
30
40
57
40
90/11"
53
50/5"
64
50/4"
23.8
13.0
24.2
20.8
98.5
97.7
93.7
ML
SM
CL
FILL:Light brown, moist, medium dense, fine sandy SILT; scattered roots; trace clay.
Light brown, moist, medium dense, silty fine SAND.
Dense; scattered fragments of siltstone and sandstone.
Very dense; scattered clay nodules.
Gray to brown, moist, hard, sandy CLAY.
Organic odor; scattered fragments of siltstone and sandstone.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented; silty fine-grained SANDSTONE.
Total Depth = 35.8 feet.
Groundwater not encountered during drilling.
Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling
on 1/30/19.
BORING LOG FIGURE A- 5
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-3
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
40
50
60
70
80
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 6
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-3
GROUND ELEVATION 710' (MSL)SHEET 2 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
2
0
10
20
30
40
57
37
50/6"
22
50/5"
14.3
12.9
16.6
109.7
99.5
SM
SC
FILL:Light brown, moist, medium dense, silty SAND; scattered roots.
Scattered clay nodules.
Light brown, moist, medium dense, clayey SAND.
Dense; scattered fragments of claystone and siltstone.
Dense to very dense.
OTAY FORMATION:Light gray, moist, moderately cemented, silty fine-grained SANDSTONE.
Total Depth = 25.4 feet.
Groundwater not encountered during drilling.
Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on
1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 7
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-4
GROUND ELEVATION 720' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
61
32
87/11"
42
50/4"
21.1
15.1
96.2
104.9
SC FILL:Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots.
Scattered fragments of siltstone and sandstone.
Dense.
Scattered clay nodules.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE.
Total Depth = 25.3 feet.
Groundwater not encountered during drilling.
Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on
1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 8
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-5
GROUND ELEVATION 720' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
40
59
49
50/5"
50/3"
15.4
25.1
110.1
95.6
SC FILL:Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots.
Dense.
Medium dense; scattered fragments of siltstone and sandstone.
Dense.
Scattered clay nodules.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE.
Total Depth = 25.8 feet.
Groundwater not encountered during drilling.
Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on
1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 9
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-6
GROUND ELEVATION 720' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
50/5"
50/5"
50/4"
12.2 99.0
SM FILL:Grayish brown, moist, medium dense, silty fine SAND; trace clay; scattered roots.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE.
@ 11': Slow drilling.
Total Depth = 15.8 feet.
Groundwater not encountered during drilling.
Backfilled with grout shortly after drilling on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 10
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-7
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
50/3"
50/5"
50/5"
11.8 103.1
SM FILL:Light brown, moist, medium dense, silty fine SAND; trace clay; scattered roots.
OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE.
Total Depth = 15.4 feet.
Groundwater not encountered during drilling.
Backfilled with grout shortly after drilling on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 11
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/30/19 BORING NO.B-8
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling)
DRIVE WEIGHT 140 lbs. (Cathead)DROP 30"
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
SC FILL:Light brown, moist, medium dense, clayey SAND.
OTAY FORMATION:Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 12
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-1
GROUND ELEVATION 705' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
SC FILL:Light brown, moist, medium dense, clayey SAND; scattered roots.
OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, silty fine-grained
SANDSTONE; scattered pink bentonite lenses.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 13
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-2
GROUND ELEVATION 705' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
SM FILL:Light brown, moist, medium dense, silty fine SAND.
OTAY FORMATION:Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 14
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-3
GROUND ELEVATION 715' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
SM FILL:Light brown, moist, medium dense, silty fine SAND.
OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 15
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-4
GROUND ELEVATION 715' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 16
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-5
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 17
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-6
GROUND ELEVATION 710' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots.
OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 18
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-7
GROUND ELEVATION 705' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0
10
20
30
40
ML FILL:Light brown, moist, stiff, sandy SILT; scattered roots; trace clay.
OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.
Total Depth = 5 feet.
Groundwater not encountered during drilling.
Boring converted to infiltration test on 1/29/19.
Backfilled after testing on 1/30/19.
Note: Groundwater, though not encountered at the time of drilling, may rise to a higher
level due to seasonal variations in precipitation and several other factors as discussed in
the report.
The ground elevation shown above is an estimation only. It is based on our interpretations
of published maps and other documents reviewed for the purposes of this evaluation. It is
not sufficiently accurate for preparing construction bids and design documents.
BORING LOG FIGURE A- 19
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION
DATE DRILLED 1/29/19 BORING NO.IT-8
GROUND ELEVATION 705' (MSL)SHEET 1 OF
METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling)
DRIVE WEIGHT N/A DROP N/A
SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM
1
0FILL:Bulk sample.Dashed line denotes material change.Drive sample.Sand cone performed.Seepage.Groundwater encountered during excavation.No recovery with drive sampler.Groundwater encountered after excavation.Sample retained by others.Shelby tube sample. Distance pushed in inches/length of samplerecovered in inches.No recovery with Shelby tube sampler.ALLUVIUM:Solid line denotes unit change.Attitude: Strike/Dipb: Bedding s: Shearc: Contact bss: Basal Slide Surfacej: Joint sf: Shear Fracturef: Fracture sz: Shear ZoneF: Fault sbs: Sheared Bedding Surfacecs: Clay SeamThe total depth is a solid line that is drawn at the bottom of theexcavation log.12SCALE 1 inch = 2 feetGROUND ELEVATIONDATE EXCAVATEDMETHOD OF EXCAVATIONTEST PIT DIAGRAMSMML46810SMxx/xx9113572DESCRIPTIONEXCAVATION LOGEXPLANATION SHEETDRY DENSITY (PCF)MOISTURE (%)DEPTH (FEET)SAMPLESSand ConeBulkDriven1CLASSIFICATIONU.S.C.S.TEST PIT LOGEXPLANATION OF TEST PIT, CORE, TRENCH ANDHAND AUGER LOG SYMBOLSFIGURE B-1
024681012024681012SCFILL:Light brown to gravel, moist, medium dense, clayey SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, clayey fine-grained SANDSTONE.Total Depth = 8 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-1GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101229.4MHFILL:Light brown to gray, moist, stiff, clayey SILT.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered rootlets and pinkish mottling.Total Depth = 7 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-2GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101218.4SCFILL:Brown to light brown, moist, medium dense. clayey SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered rootlets.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-3GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
024681012024681012SCFILL:Brown to gray, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately to strongly indurated, clayey SILTSTONE.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-4GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101221.4SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND; scatteredroots.OTAY FORMATION:Brown to gray, moist, moderately to cemented, silty SANDSTONE;scattered claystone lenses at approximately 2 to 3 feet; pinkish mottling anddark brown laminations at approximately 5 to 6 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-5GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101226.1SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered pockets of pink bentonite from approximately 4 to5.5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-6GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101225.9SMFILL:Light brown to gray, moist, medium dense, silty fine SAND.OTAY FORMATION:Gray, moist, moderately to strongly indurated, clayey SILTSTONE.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-7GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
024681012024681012SCFILL:Light brown, moist, medium dense, clayey SAND.OTAY FORMATION:Gray and reddish to yellowish brown, moist, moderately to stronglycemented, silty fine-grained SANDSTONE; scattered claystone lenses fromapproximately 4 to 5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-8GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101219.7SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Gray, moist, moderately to strongly cemented, silty fine-grainedSANDSTONE; scattered rootlets; slightly micaceous.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-9GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101221.3SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Gray and reddish brown to yellowish brown, moist, moderately to stronglycemented, silty fine-grained SANDSTONE; scattered claystone lensesapproximately 4 to 5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-10GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
024681012024681012SCFILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered claystone lenses from approximately 3 to 4feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-11GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
02468101202468101236.1FILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately to strongly indurated, silty CLAYSTONE; scatteredlenses of pinkish gray bentonite.@ 4' to 5': Trace sand.Total Depth = 7 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-12GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
024681012024681012SCFILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately indurated, clayey SILTSTONE.Total Depth = 3 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-13GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
024681012024681012SMFILL;Light brown, moist, medium dense, silty fine SAND; scattered roots; traceclay.OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.Total Depth = 3 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET)
Bulk
SAMPLESDriven
Sand Cone
MOISTURE (%)
DRY DENSITY (PCF)
CLASSIFICATION
U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-14GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2
APPENDIX B
Geotechnical Laboratory Testing
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
APPENDIX B
GEOTECHNICAL LABORATORY TESTING
Classification
Soils were visually and texturally classified in accordance with the Unified Soil Classification
System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on
the logs of the exploratory borings and test pits in Appendix A.
Moisture Content
The moisture content of samples obtained from the exploratory excavations was evaluated in
accordance with ASTM D 2216. The test results are presented on the logs of the exploratory
excavations in Appendix A.
In-place Moisture and Density Tests
The moisture content and dry density of relatively undisturbed samples obtained from the
exploratory borings were evaluated in general accordance with ASTM D 2937. The test results
are presented on the logs of the exploratory borings in Appendix A.
Gradation Analysis
Gradation analysis tests were performed on selected representative soil samples in general
accordance with ASTM D 422. The grain-size distribution curves are shown on Figures B-1
through B-9. These test results were utilized in evaluating the soil classifications in accordance
with the USCS.
Atterberg Limits
Tests were performed on selected representative fine-grained soil samples to evaluate the liquid
limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test
results were utilized to evaluate the soil classification in accordance with the Unified Soil
Classification System (USCS). The test results and classifications are shown on Figure B-10.
Consolidation
Consolidation tests were performed on selected relatively undisturbed soil samples in general
accordance with ASTM D 2435. The samples were inundated during testing to represent
adverse field conditions. The percent of consolidation for each load cycle was recorded as a
ratio of the amount of vertical compression to the original height of the sample. The results of
the tests are summarized on Figures B-11 and B-12.
Direct Shear Tests
Direct shear testing was performed on relatively undisturbed and remolded samples in general
accordance with ASTM D 3080 to evaluate its shear strength characteristics of the selected
materials. The samples were inundated during shearing to represent adverse field conditions.
The results are shown on Figures B-13 through B-18.
Expansion Index Test
The expansion indices of selected materials were evaluated in general accordance with ASTM
D 4829. Specimens were molded under a specified compactive energy at approximately
50 percent saturation (plus or minus 2 percent). The prepared 1-inch thick by 4-inch diameter
specimens were loaded with a surcharge of 144 pounds per square foot and was inundated with
distilled water. Readings of volumetric swell were made for a period of 24 hours. The results of
these tests are presented on Figure B-19.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
Proctor Density Tests
The maximum dry density and optimum moisture content of a selected representative soil
sample was evaluated using the Modified Proctor method in general accordance with ASTM
D 1557. The results of these tests are summarized on Figure B-20.
Soil Corrosivity Tests
Soil pH and resistivity tests were performed on representative samples in general accordance with
CT 643. The soluble sulfate and chloride contents of the selected samples were evaluated in
general accordance with CT 417 and CT 422, respectively. The test results are presented on
Figure B-21.
R-Value
The resistance value, or R-value, for site soils was evaluated in general accordance with
California Test (CT) 301. Samples were prepared and evaluated for exudation pressure and
expansion pressure. The equilibrium R-value is reported as the lesser or more conservative of
the two calculated results. The test results are presented on Figure B-22.
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2
Coarse Fine Coarse Medium SILT CLAY
3" 2"¾"½" ⅜"4 8 30 50
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
Passing
No. 200
(percent)
Cc
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Liquid
Limit
1½" 1"
Depth
(ft)D30 Cu USCSD60
Fine
Sample
Location
100
D10
16 200
B-1 10.0-11.5 23 19 4 -- -- SM-- -- -- 34
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE
NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-1
108727001_SIEVE w No 8 B-1 @ 10.0-11.5.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2"¾"½" ⅜"4 8 30 50
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
B-1 40.0-41.5 50 37 13 -- -- MH-- -- -- 57
Sample
Location
100
D10
16 200
Passing
No. 200
(percent)
Cc
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Liquid
Limit
1½" 1"
Depth
(ft)D30 Cu USCSD60
Fine
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE
NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-2
108727001_SIEVE w No 8 B-1 @ 40.0-41.0.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2"¾"½" ⅜"4 8 30 50
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
Passing
No. 200
(percent)
Cc
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Liquid
Limit
1½" 1"
Depth
(ft)D30 Cu USCSD60
Fine
Sample
Location
100
D10
16 200
B-2 0.0-5.0 28 22 6 -- -- CL-ML-- -- -- 56
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE
NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-3
108727001_SIEVE w No 8 B-2 @ 0.0-5.0.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2"¾"½" ⅜"4 8 30 50
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
B-3 0.0-5.0 -- -- -- -- -- ML-- -- -- 71
Sample
Location
100
D10
16 200
Passing
No. 200
(percent)
Cc
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Liquid
Limit
1½" 1"
Depth
(ft)D30 Cu USCSD60
Fine
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE
NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-4
108727001_SIEVE w No 8 B-3 @ 0.0-5.0.xlsx
Coarse Fine Coarse Fine SILT CLAY
3" 1-1/2" 1" 3/4" 1/2" 3/8" 4 8 16 30 50 100 200
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
Passing
No. 200
(percent)
Sample
LocationSymbol Plasticity
Index
Plastic
Limit
Liquid
Limit
Depth
(ft)CcCu USCSD60
B-4 0.0-5.0 31
Medium
GRAVEL SAND FINES
D30D10
SM26 5 ---------- 32
0
10
20
30
40
50
60
70
80
90
100
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-5
108727001_SPLITSIEVE B-4 @ 0.0-5.0.xlsx
Coarse Fine Coarse Fine SILT CLAY
3" 1-1/2" 1" 3/4" 1/2" 3/8" 4 8 16 30 50 100 200
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
-- -- 38 SC20 21 -- -- --
Medium
GRAVEL SAND FINES
D30D10
Passing
No. 200
(percent)
Hole No.Symbol Plasticity
Index
Plastic
Limit
Liquid
Limit
Depth
(ft)CcCu USCSD60
B-6 0.0-5.0 41
0
10
20
30
40
50
60
70
80
90
100
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-6
108727001_SPLITSIEVE B-6 @ 0.0-5.0.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
NP - INDICATES NON-PLASTIC
USCS
TP-5 1.0-6.0 NP NP NP -- -- -- --
D60
Liquid
Limit
-- 27 SM
Passing
No. 200
(%)
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Fine
Sample
Location CcCu
100
Depth
(ft)D30D10
16
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-7
108727001_SIEVE+HYDRO TP-5 @ 1.0-6.0.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
Passing
No. 200
(%)
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Fine
Sample
Location CcCu
100
Depth
(ft)D30D10
16
USCS
TP-7 1.0-6.0 27 25 2 -- -- -- --
D60
Liquid
Limit
-- 60 ML
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-8
108727001_SIEVE+HYDRO TP-7 @ 1.0-6.0.xlsx
Coarse Fine Coarse Medium SILT CLAY
3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422
Passing
No. 200
(%)
GRAVEL SAND FINES
Symbol Plasticity
Index
Plastic
Limit
Fine
Sample
Location CcCu
100
Depth
(ft)D30D10
16
USCS
TP-12 1.0-7.0 39 19 20 -- -- -- --
D60
Liquid
Limit
-- 74 CL
0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS
U.S. STANDARD SIEVE NUMBERS HYDROMETER
GRADATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-9
108727001_SIEVE+HYDRO TP-12 @ 1.0-7.0.xlsx
X
+
NP - INDICATES NON-PLASTIC
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318
SYMBOL LOCATION DEPTH (ft)
LIQUID
LIMIT
PLASTIC
LIMIT
SM
CL
ML
ML
CL
ML
NP
27
19 20
25 2
NP
39
SM
MH
SM
CL SC
ML
NP
21
MH
ML
CL-ML
41
13
19
No. 40 Sieve)
6
20
1.0-6.0
0.0-5.0
PLASTICITY
INDEX
CLASSIFICATION
CL-ML
526
22
10.0-11.5 423
USCS
B-6
1.0-6.0
B-1
31
TP-5
40.0-41.5
USCS
(Fraction Finer Than
TP-12 1.0-7.0
0.0-5.0
0.0-5.0
50
28
TP-7
37B-1
B-2
B-4
CH or OH
CL or OL
MH or OH
ML or OLCL - ML
0
10
20
30
40
50
60
0 102030405060708090100110120PLASTICITY INDEX, PI LIQUID LIMIT, LL
FIGURE B-10
ATTERBERG LIMITS TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_ATTERBERGx8.xlsx
Seating Cycle Sample Location B-2
Loading Prior to Inundation Depth (ft) 10.0-10.8
Loading After Inundation Soil Type CL-ML
Rebound Cycle
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.1 1.0 10.0 100.0
CONSOLIDATION IN PERCENT OF SAMPLE THICKNESS (%) EXPANSION (%)STRESS IN KIPS PER SQUARE FOOT
CONSOLIDATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-11
108727001_CONSOLIDATION B-2 @ 0.0-5.0.xlsx
Seating Cycle Sample Location B-3
Loading Prior to Inundation Depth (ft) 15.0-16.4
Loading After Inundation Soil Type ML
Rebound Cycle
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435
-4.0
-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
0.1 1.0 10.0 100.0
CONSOLIDATION IN PERCENT OF SAMPLE THICKNESS (%) EXPANSION (%)STRESS IN KIPS PER SQUARE FOOT
CONSOLIDATION TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-12
108727001_CONSOLIDATION B-3 @ 15.0-16.4.xlsx
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Silty SAND X Ultimate15.0-16.5B-1
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
SM33
34
0
SM
Description Symbol
Sample
Location
80
Depth
(ft)
Shear
Strength
15.0-16.5Silty SAND B-1 Peak
0
1000
2000
3000
4000
5000
0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-13
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR B-1 @ 15.0-16.5.xlsx
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Sandy SILT X Ultimate25.0-25.9B-1
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
ML27
27
250
ML
Description Symbol
Sample
Location
480
Depth
(ft)
Shear
Strength
25.0-25.9Sandy SILT B-1 Peak
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-14
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR B-1 @ 25.0-25.9.xlsx
5.0-6.5Clayey SAND B-5 Peak
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
SC30
30
260
SC
Description Symbol
Sample
Location
400
Depth
(ft)
Shear
Strength
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Clayey SAND X Ultimate5.0-6.5B-5
0
1000
2000
3000
4000
5000
0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-15
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR B-5 @ 5.0-6.5.xlsx
5.0-5.4Silty SANDSTONE B-7 Peak
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
Formation41
41
0
Formation
Description Symbol
Sample
Location
0
Depth
(ft)
Shear
Strength
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Silty SANDSTONE X Ultimate5.0-5.4B-7
0
1000
2000
3000
4000
5000
0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-16
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR B-7 @ 5.0-5.4.xlsx
5.0-5.8Silty SANDSTONE B-8 Peak
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
Formation28
30
550
Formation
Description Symbol
Sample
Location
830
Depth
(ft)
Shear
Strength
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Silty SANDSTONE X Ultimate5.0-5.8B-8
0
1000
2000
3000
4000
5000
6000
0 1000 2000 3000 4000 5000 6000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-17
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR B-8 @ 5.0-5.8.xlsx
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080
Ultimate1.0-6.0TP-6
Remolded @ 90%
Relative Compaction
Cohesion
(psf)
Friction Angle
(degrees)Soil Type
ML30
31
40
ML
Description Symbol
Sample
Location
110
Depth
(ft)
Shear
Strength
1.0-6.0TP-6 Peak
X
0
1000
2000
3000
4000
5000
0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF)
FIGURE B-18
DIRECT SHEAR TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
108727001_DIRECT SHEAR TP-6 @ 1.0-6.0.xlsx
PERFORMED IN GENERAL ACCORDANCE WITH
High
Medium
Medium
102
75
88
0.102
0.075
0.08828.6
38.014.5
17.5
13.0
1.0-6.0
1.0-5.0
INITIAL
MOISTURE
(percent)
COMPACTED DRY
DENSITY (pcf)
EXPANSION
INDEX
92.8
88.0
97.4
36.3
POTENTIAL
EXPANSION
FINAL
MOISTURE
(percent)
VOLUMETRIC
SWELL (in)
SAMPLE
LOCATION
B-6
SAMPLE
DEPTH (ft)
0.0-5.0
Low19.5 0.024 249.5 112.2
TP-2
TP-6
TP-9
0.0-3.0
UBC STANDARD 18-2 ASTM D 4829
EXPANSION INDEX TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-19
108727001_EXPANSION - SDx4.xlsx
##
##
PERFORMED IN GENERAL ACCORDANCE WITH METHOD
Maximum Dry
Density
(pcf)
108.81.0-6.0TP-6
Optimum Moisture
Content
(percent)
Soil Description
SILTSTONE (excavated as SILT)
Sample
Location
Depth
(ft)
15.5
80.0
90.0
100.0
110.0
120.0
130.0
140.0
0 5 10 15 20 25 30 35 40DRY DENSITY (PCF)MOISTURE CONTENT (%)
Zero Air Void Line
(Specific Gravity = 2.70)
Zero Air Void Line
(Specific Gravity = 2.60)
Zero Air Void Line
(Specific Gravity = 2.50)
ASTM D 1557 ASTM D 698 A B C
PROCTOR DENSITY TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-20
108727001_MAXDENSITY TP-6 @ 1.0-6.0.xlsx
1 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643
2 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417
3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422
10
10
B-6 0.0-5.0
TP-9
800TP-2
CHLORIDE
CONTENT 3
(ppm)
pH 1SAMPLE
DEPTH (ft)
SAMPLE
LOCATION
RESISTIVITY 1
(ohm-cm)
0.001
8.9 30
1000
1,000 40 0.004
0.001
700
0.0-3.0
1.0-5.0
9.0
8.3 1035
SULFATE CONTENT 2
(ppm) (%)
CORROSIVITY TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-21
108727001_CORROSIVITYx3.xlsx
PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2844/CT 301
35
39
Clayey SAND (SC)
Silty SAND (SM)
0.0-3.0
0.0-3.0
TP-13
TP-14
SAMPLE LOCATION SAMPLE DEPTH
(ft)SOIL TYPE R-VALUE
R-VALUE TEST RESULTS
PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY
830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA
108727001 | 3/19
FIGURE B-22
108727001_RVTABLE1.xlsx
APPENDIX C
Infiltration Testing Results
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
Test Date:Infiltration Test No.: IT-1
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.67
(min/in) (in/hr)
8:54 2.50 9:19 3.36 25 0.86 2.42 2.74
1.42
9:19 3.36 9:44 3.53 25 0.17 12.25 2.23
0.34
9:44 3.53 10:14 3.71 30 0.18 13.89 2.05
0.32
10:14 3.71 10:44 3.89 30 0.18 13.89 1.87
0.35
10:44 3.21 11:14 3.34 30 0.13 19.23 2.40
0.20
11:14 3.34 11:44 3.46 30 0.12 20.83 2.27
0.20
11:44 3.46 12:14 3.63 30 0.17 14.71 2.13
0.30
12:14 3.63 12:44 3.80 30 0.17 14.71 1.96
0.32
12:44 3.80 1:14 3.94 30 0.14 17.86 1.80
0.28
1:14 3.94 1:44 4.08 30 0.14 17.86 1.66
0.31
1:44 3.11 2:14 3.25 30 0.14 17.86 2.49
0.21
2:14 3.25 2:44 3.38 30 0.13 19.23 2.36
0.21
Test Date:Infiltration Test No.: IT-2
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.33
(min/in) (in/hr)
8:53 3.00 9:18 3.23 25 0.23 9.06 2.22
0.46
9:18 3.23 9:43 3.46 25 0.23 9.06 1.99 0.51
9:43 3.46 10:13 3.67 30 0.21 11.90 1.77 0.43
10:13 3.67 10:43 3.88 30 0.21 11.90 1.56 0.49
10:43 2.94 11:13 3.10 30 0.16 15.63 2.31 0.26
11:13 3.10 11:43 3.25 30 0.15 16.67 2.16 0.26
11:43 3.25 12:13 3.46 30 0.21 11.90 1.98 0.39
12:13 3.46 12:43 3.67 30 0.21 11.90 1.77 0.43
12:43 3.67 1:13 3.81 30 0.14 17.86 1.59 0.32
1:13 3.81 1:43 3.95 30 0.14 17.86 1.45 0.35
1:43 3.95 2:13 4.06 30 0.11 22.73 1.33 0.29
2:13 4.06 2:43 4.16 30 0.10 25.00 1.22 0.29
Notes:
t1 = initial time when filling or refilling is completed
d1 = initial depth to water in hole at t1
t2 = final time when incremental water level reading is taken
d2 = final depth to water in hole at t2
∆t = change in time between initial and final water level readings
∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour
H0 = Initial height of water column ∆H = change in head over the time interval, inches
in/hr = inches per hour ∆t = time interval, minutes
r = effective radius of test hole
Havg = average head over the time interval, inches
1/30/2019
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
Percolation Rate to Infiltration Rate Conversion 1
1 Based on the "Porchet Method" as presented in:
Riverside County Flood Control, 2011, Design Handbook for Low Impact
Development Best Management Practices: dated September.
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
Infiltration Rate∆H
(feet)
Percolation
Rate Havg
(feet)
Infiltration Rate
1/30/2019
∆H
(feet)
Percolation
Rate Havg
(feet)
ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ
∆ݐ ݎ2ܪ௩
Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 1 of 4
Test Date:Infiltration Test No.: IT-3
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.42
(min/in) (in/hr)
8:40 2.34 9:05 2.76 25 0.42 4.96 2.87
0.66
9:05 2.76 9:30 2.90 25 0.14 14.88 2.59
0.24
9:30 2.90 10:00 3.10 30 0.20 12.50 2.42
0.31
10:00 3.10 10:30 3.27 30 0.17 14.71 2.24
0.28
10:30 3.27 11:00 3.40 30 0.13 19.23 2.09
0.23
11:00 3.40 11:30 3.49 30 0.09 27.78 1.98
0.17
11:30 3.49 12:00 3.57 30 0.08 31.25 1.89
0.16
12:00 3.57 12:30 3.64 30 0.07 35.71 1.82
0.14
12:30 3.64 1:00 3.68 30 0.04 62.50 1.76
0.08
1:00 3.68 1:30 3.70 30 0.02 125.00 1.73
0.04
1:30 3.70 2:00 3.72 30 0.02 125.00 1.71
0.04
2:00 3.72 2:30 3.74 30 0.02 125.00 1.69
0.04
Test Date:Infiltration Test No.: IT-4
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.42
(min/in) (in/hr)
8:37 2.35 9:02 2.74 25 0.39 5.34 2.88
0.62
9:02 2.74 9:27 2.90 25 0.16 13.02 2.60 0.28
9:27 2.90 9:57 3.10 30 0.20 12.50 2.42 0.31
9:57 3.10 10:27 3.24 30 0.14 17.86 2.25 0.23
10:27 3.24 10:57 3.38 30 0.14 17.86 2.11 0.25
10:57 3.38 11:27 3.48 30 0.10 25.00 1.99 0.19
11:27 3.48 11:57 3.57 30 0.09 27.78 1.90 0.17
11:57 3.57 12:27 3.64 30 0.07 35.71 1.82 0.14
12:27 3.64 12:57 3.67 30 0.03 83.33 1.77 0.06
12:57 3.67 1:27 3.69 30 0.02 125.00 1.74 0.04
1:27 3.69 1:57 3.72 30 0.03 83.33 1.72 0.06
1:57 3.72 2:27 3.74 30 0.02 125.00 1.69 0.04
Notes:
t1 = initial time when filling or refilling is completed
d1 = initial depth to water in hole at t1
t2 = final time when incremental water level reading is taken
d2 = final depth to water in hole at t2
∆t = change in time between initial and final water level readings
∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour
H0 = Initial height of water column ∆H = change in head over the time interval, inches
in/hr = inches per hour ∆t = time interval, minutes
r = effective radius of test hole
Havg = average head over the time interval, inches
Infiltration Rate
1/30/2019
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
Infiltration Rate
1/30/2019
Percolation Rate to Infiltration Rate Conversion 1
1 Based on the "Porchet Method" as presented in:
Riverside County Flood Control, 2011, Design Handbook for Low Impact
Development Best Management Practices: dated September.
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ
∆ݐ ݎ2ܪ௩
Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2 of 4
Test Date:Infiltration Test No.: IT-5
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.42
(min/in) (in/hr)
8:57 3.10 9:22 3.12 25 0.02 104.17 2.31
0.04
9:22 3.12 9:47 3.22 25 0.10 20.83 2.25
0.20
9:47 3.22 10:17 3.31 30 0.09 27.78 2.16
0.16
10:17 3.31 10:47 3.38 30 0.07 35.71 2.08
0.12
10:47 3.40 11:17 3.45 30 0.05 50.00 2.00
0.09
11:17 3.49 11:47 3.53 30 0.04 62.50 1.91
0.08
11:47 3.56 12:17 3.59 30 0.03 83.33 1.85
0.06
12:17 3.63 12:47 3.66 30 0.03 83.33 1.78
0.06
12:47 3.72 1:17 3.75 30 0.03 83.33 1.69
0.06
1:17 3.80 1:47 3.82 30 0.02 125.00 1.61
0.05
1:47 3.84 2:17 3.85 30 0.01 250.00 1.58
0.02
2:17 3.88 2:47 3.89 30 0.01 250.00 1.54
0.02
Test Date:Infiltration Test No.: IT-6
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.50
(min/in) (in/hr)
8:58 3.59 9:23 3.59 25 0.00 #DIV/0! 1.91
<0.01
9:23 3.59 9:52 3.61 25 0.02 104.17 1.90 0.05
9:52 3.61 10:22 3.63 30 0.02 125.00 1.88 0.04
10:22 3.63 10:52 3.66 30 0.03 83.33 1.86 0.06
10:52 3.66 11:22 3.69 30 0.03 83.33 1.83 0.06
11:22 3.69 11:52 3.71 30 0.02 125.00 1.80 0.04
11:52 3.71 12:22 3.73 30 0.02 125.00 1.78 0.04
12:22 3.73 12:52 3.77 30 0.04 62.50 1.75 0.08
12:52 3.77 1:22 3.81 30 0.04 62.50 1.71 0.09
1:22 3.81 1:52 3.83 30 0.02 125.00 1.68 0.04
1:52 3.83 2:22 3.84 30 0.01 250.00 1.67 0.02
2:22 3.84 2:52 3.86 30 0.02 125.00 1.65 0.04
Notes:
t1 = initial time when filling or refilling is completed
d1 = initial depth to water in hole at t1
t2 = final time when incremental water level reading is taken
d2 = final depth to water in hole at t2
∆t = change in time between initial and final water level readings
∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour
H0 = Initial height of water column ∆H = change in head over the time interval, inches
in/hr = inches per hour ∆t = time interval, minutes
r = effective radius of test hole
Havg = average head over the time interval, inches
Infiltration Rate
1/30/2019
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
Infiltration Rate
1/30/2019
Percolation Rate to Infiltration Rate Conversion 1
1 Based on the "Porchet Method" as presented in:
Riverside County Flood Control, 2011, Design Handbook for Low Impact
Development Best Management Practices: dated September.
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ
∆ݐ ݎ2ܪ௩
Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 3 of 4
Test Date:Infiltration Test No.: IT-7
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.42
(min/in) (in/hr)
9:14 2.49 9:39 3.01 25 0.52 4.01 2.67
0.88
9:39 3.01 10:03 3.42 25 0.41 5.08 2.21
0.83
10:03 3.42 10:33 3.82 30 0.40 6.25 1.80
0.81
10:33 3.82 11:03 4.21 30 0.39 6.41 1.41
0.99
11:03 3.32 11:33 3.64 30 0.32 7.81 1.94
0.61
11:33 3.64 12:03 3.95 30 0.31 8.06 1.63
0.69
12:03 3.95 12:33 4.21 30 0.26 9.62 1.34
0.69
12:33 4.25 1:03 4.43 30 0.18 13.89 1.08
0.58
1:03 2.39 1:33 2.75 30 0.36 6.94 2.85
0.48
1:33 2.89 2:03 3.20 30 0.31 8.06 2.38
0.49
2:03 3.39 2:33 3.64 30 0.25 10.00 1.91
0.48
2:33 3.77 3:03 3.97 30 0.20 12.50 1.55
0.47
Test Date:Infiltration Test No.: IT-8
Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00
Test performed and recorded by: GLC Pipe Length (feet): 5.58
(min/in) (in/hr)
9:12 2.74 9:37 3.85 25 1.11 1.88 2.29
2.17
9:37 3.85 10:02 3.95 25 0.10 20.83 1.68 0.26
10:02 3.95 10:32 4.06 30 0.11 22.73 1.58 0.25
10:32 4.06 11:02 4.17 30 0.11 22.73 1.47 0.27
11:02 3.02 11:32 3.23 30 0.21 11.90 2.46 0.32
11:32 3.23 12:02 3.44 30 0.21 11.90 2.25 0.35
12:02 3.44 12:32 3.59 30 0.15 16.67 2.07 0.27
12:32 3.59 1:02 3.73 30 0.14 17.86 1.92 0.27
1:02 3.73 1:32 3.84 30 0.11 22.73 1.80 0.22
1:32 3.84 2:02 3.96 30 0.12 20.83 1.68 0.26
2:02 3.96 2:32 4.08 30 0.12 20.83 1.56 0.28
2:32 4.08 3:02 4.19 30 0.11 22.73 1.45 0.27
Notes:
t1 = initial time when filling or refilling is completed
d1 = initial depth to water in hole at t1
t2 = final time when incremental water level reading is taken
d2 = final depth to water in hole at t2
∆t = change in time between initial and final water level readings
∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour
H0 = Initial height of water column ∆H = change in head over the time interval, inches
in/hr = inches per hour ∆t = time interval, minutes
r = effective radius of test hole
Havg = average head over the time interval, inches
Infiltration Rate
1/30/2019
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
Infiltration Rate
1/30/2019
Percolation Rate to Infiltration Rate Conversion 1
1 Based on the "Porchet Method" as presented in:
Riverside County Flood Control, 2011, Design Handbook for Low Impact
Development Best Management Practices: dated September.
t1
d1
(feet)t2
d2
(feet)
∆t
(min)
∆H
(feet)
Percolation
Rate Havg
(feet)
ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ
∆ݐ ݎ2ܪ௩
Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 4 of 4
Appendix D:
Approved Infiltration Rate Assessment Methods
BMP Design Manual-Appendices
December 2015 D-17
Worksheet D.5-1: Factor of Safety and Design Infiltration Rate Worksheet
Factor of Safety and Design Infiltration
Rate Worksheet Worksheet D.5-1
Factor Category Factor Description
Assigned
Weight (w)
Factor
Value (v)
Product (p)
p = w x v
A Suitability
Assessment
Soil assessment methods 0.25
Predominant soil texture 0.25
Site soil variability 0.25
Depth to groundwater /
impervious layer 0.25
Suitability Assessment Safety Factor, SA = p
B Design
Level of pretreatment/ expected
sediment loads 0.5
Redundancy/resiliency 0.25
Compaction during construction 0.25
Design Safety Factor, SB = p
Combined Safety Factor, Stotal= SA x SB
Observed Infiltration Rate, inch/hr, Kobserved
(corrected for test-specific bias)
Design Infiltration Rate, in/hr, Kdesign = Kobserved / Stotal
Supporting Data
Briefly describe infiltration test and provide reference to test forms:
APPENDIX D
Geotechnical Map (Geotechnics, 2003)
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
APPENDIX E
Slope Stability Analyses
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
Acadia Medical Facility, Chula Vista, CASection A-A' Circular (Static)Ninyo & Moore / WRM\A-A' Circular.gsdSpencer MethodPLATE E-1 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.621 2 1.623 3 1.623 4 1.627 5 1.630 6 1.631 7 1.631 8 1.634 9 1.63510 1.637GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.621 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.621 2 1.623 3 1.623 4 1.627 5 1.630 6 1.631 7 1.631 8 1.634 9 1.635 10 1.637 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Circular\A-A' Circular.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Circular\A-A' Circular.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section A-A' Circular (Static)
BOUNDARY DATA
11 Surface Boundaries
19 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 620.000 88.000 620.000 1
2 88.000 620.000 135.000 642.000 1
3 135.000 642.000 290.000 714.000 2
4 290.000 714.000 450.000 713.000 2
5 450.000 713.000 555.000 715.000 2
6 555.000 715.000 570.000 717.000 2
7 570.000 717.000 590.000 717.000 2
8 590.000 717.000 610.000 717.000 2
9 610.000 717.000 660.000 713.000 2
10 660.000 713.000 855.000 713.000 2
11 855.000 713.000 900.000 713.000 2
12 135.000 642.000 135.100 637.000 1
13 135.100 637.000 149.900 637.000 1
14 149.900 637.000 150.000 643.000 1
15 150.000 643.000 465.000 670.000 1
16 465.000 670.000 636.000 708.000 1
17 636.000 708.000 855.000 708.000 1
18 855.000 708.000 855.100 712.000 1
19 855.100 712.000 900.000 712.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 88.00(ft)
and X = 135.00(ft)
Each Surface Enters within a Range Between X = 290.00(ft)
and X = 900.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 500.00(ft)
Specified Maximum Radius = 5000.000(ft)
25.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 836
Number of Trial Surfaces With Valid FS = 4164
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 16.7 %
Statistical Data On All Valid FS Values:
FS Max = 10.713 FS Min = 1.621 FS Ave = 3.981
Standard Deviation = 2.001 Coefficient of Variation = 50.27 %
Critical Surface is Sequence Number 297 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 79.780997(ft) ; Y = 948.776488(ft); and Radius =
327.479219(ft)
Circular Trial Failure Surface Generated With 11 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 91.197 621.496
2 116.130 623.321
3 140.851 627.042
4 165.217 632.638
5 189.085 640.077
6 212.315 649.315
7 234.774 660.298
8 256.329 672.962
9 276.855 687.234
10 296.232 703.030
11 307.652 713.890
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.755823 1.604422 0.268 0.1514010E+00
2 19.9500 1.675343 1.615690 0.363 0.5965232E-01
3 23.1677 1.595856 1.623454 0.428 0.2759794E-01
4 22.1501 1.624274 1.620956 0.407 0.3318397E-02
5 22.2595 1.621384 1.621222 0.409 0.1620673E-03
6 22.2651 1.621235 1.621236 0.409 0.9935420E-06
Factor Of Safety For The Preceding Specified Surface = 1.621
Theta (fx = 1.0) = 22.27 Deg Lambda = 0.409
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 96.18 622.70 0.426 1266.36 1.000 22.27 479.8
2 101.17 623.80 0.400 2885.50 1.000 22.27 1093.3
3 106.16 624.86 0.384 4857.41 1.000 22.27 1840.4
4 111.14 625.90 0.373 7182.09 1.000 22.27 2721.2
5 116.13 626.91 0.365 9859.54 1.000 22.27 3735.7
6 120.85 628.09 0.358 12024.63 1.000 22.27 4556.1
7 125.56 629.26 0.352 14356.20 1.000 22.27 5439.5
8 130.28 630.43 0.347 16854.25 1.000 22.27 6386.0
9 135.00 631.60 0.343 19518.78 1.000 22.27 7395.5
10 135.10 631.62 0.343 19577.06 1.000 22.27 7417.6
11 137.98 632.34 0.341 21284.78 1.000 22.27 8064.7
12 140.85 633.04 0.340 23053.67 1.000 22.27 8734.9
13 145.38 634.40 0.337 24987.98 1.000 22.27 9467.8
14 149.90 635.76 0.335 26981.48 1.000 22.27 10223.1
15 150.00 635.79 0.335 27026.21 1.000 22.27 10240.0
16 155.07 637.30 0.333 29333.04 1.000 22.27 11114.1
17 160.14 638.82 0.331 31714.27 1.000 22.27 12016.3
18 165.22 640.34 0.329 34169.89 1.000 22.27 12946.7
19 169.99 642.03 0.328 35344.61 1.000 22.27 13391.8
20 174.76 643.72 0.326 36526.05 1.000 22.27 13839.5
21 179.54 645.41 0.325 37714.22 1.000 22.27 14289.7
22 184.31 647.10 0.324 38909.10 1.000 22.27 14742.4
23 189.08 648.80 0.322 40110.70 1.000 22.27 15197.7
24 194.11 650.87 0.321 40048.45 1.000 22.27 15174.1
25 199.14 652.94 0.320 39973.03 1.000 22.27 15145.5
26 204.17 655.02 0.319 39884.43 1.000 22.27 15111.9
27 209.19 657.10 0.318 39782.65 1.000 22.27 15073.4
28 212.32 658.38 0.317 39785.09 1.000 22.27 15074.3
29 217.93 661.02 0.315 38292.68 1.000 22.27 14508.8
30 223.54 663.67 0.313 36811.12 1.000 22.27 13947.5
31 229.16 666.33 0.311 35340.40 1.000 22.27 13390.2
32 234.77 669.00 0.310 33880.52 1.000 22.27 12837.1
33 240.16 671.92 0.309 31184.47 1.000 22.27 11815.6
34 245.55 674.85 0.308 28570.63 1.000 22.27 10825.2
35 250.94 677.81 0.308 26038.98 1.000 22.27 9866.0
36 256.33 680.80 0.309 23589.54 1.000 22.27 8937.9
37 261.46 684.06 0.311 20283.75 1.000 22.27 7685.4
38 266.59 687.29 0.312 17134.97 0.948 21.22 6202.6
39 271.72 690.38 0.308 14169.86 0.830 18.77 4558.8
40 276.85 693.29 0.293 11437.56 0.711 16.24 3198.4
41 281.24 696.02 0.273 8609.65 0.610 14.03 2086.7
42 285.62 698.66 0.243 6047.23 0.509 11.77 1233.6
43 290.00 701.26 0.206 3741.85 0.408 9.48 616.1
44 293.12 703.09 0.192 2348.92 0.336 7.83 319.9
45 296.23 704.77 0.159 1271.03 0.264 6.16 136.5
46 301.94 711.01 0.467 -166.16 0.132 3.09 -9.0
47 307.65 713.89 0.000 0.07 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 47 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 4.99 0.98 93.69 621.68 622.66 4.19 25.08 5.00
2 4.99 2.95 98.68 622.04 625.00 4.19 25.08 5.00
3 4.99 4.92 103.66 622.41 627.33 4.19 25.08 5.00
4 4.99 6.89 108.65 622.77 629.67 4.19 25.08 5.00
5 4.99 8.86 113.64 623.14 632.00 4.19 25.08 5.00
6 4.72 10.60 118.49 623.68 634.27 8.56 25.08 4.77
7 4.72 12.09 123.21 624.39 636.48 8.56 25.08 4.77
8 4.72 13.59 127.92 625.10 638.69 8.56 25.08 4.77
9 4.72 15.09 132.64 625.81 640.90 8.56 25.08 4.77
10 0.10 15.85 135.05 626.17 642.02 8.56 24.92 0.10
11 2.88 16.32 136.54 626.39 642.71 8.56 24.92 2.91
12 2.88 17.22 139.41 626.83 644.05 8.56 24.92 2.91
13 4.52 18.21 143.11 627.56 645.77 12.94 24.92 4.64
14 4.52 19.27 147.64 628.60 647.87 12.94 24.92 4.64
15 0.10 19.81 149.95 629.13 648.94 12.94 24.92 0.10
16 5.07 20.42 152.54 629.73 650.15 12.94 24.92 5.20
17 5.07 21.61 157.61 630.89 652.50 12.94 24.92 5.20
18 5.07 22.80 162.68 632.06 654.86 12.94 24.92 5.20
19 4.77 23.76 167.60 633.38 657.14 17.31 24.92 5.00
20 4.77 24.49 172.38 634.87 659.36 17.31 24.92 5.00
21 4.77 25.22 177.15 636.36 661.58 17.31 24.92 5.00
22 4.77 25.95 181.92 637.85 663.80 17.31 24.92 5.00
23 4.77 26.68 186.70 639.33 666.01 17.31 24.92 5.00
24 5.03 27.21 191.60 641.08 668.29 21.69 24.92 5.41
25 5.03 27.55 196.63 643.08 670.63 21.69 24.92 5.41
26 5.03 27.89 201.65 645.08 672.96 21.69 24.92 5.41
27 5.03 28.22 206.68 647.07 675.30 21.69 24.92 5.41
28 3.12 28.50 210.75 648.69 677.19 21.69 24.92 3.36
29 5.61 28.53 215.12 650.69 679.22 26.06 24.92 6.25
30 5.61 28.39 220.74 653.43 681.83 26.06 24.92 6.25
31 5.61 28.26 226.35 656.18 684.43 26.06 24.92 6.25
32 5.61 28.12 231.97 658.92 687.04 26.06 24.92 6.25
33 5.39 27.72 237.47 661.88 689.60 30.44 24.92 6.25
34 5.39 27.05 242.86 665.05 692.10 30.44 24.92 6.25
35 5.39 26.39 248.25 668.21 694.60 30.44 24.92 6.25
36 5.39 25.73 253.63 671.38 697.11 30.44 24.92 6.25
37 5.13 24.80 258.89 674.75 699.55 34.81 24.92 6.25
38 5.13 23.62 264.03 678.31 701.93 34.81 24.92 6.25
39 5.13 22.44 269.16 681.88 704.32 34.81 24.92 6.25
40 5.13 21.25 274.29 685.45 706.70 34.81 24.92 6.25
41 4.38 19.89 279.05 689.02 708.91 39.19 24.92 5.65
42 4.38 18.36 283.43 692.59 710.95 39.19 24.92 5.65
43 4.38 16.82 287.81 696.16 712.98 39.19 24.92 5.65
44 3.12 14.77 291.56 699.22 713.99 39.19 -0.36 4.02
45 3.12 12.21 294.67 701.76 713.97 39.19 -0.36 4.02
46 5.71 8.20 299.09 705.74 713.94 43.56 -0.36 7.88
47 5.71 2.73 304.80 711.17 713.91 43.56 -0.36 7.88
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 91.196639 621.496299
2 96.183306 621.861204
3 101.169973 622.226108
4 106.156639 622.591013
5 111.143306 622.955917
6 116.129973 623.320822
7 120.847480 624.030933
8 125.564986 624.741044
9 130.282493 625.451155
10 135.000000 626.161266
11 135.100000 626.176319
12 137.975734 626.609194
13 140.851468 627.042069
14 145.375734 628.081202
15 149.900000 629.120335
16 150.000000 629.143303
17 155.072350 630.308320
18 160.144700 631.473337
19 165.217050 632.638354
20 169.990584 634.126096
21 174.764118 635.613838
22 179.537651 637.101579
23 184.311185 638.589321
24 189.084719 640.077063
25 194.112166 642.076251
26 199.139614 644.075439
27 204.167062 646.074627
28 209.194509 648.073815
29 212.315376 649.314842
30 217.929941 652.060596
31 223.544505 654.806349
32 229.159070 657.552103
33 234.773635 660.297856
34 240.162379 663.463916
35 245.551123 666.629976
36 250.939868 669.796036
37 256.328612 672.962097
38 261.460130 676.530012
39 266.591649 680.097927
40 271.723167 683.665842
41 276.854685 687.233757
42 281.236457 690.805626
43 285.618228 694.377495
44 290.000000 697.949363
45 293.116116 700.489514
46 296.232232 703.029664
47 301.942118 708.459669
48 307.652004 713.889675
***Table 3 - Force and Pore Pressure Data On The 47 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 589.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
2 1767.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
3 2946.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
4 4124.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
5 5302.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
6 5998.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
7 6846.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
8 7694.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
9 8542.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
10 190.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
11 5632.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
12 5944.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
13 9884.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
14 10461.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
15 237.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
16 12429.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
17 13154.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
18 13879.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
19 13611.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
20 14029.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
21 14447.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
22 14865.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
23 15283.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
24 16418.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
25 16621.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
26 16823.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
27 17026.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
28 10671.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
29 19222.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
30 19129.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
31 19036.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
32 18944.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
33 17923.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
34 17494.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
35 17065.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
36 16637.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
37 15274.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
38 14545.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
39 13815.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
40 13086.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
41 10459.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
42 9651.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
43 8843.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
44 5523.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
45 4566.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
46 5617.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
47 1872.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 514135.26(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 514135.26(lbs)
TOTAL AREA OF SLIDING MASS = 4284.46(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 47 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 1 300.00 28.00
2 1 300.00 28.00
3 1 300.00 28.00
4 1 300.00 28.00
5 1 300.00 28.00
6 1 300.00 28.00
7 1 300.00 28.00
8 1 300.00 28.00
9 1 300.00 28.00
10 1 300.00 28.00
11 1 300.00 28.00
12 1 300.00 28.00
13 1 300.00 28.00
14 1 300.00 28.00
15 1 300.00 28.00
16 1 300.00 28.00
17 1 300.00 28.00
18 1 300.00 28.00
19 1 300.00 28.00
20 1 300.00 28.00
21 1 300.00 28.00
22 1 300.00 28.00
23 1 300.00 28.00
24 1 300.00 28.00
25 1 300.00 28.00
26 1 300.00 28.00
27 1 300.00 28.00
28 2 200.00 30.00
29 2 200.00 30.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
34 2 200.00 30.00
35 2 200.00 30.00
36 2 200.00 30.00
37 2 200.00 30.00
38 2 200.00 30.00
39 2 200.00 30.00
40 2 200.00 30.00
41 2 200.00 30.00
42 2 200.00 30.00
43 2 200.00 30.00
44 2 200.00 30.00
45 2 200.00 30.00
46 2 200.00 30.00
47 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 47 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 4.19 93.69 5.00 196.13 118.16 1.660
2 4.19 98.68 5.00 453.08 354.47 1.278
3 4.19 103.66 5.00 710.03 590.78 1.202
4 4.19 108.65 5.00 966.98 827.10 1.169
5 4.19 113.64 5.00 1223.93 1063.41 1.151
6 8.56 118.49 4.77 1350.81 1271.45 1.062
7 8.56 123.21 4.77 1534.86 1451.22 1.058
8 8.56 127.92 4.77 1718.91 1630.99 1.054
9 8.56 132.64 4.77 1902.97 1810.76 1.051
10 8.56 135.05 0.10 1996.93 1902.53 1.050
11 8.56 136.54 2.91 2054.32 1958.59 1.049
12 8.56 139.41 2.91 2165.26 2066.95 1.048
13 12.94 143.11 4.64 2142.94 2184.87 0.981
14 12.94 147.64 4.64 2266.12 2312.37 0.980
15 12.94 149.95 0.10 2329.06 2377.52 0.980
16 12.94 152.54 5.20 2399.47 2450.40 0.979
17 12.94 157.61 5.20 2537.57 2593.34 0.978
18 12.94 162.68 5.20 2675.66 2736.28 0.978
19 17.31 167.60 5.00 2619.36 2851.53 0.919
20 17.31 172.38 5.00 2699.29 2939.09 0.918
21 17.31 177.15 5.00 2779.21 3026.65 0.918
22 17.31 181.92 5.00 2859.13 3114.20 0.918
23 17.31 186.70 5.00 2939.05 3201.76 0.918
24 21.69 191.60 5.41 2819.70 3265.71 0.863
25 21.69 196.63 5.41 2854.50 3306.05 0.863
26 21.69 201.65 5.41 2889.31 3346.38 0.863
27 21.69 206.68 5.41 2924.11 3386.72 0.863
28 21.69 210.75 3.36 2952.53 3419.41 0.863
29 26.06 215.12 6.25 2778.70 3423.67 0.812
30 26.06 220.74 6.25 2765.25 3407.14 0.812
31 26.06 226.35 6.25 2751.80 3390.62 0.812
32 26.06 231.97 6.25 2738.35 3374.09 0.812
33 30.44 237.47 6.25 2533.85 3326.06 0.762
34 30.44 242.86 6.25 2472.85 3246.51 0.762
35 30.44 248.25 6.25 2411.85 3166.96 0.762
36 30.44 253.63 6.25 2350.84 3087.41 0.761
37 34.81 258.89 6.25 2121.44 2976.59 0.713
38 34.81 264.03 6.25 2027.53 2834.48 0.715
39 34.81 269.16 6.25 1943.35 2692.37 0.722
40 34.81 274.29 6.25 1857.12 2550.26 0.728
41 39.19 279.05 5.65 1649.33 2387.02 0.691
42 39.19 283.43 5.65 1535.25 2202.64 0.697
43 39.19 287.81 5.65 1417.99 2018.26 0.703
44 39.19 291.56 4.02 1247.89 1772.50 0.704
45 39.19 294.67 4.02 1028.54 1465.34 0.702
46 43.56 299.09 7.88 636.99 983.82 0.647
47 43.56 304.80 7.88 157.34 327.94 0.480
***TABLE 5A - Total Base Force Data on the 47 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 4.19 93.69 5.00 980.65 589.21 1.664
2 4.19 98.68 5.00 2265.40 1767.63 1.282
3 4.19 103.66 5.00 3550.16 2946.04 1.205
4 4.19 108.65 5.00 4834.91 4124.46 1.172
5 4.19 113.64 5.00 6119.67 5302.88 1.154
6 8.56 118.49 4.77 6444.22 5998.09 1.074
7 8.56 123.21 4.77 7322.28 6846.15 1.070
8 8.56 127.92 4.77 8200.34 7694.22 1.066
9 8.56 132.64 4.77 9078.41 8542.29 1.063
10 8.56 135.05 0.10 201.94 190.25 1.061
11 8.56 136.54 2.91 5974.24 5632.39 1.061
12 8.56 139.41 2.91 6296.86 5943.99 1.059
13 12.94 143.11 4.64 9947.68 9884.94 1.006
14 12.94 147.64 4.64 10519.46 10461.76 1.006
15 12.94 149.95 0.10 238.97 237.75 1.005
16 12.94 152.54 5.20 12487.86 12429.30 1.005
17 12.94 157.61 5.20 13206.57 13154.35 1.004
18 12.94 162.68 5.20 13925.28 13879.39 1.003
19 17.31 167.60 5.00 13096.82 13611.89 0.962
20 17.31 172.38 5.00 13496.43 14029.84 0.962
21 17.31 177.15 5.00 13896.03 14447.80 0.962
22 17.31 181.92 5.00 14295.64 14865.76 0.962
23 17.31 186.70 5.00 14695.25 15283.71 0.961
24 21.69 191.60 5.41 15255.57 16418.18 0.929
25 21.69 196.63 5.41 15443.88 16620.97 0.929
26 21.69 201.65 5.41 15632.18 16823.76 0.929
27 21.69 206.68 5.41 15820.49 17026.55 0.929
28 21.69 210.75 3.36 9916.28 10671.52 0.929
29 26.06 215.12 6.25 17366.85 19222.39 0.903
30 26.06 220.74 6.25 17282.79 19129.62 0.903
31 26.06 226.35 6.25 17198.73 19036.85 0.903
32 26.06 231.97 6.25 17114.67 18944.07 0.903
33 30.44 237.47 6.25 15836.59 17923.28 0.884
34 30.44 242.86 6.25 15455.32 17494.61 0.883
35 30.44 248.25 6.25 15074.04 17065.95 0.883
36 30.44 253.63 6.25 14692.76 16637.29 0.883
37 34.81 258.89 6.25 13259.01 15274.40 0.868
38 34.81 264.03 6.25 12672.07 14545.17 0.871
39 34.81 269.16 6.25 12145.96 13815.93 0.879
40 34.81 274.29 6.25 11606.99 13086.70 0.887
41 39.19 279.05 5.65 9323.95 10459.36 0.891
42 39.19 283.43 5.65 8679.02 9651.47 0.899
43 39.19 287.81 5.65 8016.14 8843.57 0.906
44 39.19 291.56 4.02 5016.86 5523.31 0.908
45 39.19 294.67 4.02 4134.99 4566.18 0.906
46 43.56 299.09 7.88 5019.18 5617.53 0.893
47 43.56 304.80 7.88 1239.78 1872.51 0.662
***TABLE 6 - Effective and Base Shear Stress Data on the 47 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 4.19 93.69 5.00 196.13 404.28 249.37
2 4.19 98.68 5.00 453.08 540.91 333.64
3 4.19 103.66 5.00 710.03 677.53 417.91
4 4.19 108.65 5.00 966.98 814.15 502.18
5 4.19 113.64 5.00 1223.93 950.78 586.45
6 8.56 118.49 4.77 1350.81 1018.24 628.06
7 8.56 123.21 4.77 1534.86 1116.10 688.43
8 8.56 127.92 4.77 1718.91 1213.96 748.79
9 8.56 132.64 4.77 1902.97 1311.83 809.15
10 8.56 135.05 0.10 1996.93 1361.78 839.97
11 8.56 136.54 2.91 2054.32 1392.30 858.79
12 8.56 139.41 2.91 2165.26 1451.29 895.17
13 12.94 143.11 4.64 2142.94 1439.42 887.86
14 12.94 147.64 4.64 2266.12 1504.91 928.25
15 12.94 149.95 0.10 2329.06 1538.38 948.90
16 12.94 152.54 5.20 2399.47 1575.82 971.99
17 12.94 157.61 5.20 2537.57 1649.25 1017.28
18 12.94 162.68 5.20 2675.66 1722.68 1062.57
19 17.31 167.60 5.00 2619.36 1692.74 1044.11
20 17.31 172.38 5.00 2699.29 1735.24 1070.32
21 17.31 177.15 5.00 2779.21 1777.73 1096.53
22 17.31 181.92 5.00 2859.13 1820.23 1122.74
23 17.31 186.70 5.00 2939.05 1862.72 1148.95
24 21.69 191.60 5.41 2819.70 1799.26 1109.81
25 21.69 196.63 5.41 2854.50 1817.77 1121.22
26 21.69 201.65 5.41 2889.31 1836.27 1132.64
27 21.69 206.68 5.41 2924.11 1854.78 1144.05
28 21.69 210.75 3.36 2952.53 1904.65 1174.81
29 26.06 215.12 6.25 2778.70 1804.28 1112.90
30 26.06 220.74 6.25 2765.25 1796.52 1108.12
31 26.06 226.35 6.25 2751.80 1788.75 1103.33
32 26.06 231.97 6.25 2738.35 1780.99 1098.54
33 30.44 237.47 6.25 2533.85 1662.92 1025.71
34 30.44 242.86 6.25 2472.85 1627.70 1003.99
35 30.44 248.25 6.25 2411.85 1592.48 982.26
36 30.44 253.63 6.25 2350.84 1557.26 960.54
37 34.81 258.89 6.25 2121.44 1424.81 878.85
38 34.81 264.03 6.25 2027.53 1370.60 845.40
39 34.81 269.16 6.25 1943.35 1322.00 815.43
40 34.81 274.29 6.25 1857.12 1272.21 784.71
41 39.19 279.05 5.65 1649.33 1152.24 710.72
42 39.19 283.43 5.65 1535.25 1086.38 670.09
43 39.19 287.81 5.65 1417.99 1018.68 628.34
44 39.19 291.56 4.02 1247.89 920.47 567.76
45 39.19 294.67 4.02 1028.54 793.83 489.64
46 43.56 299.09 7.88 636.99 567.76 350.20
47 43.56 304.80 7.88 157.34 290.84 179.39
***TABLE 6A - Effective and Base Shear Force Data on the 47 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 4.19 93.69 5.00 980.65 2021.42 1246.84
2 4.19 98.68 5.00 2265.40 2704.53 1668.19
3 4.19 103.66 5.00 3550.16 3387.65 2089.55
4 4.19 108.65 5.00 4834.91 4070.77 2510.90
5 4.19 113.64 5.00 6119.67 4753.88 2932.26
6 8.56 118.49 4.77 6444.22 4857.65 2996.26
7 8.56 123.21 4.77 7322.28 5324.52 3284.24
8 8.56 127.92 4.77 8200.34 5791.40 3572.21
9 8.56 132.64 4.77 9078.41 6258.27 3860.19
10 8.56 135.05 0.10 201.94 137.71 84.94
11 8.56 136.54 2.91 5974.24 4049.00 2497.48
12 8.56 139.41 2.91 6296.86 4220.54 2603.28
13 12.94 143.11 4.64 9947.68 6681.89 4121.48
14 12.94 147.64 4.64 10519.46 6985.91 4309.01
15 12.94 149.95 0.10 238.97 157.84 97.36
16 12.94 152.54 5.20 12487.86 8201.24 5058.64
17 12.94 157.61 5.20 13206.57 8583.38 5294.35
18 12.94 162.68 5.20 13925.28 8965.53 5530.06
19 17.31 167.60 5.00 13096.82 8463.70 5220.53
20 17.31 172.38 5.00 13496.43 8676.18 5351.58
21 17.31 177.15 5.00 13896.03 8888.65 5482.64
22 17.31 181.92 5.00 14295.64 9101.13 5613.70
23 17.31 186.70 5.00 14695.25 9313.60 5744.75
24 21.69 191.60 5.41 15255.57 9734.64 6004.46
25 21.69 196.63 5.41 15443.88 9834.76 6066.21
26 21.69 201.65 5.41 15632.18 9934.89 6127.97
27 21.69 206.68 5.41 15820.49 10035.01 6189.73
28 21.69 210.75 3.36 9916.28 6396.88 3945.68
29 26.06 215.12 6.25 17366.85 11276.75 6955.65
30 26.06 220.74 6.25 17282.79 11228.22 6925.72
31 26.06 226.35 6.25 17198.73 11179.69 6895.78
32 26.06 231.97 6.25 17114.67 11131.16 6865.85
33 30.44 237.47 6.25 15836.59 10393.26 6410.70
34 30.44 242.86 6.25 15455.32 10173.13 6274.92
35 30.44 248.25 6.25 15074.04 9953.00 6139.15
36 30.44 253.63 6.25 14692.76 9732.87 6003.37
37 34.81 258.89 6.25 13259.01 8905.09 5492.78
38 34.81 264.03 6.25 12672.07 8566.22 5283.76
39 34.81 269.16 6.25 12145.96 8262.47 5096.41
40 34.81 274.29 6.25 11606.99 7951.30 4904.47
41 39.19 279.05 5.65 9323.95 6513.81 4017.81
42 39.19 283.43 5.65 8679.02 6141.47 3788.14
43 39.19 287.81 5.65 8016.14 5758.75 3552.08
44 39.19 291.56 4.02 5016.86 3700.54 2282.54
45 39.19 294.67 4.02 4134.99 3191.39 1968.49
46 43.56 299.09 7.88 5019.18 4473.74 2759.46
47 43.56 304.80 7.88 1239.78 2291.70 1413.55
Average Effective Normal Stress = 2011.4672(psf)
Average Available Shear Strength = 1363.8408(psf)
Total Length of Failure Surface = 240.7592(ft)
SUM OF MOMENTS = -0.148934E+00 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.2896781E-06
SUM OF FORCES = -.409033E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.7955748E-
10
Sum of Available Shear Forces = 328357.16(lbs)
Sum of Mobilized Shear Forces = 202535.15(lbs)
FS Balance Check: FS = 1.621235
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection A-A' Block (Static)Ninyo & Moore / WRM\A-A' Block.gsdSpencer MethodPLATE E-2 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.801 2 1.801 3 1.801 4 1.801 5 1.801 6 1.801 7 1.801 8 1.801 9 1.80110 1.801GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.801 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.801 2 1.801 3 1.801 4 1.801 5 1.801 6 1.801 7 1.801 8 1.801 9 1.801 10 1.801 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Block\A-A' Block.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Block\A-A' Block.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section A-A' Block (Static)
BOUNDARY DATA
11 Surface Boundaries
19 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 620.000 88.000 620.000 1
2 88.000 620.000 135.000 642.000 1
3 135.000 642.000 290.000 714.000 2
4 290.000 714.000 450.000 713.000 2
5 450.000 713.000 555.000 715.000 2
6 555.000 715.000 570.000 717.000 2
7 570.000 717.000 590.000 717.000 2
8 590.000 717.000 610.000 717.000 2
9 610.000 717.000 660.000 713.000 2
10 660.000 713.000 855.000 713.000 2
11 855.000 713.000 900.000 713.000 2
12 135.000 642.000 135.100 637.000 1
13 135.100 637.000 149.900 637.000 1
14 149.900 637.000 150.000 643.000 1
15 150.000 643.000 465.000 670.000 1
16 465.000 670.000 636.000 708.000 1
17 636.000 708.000 855.000 708.000 1
18 855.000 708.000 855.100 712.000 1
19 855.100 712.000 900.000 712.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
A Non-Circular Zone Search Has Been Selected For Analysis
Using Random Generation Within Specified Zones.
2 Zones Defined For Generation Of Non-Circular Surfaces
5000 Trial Surfaces Have Been Generated.
Length Of Line Segments For Active And Passive Portions Of
Non-Circular Zone Search = 5.00(ft)
Zone X - 1 Y - 1 X - 2 Y - 2 Height
No. (ft) (ft) (ft) (ft) (ft)
1 150.00 643.50 150.00 643.50 0.10
2 150.10 643.50 465.00 670.50 0.10
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 483
Number of Trial Surfaces With Valid FS = 4517
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 9.7 %
Statistical Data On All Valid FS Values:
FS Max = 9.030 FS Min = 1.801 FS Ave = 3.130
Standard Deviation = 0.934 Coefficient of Variation = 29.84 %
Critical Surface is Sequence Number 447 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.923519 1.765767 0.268 0.1577516E+00
2 19.9500 1.838297 1.792615 0.363 0.4568249E-01
3 21.9674 1.778809 1.804638 0.403 0.2582887E-01
4 21.2389 1.802694 1.800213 0.389 0.2481708E-02
5 21.3029 1.800716 1.800597 0.390 0.1183768E-03
6 21.3061 1.800616 1.800617 0.390 0.5640570E-06
Factor Of Safety For The Preceding Specified Surface = 1.801
Theta (fx = 1.0) = 21.31 Deg Lambda = 0.390
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 145.33 645.99 0.461 667.03 1.000 21.31 242.4
2 150.00 645.72 0.404 4139.63 1.000 21.31 1504.1
3 154.97 646.81 0.391 5807.66 1.000 21.31 2110.2
4 159.94 647.83 0.376 7779.92 1.000 21.31 2826.8
5 164.91 648.82 0.362 10056.41 1.000 21.31 3654.0
6 169.88 649.78 0.351 12637.12 1.000 21.31 4591.7
7 174.85 650.73 0.342 15522.06 1.000 21.31 5639.9
8 179.82 651.67 0.335 18711.23 1.000 21.31 6798.7
9 184.79 652.60 0.328 22204.63 1.000 21.31 8068.0
10 189.76 653.54 0.323 26002.26 1.000 21.31 9447.9
11 194.73 654.47 0.319 30104.11 1.000 21.31 10938.3
12 199.70 655.40 0.315 34510.19 1.000 21.31 12539.3
13 204.67 656.33 0.311 39220.49 1.000 21.31 14250.8
14 208.97 658.52 0.305 36768.22 1.000 21.31 13359.7
15 213.28 660.71 0.297 34377.90 1.000 21.31 12491.2
16 217.59 662.91 0.290 32049.53 1.000 21.31 11645.2
17 221.90 665.09 0.282 29783.12 1.000 21.31 10821.7
18 226.20 667.28 0.273 27578.67 1.000 21.31 10020.7
19 230.51 669.47 0.264 25436.18 1.000 21.31 9242.2
20 234.82 671.65 0.255 23355.64 1.000 21.31 8486.3
21 239.13 673.83 0.244 21337.05 1.000 21.31 7752.8
22 243.43 676.00 0.234 19380.43 1.000 21.31 7041.9
23 247.74 678.18 0.222 17485.76 1.000 21.31 6353.4
24 252.05 680.35 0.210 15653.04 1.000 21.31 5687.5
25 256.36 682.52 0.197 13882.28 1.000 21.31 5044.1
26 260.66 684.68 0.183 12173.48 1.000 21.31 4423.2
27 264.97 686.84 0.168 10526.64 1.000 21.31 3824.9
28 269.28 689.00 0.152 8941.75 1.000 21.31 3249.0
29 273.59 691.16 0.135 7418.82 1.000 21.31 2695.6
30 277.89 693.32 0.117 5957.84 1.000 21.31 2164.8
31 282.20 695.46 0.097 4554.98 0.983 20.98 1630.8
32 286.51 697.47 0.067 3202.00 0.858 18.51 1016.3
33 290.00 698.86 0.026 2164.02 0.757 16.45 612.7
34 290.82 699.13 0.013 1932.12 0.733 15.96 531.2
35 295.13 699.72 0.000- 888.90 0.608 13.35 205.2
36 299.43 687.46 0.000- 141.05 0.483 10.67 26.1
37 303.74 713.31 0.918 -315.71 0.358 7.96 -43.7
38 308.05 711.79 0.563 -482.00 0.233 5.20 -43.7
39 312.36 712.66 0.459 -354.48 0.108 2.42 -15.0
40 316.09 713.84 0.000 0.02 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 40 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 1.58 0.75 144.54 645.68 646.43 -25.80 24.92 1.75
2 4.67 3.47 147.66 644.41 647.88 -20.80 24.92 5.00
3 4.97 6.39 152.48 643.74 650.12 4.86 24.92 4.99
4 4.97 8.27 157.45 644.16 652.43 4.86 24.92 4.99
5 4.97 10.16 162.42 644.58 654.74 4.86 24.92 4.99
6 4.97 12.04 167.39 645.00 657.05 4.86 24.92 4.99
7 4.97 13.93 172.36 645.42 659.36 4.86 24.92 4.99
8 4.97 15.82 177.33 645.85 661.66 4.86 24.92 4.99
9 4.97 17.70 182.30 646.27 663.97 4.86 24.92 4.99
10 4.97 19.59 187.27 646.69 666.28 4.86 24.92 4.99
11 4.97 21.48 192.24 647.11 668.59 4.86 24.92 4.99
12 4.97 23.36 197.21 647.54 670.90 4.86 24.92 4.99
13 4.97 25.25 202.18 647.96 673.21 4.86 24.92 4.99
14 4.31 25.92 206.82 649.44 675.36 30.51 24.92 5.00
15 4.31 25.39 211.13 651.98 677.36 30.51 24.92 5.00
16 4.31 24.85 215.43 654.52 679.36 30.51 24.92 5.00
17 4.31 24.31 219.74 657.05 681.36 30.51 24.92 5.00
18 4.31 23.77 224.05 659.59 683.37 30.51 24.92 5.00
19 4.31 23.23 228.36 662.13 685.37 30.51 24.92 5.00
20 4.31 22.70 232.66 664.67 687.37 30.51 24.92 5.00
21 4.31 22.16 236.97 667.21 689.37 30.51 24.92 5.00
22 4.31 21.62 241.28 669.75 691.37 30.51 24.92 5.00
23 4.31 21.08 245.59 672.29 693.37 30.51 24.92 5.00
24 4.31 20.55 249.90 674.82 695.37 30.51 24.92 5.00
25 4.31 20.01 254.20 677.36 697.37 30.51 24.92 5.00
26 4.31 19.47 258.51 679.90 699.37 30.51 24.92 5.00
27 4.31 18.93 262.82 682.44 701.37 30.51 24.92 5.00
28 4.31 18.40 267.13 684.98 703.37 30.51 24.92 5.00
29 4.31 17.86 271.43 687.52 705.38 30.51 24.92 5.00
30 4.31 17.32 275.74 690.06 707.38 30.51 24.92 5.00
31 4.31 16.78 280.05 692.60 709.38 30.51 24.92 5.00
32 4.31 16.24 284.36 695.13 711.38 30.51 24.92 5.00
33 3.49 15.76 288.25 697.43 713.19 30.51 24.92 4.05
34 0.82 15.30 290.41 698.70 714.00 30.51 -0.36 0.95
35 4.31 13.77 292.97 700.21 713.98 30.51 -0.36 5.00
36 4.31 11.20 297.28 702.75 713.95 30.51 -0.36 5.00
37 4.31 8.64 301.59 705.29 713.93 30.51 -0.36 5.00
38 4.31 6.07 305.89 707.83 713.90 30.51 -0.36 5.00
39 4.31 3.51 310.20 710.37 713.87 30.51 -0.36 5.00
40 3.74 1.11 314.22 712.74 713.85 30.51 -0.36 4.34
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 143.747378 646.063298
2 145.325863 645.300238
3 150.000000 643.524725
4 154.969591 643.946952
5 159.939181 644.369179
6 164.908772 644.791406
7 169.878362 645.213632
8 174.847953 645.635859
9 179.817544 646.058086
10 184.787134 646.480313
11 189.756725 646.902540
12 194.726316 647.324766
13 199.695906 647.746993
14 204.665497 648.169220
15 208.973097 650.707840
16 213.280697 653.246460
17 217.588297 655.785080
18 221.895896 658.323700
19 226.203496 660.862320
20 230.511096 663.400940
21 234.818696 665.939560
22 239.126296 668.478180
23 243.433896 671.016800
24 247.741496 673.555421
25 252.049096 676.094041
26 256.356696 678.632661
27 260.664295 681.171281
28 264.971895 683.709901
29 269.279495 686.248521
30 273.587095 688.787141
31 277.894695 691.325761
32 282.202295 693.864381
33 286.509895 696.403001
34 290.000000 698.459843
35 290.817495 698.941621
36 295.125095 701.480241
37 299.432694 704.018861
38 303.740294 706.557481
39 308.047894 709.096101
40 312.355494 711.634721
41 316.092250 713.836923
***Table 3 - Force and Pore Pressure Data On The 40 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 141.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
2 1946.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
3 3808.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
4 4933.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
5 6058.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
6 7182.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
7 8307.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
8 9432.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
9 10557.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
10 11682.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
11 12807.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
12 13932.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
13 15056.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
14 13399.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
15 13121.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
16 12843.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
17 12566.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
18 12288.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
19 12010.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
20 11732.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
21 11454.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
22 11176.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
23 10898.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
24 10620.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
25 10342.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
26 10064.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
27 9786.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
28 9508.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
29 9230.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
30 8952.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
31 8675.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
32 8397.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
33 6599.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
34 1500.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
35 7118.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
36 5792.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
37 4465.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
38 3139.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
39 1813.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
40 499.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 343844.72(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 343844.72(lbs)
TOTAL AREA OF SLIDING MASS = 2865.37(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 40 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 2 200.00 30.00
2 2 200.00 30.00
3 2 200.00 30.00
4 2 200.00 30.00
5 2 200.00 30.00
6 2 200.00 30.00
7 2 200.00 30.00
8 2 200.00 30.00
9 2 200.00 30.00
10 2 200.00 30.00
11 2 200.00 30.00
12 2 200.00 30.00
13 2 200.00 30.00
14 2 200.00 30.00
15 2 200.00 30.00
16 2 200.00 30.00
17 2 200.00 30.00
18 2 200.00 30.00
19 2 200.00 30.00
20 2 200.00 30.00
21 2 200.00 30.00
22 2 200.00 30.00
23 2 200.00 30.00
24 2 200.00 30.00
25 2 200.00 30.00
26 2 200.00 30.00
27 2 200.00 30.00
28 2 200.00 30.00
29 2 200.00 30.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
34 2 200.00 30.00
35 2 200.00 30.00
36 2 200.00 30.00
37 2 200.00 30.00
38 2 200.00 30.00
39 2 200.00 30.00
40 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 40 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -25.80 144.54 1.75 351.50 89.78 3.915
2 -20.80 147.66 5.00 829.53 416.36 1.992
3 4.86 152.48 4.99 855.55 766.34 1.116
4 4.86 157.45 4.99 1097.55 992.68 1.106
5 4.86 162.42 4.99 1339.55 1219.03 1.099
6 4.86 167.39 4.99 1581.54 1445.38 1.094
7 4.86 172.36 4.99 1823.54 1671.73 1.091
8 4.86 177.33 4.99 2065.54 1898.07 1.088
9 4.86 182.30 4.99 2307.54 2124.42 1.086
10 4.86 187.27 4.99 2549.54 2350.77 1.085
11 4.86 192.24 4.99 2791.54 2577.11 1.083
12 4.86 197.21 4.99 3033.53 2803.46 1.082
13 4.86 202.18 4.99 3275.53 3029.81 1.081
14 30.51 206.82 5.00 2387.30 3110.72 0.767
15 30.51 211.13 5.00 2337.43 3046.20 0.767
16 30.51 215.43 5.00 2287.56 2981.68 0.767
17 30.51 219.74 5.00 2237.69 2917.16 0.767
18 30.51 224.05 5.00 2187.81 2852.64 0.767
19 30.51 228.36 5.00 2137.94 2788.12 0.767
20 30.51 232.66 5.00 2088.07 2723.60 0.767
21 30.51 236.97 5.00 2038.20 2659.08 0.767
22 30.51 241.28 5.00 1988.33 2594.56 0.766
23 30.51 245.59 5.00 1938.46 2530.04 0.766
24 30.51 249.90 5.00 1888.59 2465.52 0.766
25 30.51 254.20 5.00 1838.72 2401.00 0.766
26 30.51 258.51 5.00 1788.85 2336.48 0.766
27 30.51 262.82 5.00 1738.98 2271.96 0.765
28 30.51 267.13 5.00 1689.11 2207.44 0.765
29 30.51 271.43 5.00 1639.24 2142.92 0.765
30 30.51 275.74 5.00 1589.37 2078.40 0.765
31 30.51 280.05 5.00 1541.03 2013.88 0.765
32 30.51 284.36 5.00 1502.13 1949.35 0.771
33 30.51 288.25 4.05 1465.19 1890.96 0.775
34 30.51 290.41 0.95 1423.53 1835.61 0.776
35 30.51 292.97 5.00 1287.89 1652.46 0.779
36 30.51 297.28 5.00 1048.77 1344.59 0.780
37 30.51 301.59 5.00 804.55 1036.73 0.776
38 30.51 305.89 5.00 555.05 728.86 0.762
39 30.51 310.20 5.00 300.12 421.00 0.713
40 30.51 314.22 4.34 57.25 133.53 0.429
***TABLE 5A - Total Base Force Data on the 40 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -25.80 144.54 1.75 616.26 141.71 4.349
2 -20.80 147.66 5.00 4147.66 1946.12 2.131
3 4.86 152.48 4.99 4267.05 3808.37 1.120
4 4.86 157.45 4.99 5474.01 4933.23 1.110
5 4.86 162.42 4.99 6680.98 6058.08 1.103
6 4.86 167.39 4.99 7887.94 7182.94 1.098
7 4.86 172.36 4.99 9094.91 8307.79 1.095
8 4.86 177.33 4.99 10301.87 9432.64 1.092
9 4.86 182.30 4.99 11508.84 10557.50 1.090
10 4.86 187.27 4.99 12715.80 11682.35 1.088
11 4.86 192.24 4.99 13922.77 12807.21 1.087
12 4.86 197.21 4.99 15129.73 13932.06 1.086
13 4.86 202.18 4.99 16336.70 15056.91 1.085
14 30.51 206.82 5.00 11936.49 13399.75 0.891
15 30.51 211.13 5.00 11687.14 13121.82 0.891
16 30.51 215.43 5.00 11437.78 12843.89 0.891
17 30.51 219.74 5.00 11188.43 12565.97 0.890
18 30.51 224.05 5.00 10939.08 12288.04 0.890
19 30.51 228.36 5.00 10689.72 12010.11 0.890
20 30.51 232.66 5.00 10440.37 11732.18 0.890
21 30.51 236.97 5.00 10191.02 11454.25 0.890
22 30.51 241.28 5.00 9941.66 11176.32 0.890
23 30.51 245.59 5.00 9692.31 10898.40 0.889
24 30.51 249.90 5.00 9442.96 10620.47 0.889
25 30.51 254.20 5.00 9193.60 10342.54 0.889
26 30.51 258.51 5.00 8944.25 10064.61 0.889
27 30.51 262.82 5.00 8694.90 9786.68 0.888
28 30.51 267.13 5.00 8445.55 9508.75 0.888
29 30.51 271.43 5.00 8196.19 9230.83 0.888
30 30.51 275.74 5.00 7946.84 8952.90 0.888
31 30.51 280.05 5.00 7705.16 8674.97 0.888
32 30.51 284.36 5.00 7510.64 8397.04 0.894
33 30.51 288.25 4.05 5935.64 6599.64 0.899
34 30.51 290.41 0.95 1350.78 1500.60 0.900
35 30.51 292.97 5.00 6439.45 7118.14 0.905
36 30.51 297.28 5.00 5243.87 5791.98 0.905
37 30.51 301.59 5.00 4022.75 4465.82 0.901
38 30.51 305.89 5.00 2775.27 3139.66 0.884
39 30.51 310.20 5.00 1500.58 1813.50 0.827
40 30.51 314.22 4.34 248.34 498.98 0.498
***TABLE 6 - Effective and Base Shear Stress Data on the 40 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -25.80 144.54 1.75 351.50 402.94 223.78
2 -20.80 147.66 5.00 829.53 678.93 377.05
3 4.86 152.48 4.99 855.55 693.95 385.40
4 4.86 157.45 4.99 1097.55 833.67 462.99
5 4.86 162.42 4.99 1339.55 973.39 540.59
6 4.86 167.39 4.99 1581.54 1113.10 618.18
7 4.86 172.36 4.99 1823.54 1252.82 695.77
8 4.86 177.33 4.99 2065.54 1392.54 773.37
9 4.86 182.30 4.99 2307.54 1532.26 850.96
10 4.86 187.27 4.99 2549.54 1671.98 928.56
11 4.86 192.24 4.99 2791.54 1811.69 1006.15
12 4.86 197.21 4.99 3033.53 1951.41 1083.75
13 4.86 202.18 4.99 3275.53 2091.13 1161.34
14 30.51 206.82 5.00 2387.30 1578.31 876.54
15 30.51 211.13 5.00 2337.43 1549.51 860.55
16 30.51 215.43 5.00 2287.56 1520.72 844.56
17 30.51 219.74 5.00 2237.69 1491.93 828.57
18 30.51 224.05 5.00 2187.81 1463.14 812.57
19 30.51 228.36 5.00 2137.94 1434.34 796.58
20 30.51 232.66 5.00 2088.07 1405.55 780.59
21 30.51 236.97 5.00 2038.20 1376.76 764.60
22 30.51 241.28 5.00 1988.33 1347.96 748.61
23 30.51 245.59 5.00 1938.46 1319.17 732.62
24 30.51 249.90 5.00 1888.59 1290.38 716.63
25 30.51 254.20 5.00 1838.72 1261.59 700.64
26 30.51 258.51 5.00 1788.85 1232.79 684.65
27 30.51 262.82 5.00 1738.98 1204.00 668.66
28 30.51 267.13 5.00 1689.11 1175.21 652.67
29 30.51 271.43 5.00 1639.24 1146.41 636.68
30 30.51 275.74 5.00 1589.37 1117.62 620.69
31 30.51 280.05 5.00 1541.03 1089.71 605.19
32 30.51 284.36 5.00 1502.13 1067.25 592.72
33 30.51 288.25 4.05 1465.19 1045.93 580.87
34 30.51 290.41 0.95 1423.53 1021.88 567.51
35 30.51 292.97 5.00 1287.89 943.56 524.02
36 30.51 297.28 5.00 1048.77 805.51 447.35
37 30.51 301.59 5.00 804.55 664.51 369.04
38 30.51 305.89 5.00 555.05 520.46 289.05
39 30.51 310.20 5.00 300.12 373.27 207.30
40 30.51 314.22 4.34 57.25 233.06 129.43
***TABLE 6A - Effective and Base Shear Force Data on the 40 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -25.80 144.54 1.75 616.26 706.45 392.34
2 -20.80 147.66 5.00 4147.66 3394.65 1885.27
3 4.86 152.48 4.99 4267.05 3461.08 1922.16
4 4.86 157.45 4.99 5474.01 4157.92 2309.17
5 4.86 162.42 4.99 6680.98 4854.76 2696.17
6 4.86 167.39 4.99 7887.94 5551.60 3083.17
7 4.86 172.36 4.99 9094.91 6248.45 3470.17
8 4.86 177.33 4.99 10301.87 6945.29 3857.17
9 4.86 182.30 4.99 11508.84 7642.13 4244.17
10 4.86 187.27 4.99 12715.80 8338.97 4631.18
11 4.86 192.24 4.99 13922.77 9035.81 5018.18
12 4.86 197.21 4.99 15129.73 9732.65 5405.18
13 4.86 202.18 4.99 16336.70 10429.50 5792.18
14 30.51 206.82 5.00 11936.49 7891.53 4382.69
15 30.51 211.13 5.00 11687.14 7747.57 4302.73
16 30.51 215.43 5.00 11437.78 7603.61 4222.78
17 30.51 219.74 5.00 11188.43 7459.64 4142.83
18 30.51 224.05 5.00 10939.08 7315.68 4062.87
19 30.51 228.36 5.00 10689.72 7171.71 3982.92
20 30.51 232.66 5.00 10440.37 7027.75 3902.97
21 30.51 236.97 5.00 10191.02 6883.79 3823.02
22 30.51 241.28 5.00 9941.66 6739.82 3743.06
23 30.51 245.59 5.00 9692.31 6595.86 3663.11
24 30.51 249.90 5.00 9442.96 6451.89 3583.16
25 30.51 254.20 5.00 9193.60 6307.93 3503.21
26 30.51 258.51 5.00 8944.25 6163.97 3423.25
27 30.51 262.82 5.00 8694.90 6020.00 3343.30
28 30.51 267.13 5.00 8445.55 5876.04 3263.35
29 30.51 271.43 5.00 8196.19 5732.07 3183.40
30 30.51 275.74 5.00 7946.84 5588.11 3103.44
31 30.51 280.05 5.00 7705.16 5448.58 3025.95
32 30.51 284.36 5.00 7510.64 5336.27 2963.58
33 30.51 288.25 4.05 5935.64 4237.17 2353.18
34 30.51 290.41 0.95 1350.78 969.66 538.51
35 30.51 292.97 5.00 6439.45 4717.82 2620.11
36 30.51 297.28 5.00 5243.87 4027.55 2236.76
37 30.51 301.59 5.00 4022.75 3322.54 1845.22
38 30.51 305.89 5.00 2775.27 2602.31 1445.23
39 30.51 310.20 5.00 1500.58 1866.36 1036.51
40 30.51 314.22 4.34 248.34 1010.86 561.40
Average Effective Normal Stress = 1727.2581(psf)
Average Available Shear Strength = 1197.2329(psf)
Total Length of Failure Surface = 190.9531(ft)
SUM OF MOMENTS = -0.366176E-01 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.1064947E-06
SUM OF FORCES = -.299739E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.8717272E-
10
Sum of Available Shear Forces = 228615.34(lbs)
Sum of Mobilized Shear Forces = 126965.04(lbs)
FS Balance Check: FS = 1.800616
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - CircularNinyo & Moore / WRM\B-B' East Slope Circular.gsdSpencer MethodPLATE E-3 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.598 2 1.600 3 1.601 4 1.610 5 1.610 6 1.613 7 1.616 8 1.617 9 1.61810 1.621GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.598 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.598 2 1.600 3 1.601 4 1.610 5 1.610 6 1.613 7 1.616 8 1.617 9 1.618 10 1.621 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Circular.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Circular.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Easterly Slope - Circular
BOUNDARY DATA
7 Surface Boundaries
17 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 640.000 30.000 643.000 1
2 30.000 643.000 57.000 657.000 1
3 57.000 657.000 155.000 708.000 2
4 155.000 708.000 205.000 710.000 2
5 205.000 710.000 828.000 710.000 2
6 828.000 710.000 876.000 686.000 2
7 876.000 686.000 900.000 686.000 1
8 57.000 657.000 57.100 652.000 1
9 57.100 652.000 71.900 652.000 1
10 71.900 652.000 72.000 658.000 1
11 72.000 658.000 245.000 683.000 1
12 245.000 683.000 371.000 705.000 1
13 371.000 705.000 700.000 705.000 1
14 700.000 705.000 700.100 709.000 1
15 700.100 709.000 813.000 709.000 1
16 813.000 709.000 861.000 686.000 1
17 861.000 686.000 876.000 686.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 0.00(ft)
and X = 80.00(ft)
Each Surface Enters within a Range Between X = 130.00(ft)
and X = 600.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 500.00(ft)
Specified Maximum Radius = 5000.000(ft)
20.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 969
Number of Trial Surfaces With Valid FS = 4031
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 19.4 %
Statistical Data On All Valid FS Values:
FS Max = 11.962 FS Min = 1.598 FS Ave = 3.888
Standard Deviation = 1.997 Coefficient of Variation = 51.36 %
Critical Surface is Sequence Number 1743 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 40.107367(ft) ; Y = 798.816762(ft); and Radius =
155.152730(ft)
Circular Trial Failure Surface Generated With 9 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 31.718 643.891
2 51.717 644.099
3 71.523 646.878
4 90.807 652.182
5 109.249 659.922
6 126.541 669.970
7 142.398 682.159
8 156.554 696.287
9 165.935 708.437
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.735514 1.564095 0.268 0.1714187E+00
2 19.9500 1.669606 1.582938 0.363 0.8666738E-01
3 25.0109 1.565991 1.603849 0.467 0.3785826E-01
4 23.4726 1.602877 1.597285 0.434 0.5592380E-02
5 23.6708 1.598434 1.598120 0.438 0.3142604E-03
6 23.6827 1.598167 1.598169 0.439 0.2728417E-05
7 23.6826 1.598169 1.598169 0.439 0.5028648E-08
Factor Of Safety For The Preceding Specified Surface = 1.598
Theta (fx = 1.0) = 23.68 Deg Lambda = 0.439
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 36.72 645.01 0.421 1500.00 1.000 23.68 602.5
2 41.72 645.95 0.385 3622.22 1.000 23.68 1454.9
3 46.72 646.84 0.366 6366.65 1.000 23.68 2557.3
4 51.72 647.70 0.354 9733.31 1.000 23.68 3909.6
5 54.36 648.38 0.350 11044.77 1.000 23.68 4436.3
6 57.00 649.06 0.347 12425.35 1.000 23.68 4990.9
7 57.10 649.09 0.347 12478.98 1.000 23.68 5012.4
8 61.91 650.32 0.341 15174.68 1.000 23.68 6095.2
9 66.72 651.54 0.336 18100.55 1.000 23.68 7270.4
10 71.52 652.75 0.332 21256.59 1.000 23.68 8538.1
11 71.90 652.88 0.332 21381.83 1.000 23.68 8588.4
12 72.00 652.91 0.332 21415.11 1.000 23.68 8601.8
13 76.70 654.54 0.329 22999.73 1.000 23.68 9238.3
14 81.40 656.17 0.327 24622.80 1.000 23.68 9890.2
15 86.11 657.79 0.325 26284.32 1.000 23.68 10557.6
16 90.81 659.41 0.322 27984.28 1.000 23.68 11240.4
17 95.42 661.45 0.320 27917.33 1.000 23.68 11213.5
18 100.03 663.49 0.319 27829.65 1.000 23.68 11178.3
19 104.64 665.54 0.317 27721.26 1.000 23.68 11134.8
20 109.25 667.60 0.316 27592.14 1.000 23.68 11082.9
21 113.21 669.78 0.315 26034.44 1.000 23.68 10457.2
22 117.18 671.98 0.313 24500.57 1.000 23.68 9841.1
23 121.86 674.59 0.312 22714.59 1.000 23.68 9123.7
24 126.54 677.23 0.313 20957.94 1.000 23.68 8418.2
25 131.83 680.87 0.312 17374.86 1.000 23.68 6978.9
26 137.11 684.60 0.316 14046.09 1.000 23.68 5641.9
27 142.40 688.24 0.316 10930.28 0.877 21.04 3923.5
28 146.60 691.53 0.300 7763.10 0.720 17.53 2338.8
29 150.80 694.66 0.270 5012.56 0.564 13.89 1203.4
30 155.00 697.75 0.227 2657.26 0.407 10.13 467.4
31 156.55 698.92 0.223 1913.42 0.349 8.71 289.9
32 161.24 705.22 0.485 -15.70 0.175 4.38 -1.2
33 165.93 708.44 0.000 0.00 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 33 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 5.00 1.27 34.22 643.92 645.19 0.60 27.41 5.00
2 5.00 3.81 39.22 643.97 647.78 0.60 27.41 5.00
3 5.00 6.35 44.22 644.02 650.37 0.60 27.41 5.00
4 5.00 8.89 49.22 644.07 652.96 0.60 27.41 5.00
5 2.64 10.66 53.04 644.28 654.95 7.99 27.41 2.67
6 2.64 11.66 55.68 644.65 656.32 7.99 27.41 2.67
7 0.10 12.18 57.05 644.85 657.03 7.99 27.49 0.10
8 4.81 13.11 59.50 645.19 658.30 7.99 27.49 4.85
9 4.81 14.94 64.31 645.87 660.81 7.99 27.49 4.85
10 4.81 16.77 69.12 646.54 663.31 7.99 27.49 4.85
11 0.38 17.73 71.71 646.93 664.66 15.38 27.49 0.39
12 0.10 17.78 71.95 647.00 664.78 15.38 27.49 0.10
13 4.70 18.37 74.35 647.66 666.03 15.38 27.49 4.88
14 4.70 19.53 79.05 648.95 668.48 15.38 27.49 4.88
15 4.70 20.68 83.75 650.24 670.92 15.38 27.49 4.88
16 4.70 21.84 88.46 651.53 673.37 15.38 27.49 4.88
17 4.61 22.64 93.11 653.15 675.79 22.77 27.49 5.00
18 4.61 23.11 97.72 655.08 678.19 22.77 27.49 5.00
19 4.61 23.57 102.33 657.02 680.59 22.77 27.49 5.00
20 4.61 24.04 106.94 658.95 682.99 22.77 27.49 5.00
21 3.96 24.15 111.23 661.07 685.22 30.16 27.49 4.58
22 3.96 23.91 115.19 663.38 687.29 30.16 27.49 4.58
23 4.68 23.65 119.52 665.89 689.53 30.16 27.49 5.42
24 4.68 23.36 124.20 668.61 691.97 30.16 27.49 5.42
25 5.29 22.56 129.18 672.00 694.57 37.55 27.49 6.67
26 5.29 21.25 134.47 676.06 697.32 37.55 27.49 6.67
27 5.29 19.94 139.76 680.13 700.07 37.55 27.49 6.67
28 4.20 18.28 144.50 684.26 702.53 44.94 27.49 5.93
29 4.20 16.27 148.70 688.45 704.72 44.94 27.49 5.93
30 4.20 14.27 152.90 692.64 706.91 44.94 27.49 5.93
31 1.55 12.52 155.78 695.51 708.03 44.94 2.29 2.20
32 4.69 8.83 158.90 699.32 708.16 52.33 2.29 7.68
33 4.69 2.94 163.59 705.40 708.34 52.33 2.29 7.68
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 31.718344 643.890993
2 36.718073 643.943000
3 41.717803 643.995006
4 46.717532 644.047013
5 51.717262 644.099019
6 54.358631 644.469619
7 57.000000 644.840220
8 57.100000 644.854250
9 61.907754 645.528808
10 66.715509 646.203365
11 71.523263 646.877922
12 71.900000 646.981535
13 72.000000 647.009037
14 76.701810 648.302160
15 81.403620 649.595282
16 86.105431 650.888404
17 90.807241 652.181526
18 95.417621 654.116570
19 100.028001 656.051615
20 104.638381 657.986659
21 109.248761 659.921703
22 113.212817 662.225077
23 117.176873 664.528450
24 121.859131 667.249144
25 126.541388 669.969839
26 131.826852 674.032882
27 137.112316 678.095924
28 142.397780 682.158967
29 146.598520 686.351073
30 150.799260 690.543179
31 155.000000 694.735286
32 156.554456 696.286547
33 161.244676 702.361971
34 165.934895 708.437396
***Table 3 - Force and Pore Pressure Data On The 33 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 762.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
2 2286.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
3 3810.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
4 5334.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
5 3379.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
6 3695.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
7 146.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
8 7564.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
9 8618.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
10 9673.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
11 801.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
12 213.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
13 10366.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
14 11017.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
15 11668.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
16 12319.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
17 12527.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
18 12784.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
19 13041.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
20 13298.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
21 11487.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
22 11372.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
23 13286.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
24 13126.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
25 14311.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
26 13478.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
27 12646.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
28 9214.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
29 8203.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
30 7192.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
31 2335.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
32 4970.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
33 1656.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 266593.63(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 266593.63(lbs)
TOTAL AREA OF SLIDING MASS = 2221.61(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 33 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 1 300.00 28.00
2 1 300.00 28.00
3 1 300.00 28.00
4 1 300.00 28.00
5 1 300.00 28.00
6 1 300.00 28.00
7 1 300.00 28.00
8 1 300.00 28.00
9 1 300.00 28.00
10 1 300.00 28.00
11 1 300.00 28.00
12 1 300.00 28.00
13 1 300.00 28.00
14 1 300.00 28.00
15 1 300.00 28.00
16 1 300.00 28.00
17 1 300.00 28.00
18 1 300.00 28.00
19 1 300.00 28.00
20 1 300.00 28.00
21 1 300.00 28.00
22 1 300.00 28.00
23 2 200.00 30.00
24 2 200.00 30.00
25 2 200.00 30.00
26 2 200.00 30.00
27 2 200.00 30.00
28 2 200.00 30.00
29 2 200.00 30.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 33 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 0.60 34.22 5.00 270.05 152.43 1.772
2 0.60 39.22 5.00 623.66 457.28 1.364
3 0.60 44.22 5.00 977.28 762.13 1.282
4 0.60 49.22 5.00 1330.90 1066.99 1.247
5 7.99 53.04 2.67 1387.67 1279.35 1.085
6 7.99 55.68 2.67 1512.25 1399.23 1.081
7 7.99 57.05 0.10 1576.91 1461.45 1.079
8 7.99 59.50 4.85 1693.22 1573.38 1.076
9 7.99 64.31 4.85 1921.10 1792.67 1.072
10 7.99 69.12 4.85 2148.99 2011.97 1.068
11 15.38 71.71 0.39 2023.87 2127.16 0.951
12 15.38 71.95 0.10 2030.46 2134.18 0.951
13 15.38 74.35 4.88 2096.76 2204.87 0.951
14 15.38 79.05 4.88 2226.62 2343.32 0.950
15 15.38 83.75 4.88 2356.47 2481.77 0.950
16 15.38 88.46 4.88 2486.32 2620.22 0.949
17 22.77 93.11 5.00 2310.10 2717.30 0.850
18 22.77 97.72 5.00 2357.40 2773.01 0.850
19 22.77 102.33 5.00 2404.70 2828.72 0.850
20 22.77 106.94 5.00 2451.99 2884.42 0.850
21 30.16 111.23 4.58 2204.72 2897.85 0.761
22 30.16 115.19 4.58 2182.57 2869.00 0.761
23 30.16 119.52 5.42 2158.50 2837.53 0.761
24 30.16 124.20 5.42 2132.41 2803.45 0.761
25 37.55 129.18 6.67 1830.75 2707.66 0.676
26 37.55 134.47 6.67 1722.62 2550.17 0.675
27 37.55 139.76 6.67 1634.54 2392.67 0.683
28 44.94 144.50 5.93 1349.97 2193.57 0.615
29 44.94 148.70 5.93 1224.60 1952.85 0.627
30 44.94 152.90 5.93 1091.79 1712.13 0.638
31 44.94 155.78 2.20 957.90 1502.42 0.638
32 52.33 158.90 7.68 589.33 1059.81 0.556
33 52.33 163.59 7.68 130.23 353.27 0.369
***TABLE 5A - Total Base Force Data on the 33 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 0.60 34.22 5.00 1350.23 762.09 1.772
2 0.60 39.22 5.00 3118.32 2286.28 1.364
3 0.60 44.22 5.00 4886.41 3810.46 1.282
4 0.60 49.22 5.00 6654.50 5334.65 1.247
5 7.99 53.04 2.67 3701.25 3379.25 1.095
6 7.99 55.68 2.67 4033.53 3695.89 1.091
7 7.99 57.05 0.10 159.24 146.15 1.090
8 7.99 59.50 4.85 8220.32 7564.43 1.087
9 7.99 64.31 4.85 9326.67 8618.73 1.082
10 7.99 69.12 4.85 10433.01 9673.04 1.079
11 15.38 71.71 0.39 790.78 801.38 0.987
12 15.38 71.95 0.10 210.58 213.42 0.987
13 15.38 74.35 4.88 10224.64 10366.90 0.986
14 15.38 79.05 4.88 10857.85 11017.86 0.985
15 15.38 83.75 4.88 11491.05 11668.82 0.985
16 15.38 88.46 4.88 12124.26 12319.78 0.984
17 22.77 93.11 5.00 11550.50 12527.78 0.922
18 22.77 97.72 5.00 11786.99 12784.62 0.922
19 22.77 102.33 5.00 12023.48 13041.45 0.922
20 22.77 106.94 5.00 12259.97 13298.29 0.922
21 30.16 111.23 4.58 10107.94 11487.24 0.880
22 30.16 115.19 4.58 10006.36 11372.87 0.880
23 30.16 119.52 5.42 11688.99 13286.04 0.880
24 30.16 124.20 5.42 11547.71 13126.47 0.880
25 37.55 129.18 6.67 12205.03 14311.25 0.853
26 37.55 134.47 6.67 11484.11 13478.82 0.852
27 37.55 139.76 6.67 10896.95 12646.40 0.862
28 44.94 144.50 5.93 8011.62 9214.61 0.869
29 44.94 148.70 5.93 7267.56 8203.40 0.886
30 44.94 152.90 5.93 6479.40 7192.20 0.901
31 44.94 155.78 2.20 2103.62 2335.45 0.901
32 52.33 158.90 7.68 4523.24 4970.73 0.910
33 52.33 163.59 7.68 999.52 1656.91 0.603
***TABLE 6 - Effective and Base Shear Stress Data on the 33 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 0.60 34.22 5.00 270.05 443.59 277.56
2 0.60 39.22 5.00 623.66 631.61 395.21
3 0.60 44.22 5.00 977.28 819.63 512.86
4 0.60 49.22 5.00 1330.90 1007.65 630.50
5 7.99 53.04 2.67 1387.67 1037.84 649.39
6 7.99 55.68 2.67 1512.25 1104.08 690.84
7 7.99 57.05 0.10 1576.91 1138.46 712.35
8 7.99 59.50 4.85 1693.22 1200.30 751.05
9 7.99 64.31 4.85 1921.10 1321.47 826.86
10 7.99 69.12 4.85 2148.99 1442.64 902.68
11 15.38 71.71 0.39 2023.87 1376.11 861.06
12 15.38 71.95 0.10 2030.46 1379.61 863.25
13 15.38 74.35 4.88 2096.76 1414.87 885.31
14 15.38 79.05 4.88 2226.62 1483.91 928.51
15 15.38 83.75 4.88 2356.47 1552.96 971.71
16 15.38 88.46 4.88 2486.32 1622.00 1014.91
17 22.77 93.11 5.00 2310.10 1528.30 956.28
18 22.77 97.72 5.00 2357.40 1553.45 972.02
19 22.77 102.33 5.00 2404.70 1578.60 987.76
20 22.77 106.94 5.00 2451.99 1603.75 1003.49
21 30.16 111.23 4.58 2204.72 1472.27 921.22
22 30.16 115.19 4.58 2182.57 1460.49 913.85
23 30.16 119.52 5.42 2158.50 1446.21 904.92
24 30.16 124.20 5.42 2132.41 1431.15 895.49
25 37.55 129.18 6.67 1830.75 1256.99 786.52
26 37.55 134.47 6.67 1722.62 1194.55 747.45
27 37.55 139.76 6.67 1634.54 1143.70 715.63
28 44.94 144.50 5.93 1349.97 979.41 612.83
29 44.94 148.70 5.93 1224.60 907.02 567.54
30 44.94 152.90 5.93 1091.79 830.35 519.56
31 44.94 155.78 2.20 957.90 753.04 471.19
32 52.33 158.90 7.68 589.33 540.25 338.04
33 52.33 163.59 7.68 130.23 275.19 172.19
***TABLE 6A - Effective and Base Shear Force Data on the 33 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 0.60 34.22 5.00 1350.23 2217.93 1387.80
2 0.60 39.22 5.00 3118.32 3158.04 1976.04
3 0.60 44.22 5.00 4886.41 4098.15 2564.28
4 0.60 49.22 5.00 6654.50 5038.26 3152.52
5 7.99 53.04 2.67 3701.25 2768.16 1732.08
6 7.99 55.68 2.67 4033.53 2944.84 1842.63
7 7.99 57.05 0.10 159.24 114.96 71.93
8 7.99 59.50 4.85 8220.32 5827.27 3646.22
9 7.99 64.31 4.85 9326.67 6415.53 4014.30
10 7.99 69.12 4.85 10433.01 7003.78 4382.38
11 15.38 71.71 0.39 790.78 537.68 336.44
12 15.38 71.95 0.10 210.58 143.08 89.53
13 15.38 74.35 4.88 10224.64 6899.45 4317.10
14 15.38 79.05 4.88 10857.85 7236.14 4527.77
15 15.38 83.75 4.88 11491.05 7572.82 4738.43
16 15.38 88.46 4.88 12124.26 7909.50 4949.10
17 22.77 93.11 5.00 11550.50 7641.51 4781.41
18 22.77 97.72 5.00 11786.99 7767.25 4860.09
19 22.77 102.33 5.00 12023.48 7893.00 4938.78
20 22.77 106.94 5.00 12259.97 8018.74 5017.46
21 30.16 111.23 4.58 10107.94 6749.89 4223.51
22 30.16 115.19 4.58 10006.36 6695.88 4189.72
23 30.16 119.52 5.42 11688.99 7831.71 4900.42
24 30.16 124.20 5.42 11547.71 7750.14 4849.39
25 37.55 129.18 6.67 12205.03 8379.91 5243.44
26 37.55 134.47 6.67 11484.11 7963.69 4983.01
27 37.55 139.76 6.67 10896.95 7624.69 4770.89
28 44.94 144.50 5.93 8011.62 5812.44 3636.93
29 44.94 148.70 5.93 7267.56 5382.86 3368.14
30 44.94 152.90 5.93 6479.40 4927.81 3083.41
31 44.94 155.78 2.20 2103.62 1653.74 1034.77
32 52.33 158.90 7.68 4523.24 4146.54 2594.55
33 52.33 163.59 7.68 999.52 2112.11 1321.58
Average Effective Normal Stress = 1625.5225(psf)
Average Available Shear Strength = 1147.3254(psf)
Total Length of Failure Surface = 155.3504(ft)
SUM OF MOMENTS = -0.362302E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.1359004E-08
SUM OF FORCES = -.309219E-07 (lbs);Imbalance (Fraction of Total Weight) = -0.1159889E-
12
Sum of Available Shear Forces = 178237.50(lbs)
Sum of Mobilized Shear Forces = 111526.07(lbs)
FS Balance Check: FS = 1.598169
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Block (Static)Ninyo & Moore / WRM\B-B' East Slope Block.gsdSpencer MethodPLATE E-4 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.889 2 1.895 3 1.895 4 1.895 5 1.895 6 1.895 7 1.895 8 1.895 9 1.89510 1.895GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.889 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.889 2 1.895 3 1.895 4 1.895 5 1.895 6 1.895 7 1.895 8 1.895 9 1.895 10 1.895 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Block.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Block.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Easterly Slope - Block (Static)
BOUNDARY DATA
7 Surface Boundaries
17 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 640.000 30.000 643.000 1
2 30.000 643.000 57.000 657.000 1
3 57.000 657.000 155.000 708.000 2
4 155.000 708.000 205.000 710.000 2
5 205.000 710.000 828.000 710.000 2
6 828.000 710.000 876.000 686.000 2
7 876.000 686.000 900.000 686.000 1
8 57.000 657.000 57.100 652.000 1
9 57.100 652.000 71.900 652.000 1
10 71.900 652.000 72.000 658.000 1
11 72.000 658.000 245.000 683.000 1
12 245.000 683.000 371.000 705.000 1
13 371.000 705.000 700.000 705.000 1
14 700.000 705.000 700.100 709.000 1
15 700.100 709.000 813.000 709.000 1
16 813.000 709.000 861.000 686.000 1
17 861.000 686.000 876.000 686.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
A Non-Circular Zone Search Has Been Selected For Analysis
Using Random Generation Within Specified Zones.
2 Zones Defined For Generation Of Non-Circular Surfaces
5000 Trial Surfaces Have Been Generated.
Length Of Line Segments For Active And Passive Portions Of
Non-Circular Zone Search = 25.00(ft)
Zone X - 1 Y - 1 X - 2 Y - 2 Height
No. (ft) (ft) (ft) (ft) (ft)
1 72.00 658.50 72.00 658.50 0.10
2 72.10 658.50 370.00 704.50 0.10
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 1472
Number of Trial Surfaces With Valid FS = 3528
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 29.4 %
Statistical Data On All Valid FS Values:
FS Max = 11.465 FS Min = 1.889 FS Ave = 3.112
Standard Deviation = 0.828 Coefficient of Variation = 26.61 %
Critical Surface is Sequence Number 4 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 2.021309 1.803180 0.268 0.2181291E+00
2 19.9500 1.961303 1.850477 0.363 0.1108254E+00
3 25.0614 1.858517 1.902728 0.468 0.4421077E-01
4 23.6041 1.893488 1.887415 0.437 0.6073402E-02
5 23.7804 1.889536 1.889248 0.441 0.2877992E-03
6 23.7892 1.889337 1.889339 0.441 0.1926737E-05
7 23.7891 1.889339 1.889339 0.441 0.4101654E-08
Factor Of Safety For The Preceding Specified Surface = 1.889
Theta (fx = 1.0) = 23.79 Deg Lambda = 0.441
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 67.15 660.52 0.438 1299.43 1.000 23.79 524.2
2 72.00 660.87 0.372 3717.98 1.000 23.79 1499.7
3 76.88 662.23 0.366 5020.97 1.000 23.79 2025.3
4 81.76 663.55 0.357 6502.06 1.000 23.79 2622.7
5 86.64 664.84 0.349 8161.25 1.000 23.79 3292.0
6 91.52 666.12 0.342 9998.54 1.000 23.79 4033.1
7 96.40 667.38 0.335 12013.93 1.000 23.79 4846.1
8 101.28 668.63 0.330 14207.41 1.000 23.79 5730.9
9 106.16 669.88 0.325 16579.00 1.000 23.79 6687.5
10 111.04 671.12 0.321 19128.68 1.000 23.79 7716.0
11 115.92 672.36 0.317 21856.46 1.000 23.79 8816.3
12 120.80 673.60 0.314 24762.33 1.000 23.79 9988.4
13 125.68 674.83 0.311 27846.31 1.000 23.79 11232.4
14 130.56 676.06 0.308 31108.38 1.000 23.79 12548.2
15 136.17 680.94 0.296 22910.60 1.000 23.79 9241.5
16 141.79 685.84 0.283 15832.06 1.000 23.79 6386.2
17 147.40 690.82 0.268 9876.63 0.991 23.60 3954.8
18 151.20 693.93 0.251 6719.10 0.812 19.70 2265.3
19 155.00 696.97 0.224 3960.14 0.633 15.60 1065.0
20 159.92 700.79 0.208 1287.90 0.402 10.04 224.5
21 164.84 706.08 0.486 -39.63 0.170 4.28 -3.0
22 168.45 708.54 0.000 0.00 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 22 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 4.85 1.57 64.72 659.45 661.02 -7.20 27.49 4.89
2 4.85 4.71 69.57 658.83 663.54 -7.20 27.49 4.89
3 4.88 7.17 74.44 658.90 666.08 8.72 27.49 4.94
4 4.88 8.96 79.32 659.65 668.62 8.72 27.49 4.94
5 4.88 10.76 84.20 660.40 671.15 8.72 27.49 4.94
6 4.88 12.55 89.08 661.15 673.69 8.72 27.49 4.94
7 4.88 14.34 93.96 661.90 676.23 8.72 27.49 4.94
8 4.88 16.13 98.84 662.64 678.77 8.72 27.49 4.94
9 4.88 17.92 103.72 663.39 681.31 8.72 27.49 4.94
10 4.88 19.71 108.60 664.14 683.85 8.72 27.49 4.94
11 4.88 21.50 113.48 664.89 686.39 8.72 27.49 4.94
12 4.88 23.29 118.36 665.64 688.93 8.72 27.49 4.94
13 4.88 25.08 123.24 666.39 691.47 8.72 27.49 4.94
14 4.88 26.88 128.12 667.13 694.01 8.72 27.49 4.94
15 5.62 26.15 133.36 670.59 696.74 47.64 27.49 8.33
16 5.62 22.92 138.98 676.74 699.66 47.64 27.49 8.33
17 5.62 19.68 144.59 682.90 702.58 47.64 27.49 8.33
18 3.80 17.10 149.30 687.93 705.03 45.76 27.49 5.45
19 3.80 15.18 153.10 691.83 707.01 45.76 27.49 5.45
20 4.92 11.79 157.46 696.31 708.10 45.76 2.29 7.05
21 4.92 6.93 162.38 701.36 708.30 45.76 2.29 7.05
22 3.60 2.25 166.65 706.21 708.47 52.19 2.29 5.88
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 62.292693 659.754360
2 67.146346 659.141374
3 72.000000 658.528387
4 76.879694 659.276685
5 81.759388 660.024982
6 86.639082 660.773279
7 91.518776 661.521576
8 96.398471 662.269873
9 101.278165 663.018170
10 106.157859 663.766467
11 111.037553 664.514764
12 115.917247 665.263062
13 120.796941 666.011359
14 125.676635 666.759656
15 130.556329 667.507953
16 136.171419 673.665486
17 141.786509 679.823019
18 147.401598 685.980553
19 151.200799 689.882077
20 155.000000 693.783601
21 159.921419 698.837567
22 164.842837 703.891533
23 168.447676 708.537907
***Table 3 - Force and Pore Pressure Data On The 22 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 914.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
2 2742.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
3 4200.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
4 5249.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
5 6298.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
6 7346.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
7 8395.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
8 9444.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
9 10493.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
10 11542.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
11 12591.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
12 13639.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
13 14688.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
14 15737.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
15 17622.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
16 15442.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
17 13262.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
18 7797.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
19 6920.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
20 6961.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
21 4093.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00
22 973.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 196357.25(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 196357.25(lbs)
TOTAL AREA OF SLIDING MASS = 1636.31(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 22 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 2 200.00 30.00
2 2 200.00 30.00
3 2 200.00 30.00
4 2 200.00 30.00
5 2 200.00 30.00
6 2 200.00 30.00
7 2 200.00 30.00
8 2 200.00 30.00
9 2 200.00 30.00
10 2 200.00 30.00
11 2 200.00 30.00
12 2 200.00 30.00
13 2 200.00 30.00
14 2 200.00 30.00
15 2 200.00 30.00
16 2 200.00 30.00
17 2 200.00 30.00
18 2 200.00 30.00
19 2 200.00 30.00
20 2 200.00 30.00
21 2 200.00 30.00
22 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 22 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -7.20 64.72 4.89 322.12 188.33 1.710
2 -7.20 69.57 4.89 810.65 565.00 1.435
3 8.72 74.44 4.94 909.65 860.80 1.057
4 8.72 79.32 4.94 1129.02 1075.73 1.050
5 8.72 84.20 4.94 1348.40 1290.67 1.045
6 8.72 89.08 4.94 1567.78 1505.61 1.041
7 8.72 93.96 4.94 1787.16 1720.54 1.039
8 8.72 98.84 4.94 2006.54 1935.48 1.037
9 8.72 103.72 4.94 2225.92 2150.41 1.035
10 8.72 108.60 4.94 2445.29 2365.35 1.034
11 8.72 113.48 4.94 2664.67 2580.29 1.033
12 8.72 118.36 4.94 2884.05 2795.22 1.032
13 8.72 123.24 4.94 3103.43 3010.16 1.031
14 8.72 128.12 4.94 3322.81 3225.10 1.030
15 47.64 133.36 8.33 1822.67 3138.44 0.581
16 47.64 138.98 8.33 1592.09 2750.19 0.579
17 47.64 144.59 8.33 1363.73 2361.94 0.577
18 45.76 149.30 5.45 1260.43 2052.36 0.614
19 45.76 153.10 5.45 1149.85 1821.43 0.631
20 45.76 157.46 7.05 918.88 1414.54 0.650
21 45.76 162.38 7.05 534.36 831.69 0.643
22 52.19 166.65 5.88 95.91 270.13 0.355
***TABLE 5A - Total Base Force Data on the 22 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -7.20 64.72 4.89 1575.90 914.10 1.724
2 -7.20 69.57 4.89 3965.86 2742.30 1.446
3 8.72 74.44 4.94 4490.68 4200.42 1.069
4 8.72 79.32 4.94 5573.69 5249.25 1.062
5 8.72 84.20 4.94 6656.71 6298.07 1.057
6 8.72 89.08 4.94 7739.72 7346.89 1.053
7 8.72 93.96 4.94 8822.73 8395.72 1.051
8 8.72 98.84 4.94 9905.74 9444.54 1.049
9 8.72 103.72 4.94 10988.76 10493.36 1.047
10 8.72 108.60 4.94 12071.77 11542.19 1.046
11 8.72 113.48 4.94 13154.78 12591.01 1.045
12 8.72 118.36 4.94 14237.79 13639.83 1.044
13 8.72 123.24 4.94 15320.80 14688.65 1.043
14 8.72 128.12 4.94 16403.82 15737.48 1.042
15 47.64 133.36 8.33 15188.90 17622.62 0.862
16 47.64 138.98 8.33 13267.43 15442.58 0.859
17 47.64 144.59 8.33 11364.44 13262.53 0.857
18 45.76 149.30 5.45 6863.93 7797.32 0.880
19 45.76 153.10 5.45 6261.74 6919.98 0.905
20 45.76 157.46 7.05 6482.01 6961.55 0.931
21 45.76 162.38 7.05 3769.54 4093.09 0.921
22 52.19 166.65 5.88 564.04 973.78 0.579
***TABLE 6 - Effective and Base Shear Stress Data on the 22 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -7.20 64.72 4.89 322.12 385.98 204.29
2 -7.20 69.57 4.89 810.65 668.03 353.58
3 8.72 74.44 4.94 909.65 725.18 383.83
4 8.72 79.32 4.94 1129.02 851.84 450.87
5 8.72 84.20 4.94 1348.40 978.50 517.91
6 8.72 89.08 4.94 1567.78 1105.16 584.94
7 8.72 93.96 4.94 1787.16 1231.82 651.98
8 8.72 98.84 4.94 2006.54 1358.47 719.02
9 8.72 103.72 4.94 2225.92 1485.13 786.06
10 8.72 108.60 4.94 2445.29 1611.79 853.10
11 8.72 113.48 4.94 2664.67 1738.45 920.14
12 8.72 118.36 4.94 2884.05 1865.11 987.17
13 8.72 123.24 4.94 3103.43 1991.76 1054.21
14 8.72 128.12 4.94 3322.81 2118.42 1121.25
15 47.64 133.36 8.33 1822.67 1252.32 662.83
16 47.64 138.98 8.33 1592.09 1119.19 592.37
17 47.64 144.59 8.33 1363.73 987.35 522.59
18 45.76 149.30 5.45 1260.43 927.71 491.02
19 45.76 153.10 5.45 1149.85 863.86 457.23
20 45.76 157.46 7.05 918.88 730.51 386.65
21 45.76 162.38 7.05 534.36 508.51 269.15
22 52.19 166.65 5.88 95.91 255.37 135.17
***TABLE 6A - Effective and Base Shear Force Data on the 22 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -7.20 64.72 4.89 1575.90 1888.29 999.44
2 -7.20 69.57 4.89 3965.86 3268.13 1729.78
3 8.72 74.44 4.94 4490.68 3580.04 1894.87
4 8.72 79.32 4.94 5573.69 4205.32 2225.82
5 8.72 84.20 4.94 6656.71 4830.60 2556.77
6 8.72 89.08 4.94 7739.72 5455.88 2887.72
7 8.72 93.96 4.94 8822.73 6081.15 3218.67
8 8.72 98.84 4.94 9905.74 6706.43 3549.62
9 8.72 103.72 4.94 10988.76 7331.71 3880.57
10 8.72 108.60 4.94 12071.77 7956.99 4211.52
11 8.72 113.48 4.94 13154.78 8582.26 4542.47
12 8.72 118.36 4.94 14237.79 9207.54 4873.42
13 8.72 123.24 4.94 15320.80 9832.82 5204.37
14 8.72 128.12 4.94 16403.82 10458.09 5535.32
15 47.64 133.36 8.33 15188.90 10435.98 5523.62
16 47.64 138.98 8.33 13267.43 9326.62 4936.45
17 47.64 144.59 8.33 11364.44 8227.93 4354.92
18 45.76 149.30 5.45 6863.93 5052.04 2673.97
19 45.76 153.10 5.45 6261.74 4704.36 2489.95
20 45.76 157.46 7.05 6482.01 5153.24 2727.54
21 45.76 162.38 7.05 3769.54 3587.20 1898.66
22 52.19 166.65 5.88 564.04 1501.80 794.88
Average Effective Normal Stress = 1558.5378(psf)
Average Available Shear Strength = 1099.8222(psf)
Total Length of Failure Surface = 124.9060(ft)
SUM OF MOMENTS = -0.151208E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.7700665E-09
SUM OF FORCES = -.428195E-07 (lbs);Imbalance (Fraction of Total Weight) = -0.2180693E-
12
Sum of Available Shear Forces = 137374.43(lbs)
Sum of Mobilized Shear Forces = 72710.33(lbs)
FS Balance Check: FS = 1.889339
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Stability Fill (Static)Ninyo & Moore / WRM\B-B' Stability Fill Static.gsdSpencer MethodPLATE E-5 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 2.169 2 2.183 3 2.190 4 2.200 5 2.203 6 2.203 7 2.205 8 2.212 9 2.21310 2.214GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =2.169 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775No. FS1 2.169 2 2.183 3 2.190 4 2.200 5 2.203 6 2.203 7 2.205 8 2.212 9 2.213 10 2.214 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' Stability Fill Static.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' Stability Fill Static.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Stability Fill (Static)
BOUNDARY DATA
3 Surface Boundaries
6 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 686.000 24.000 686.000 1
2 24.000 686.000 72.000 710.000 2
3 72.000 710.000 200.000 710.000 2
4 24.000 686.000 39.000 686.000 1
5 39.000 686.000 87.000 709.000 1
6 87.000 709.000 200.000 709.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 650.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.0360(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 15.00(ft)
and X = 30.00(ft)
Each Surface Enters within a Range Between X = 65.00(ft)
and X = 200.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 650.00(ft)
Specified Maximum Radius = 5000.000(ft)
8.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Constant (1.0)
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 488
Number of Trial Surfaces With Valid FS = 4512
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 9.8 %
Statistical Data On All Valid FS Values:
FS Max = 9.589 FS Min = 2.169 FS Ave = 4.436
Standard Deviation = 1.770 Coefficient of Variation = 39.90 %
Critical Surface is Sequence Number 2971 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 24.427814(ft) ; Y = 752.816904(ft); and Radius =
66.642014(ft)
Circular Trial Failure Surface Generated With 9 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 24.350 686.175
2 32.336 686.646
3 40.208 688.070
4 47.853 690.428
5 55.160 693.684
6 62.024 697.793
7 68.347 702.694
8 74.037 708.318
9 75.372 710.000
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 2.345018 2.109622 0.268 0.2353964E+00
2 19.9500 2.236837 2.130058 0.363 0.1067799E+00
3 24.0588 2.055723 2.178462 0.446 0.1227395E+00
4 21.8611 2.167436 2.169207 0.401 0.1770779E-02
5 21.8294 2.168751 2.169075 0.401 0.3248744E-03
6 21.8223 2.169045 2.169046 0.400 0.1337365E-05
7 21.8223 2.169046 2.169046 0.400 0.6883573E-07
Factor Of Safety For The Preceding Specified Surface = 2.169
Theta (fx = 1.0) = 21.82 Deg Lambda = 0.400
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Constant (1.0)
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 28.34 687.09 0.387 527.67 1.000 21.82 196.2
2 32.34 687.90 0.356 1257.29 1.000 21.82 467.4
3 36.27 688.95 0.332 1832.94 1.000 21.82 681.4
4 40.21 690.01 0.321 2462.30 1.000 21.82 915.3
5 44.03 691.34 0.309 2719.19 1.000 21.82 1010.8
6 47.85 692.68 0.301 2962.18 1.000 21.82 1101.1
7 50.62 693.89 0.292 2830.35 1.000 21.82 1052.1
8 53.39 695.11 0.284 2690.39 1.000 21.82 1000.1
9 55.16 695.85 0.275 2653.46 1.000 21.82 986.4
10 55.66 696.10 0.270 2592.89 1.000 21.82 963.9
11 58.84 697.79 0.252 2111.28 1.000 21.82 784.8
12 62.02 699.49 0.235 1662.88 1.000 21.82 618.1
13 65.19 701.46 0.191 1018.55 1.000 21.82 378.6
14 68.35 703.36 0.121 502.60 1.000 21.82 186.8
15 72.00 710.03 1.000+ -43.09 1.000 21.82 -16.0
16 74.04 708.89 0.341 -114.74 1.000 21.82 -42.7
17 75.37 710.00 0.000 0.00 1.000 21.82 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 17 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 3.99 0.88 26.35 686.29 687.17 3.37 26.57 4.00
2 3.99 2.64 30.34 686.53 689.17 3.37 26.57 4.00
3 3.94 4.15 34.30 687.00 691.15 10.26 26.57 4.00
4 3.94 5.41 38.24 687.71 693.12 10.26 26.57 4.00
5 3.82 6.40 42.12 688.66 695.06 17.14 26.57 4.00
6 3.82 7.13 45.94 689.84 696.97 17.14 26.57 4.00
7 2.77 7.57 49.24 691.04 698.62 24.02 26.57 3.03
8 2.77 7.72 52.01 692.28 700.00 24.02 26.57 3.03
9 1.77 7.85 54.28 693.29 701.14 24.02 26.57 1.94
10 0.50 7.87 55.41 693.83 701.70 30.90 26.57 0.58
11 3.18 7.69 57.25 694.93 702.62 30.90 26.57 3.71
12 3.18 7.38 60.43 696.84 704.22 30.90 26.57 3.71
13 3.16 6.78 63.61 699.02 705.80 37.78 26.57 4.00
14 3.16 5.91 66.77 701.47 707.38 37.78 26.57 4.00
15 3.65 4.59 70.17 704.50 709.09 44.67 26.57 5.14
16 2.04 2.69 73.02 707.31 710.00 44.67 0.00 2.86
17 1.34 0.84 74.70 709.16 710.00 51.55 0.00 2.15
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 24.349870 686.174935
2 28.342936 686.410354
3 32.336002 686.645772
4 36.272088 687.357976
5 40.208173 688.070179
6 44.030555 689.248904
7 47.852938 690.427628
8 50.622427 691.661878
9 53.391917 692.896127
10 55.160131 693.684148
11 55.656401 693.981192
12 58.840427 695.887001
13 62.024452 697.792810
14 65.185716 700.243607
15 68.346981 702.694405
16 72.000000 706.305221
17 74.036605 708.318298
18 75.371931 710.000000
***Table 3 - Force and Pore Pressure Data On The 17 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 421.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00
2 1265.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
3 1960.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
4 2553.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
5 2935.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
6 3271.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
7 2517.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
8 2567.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
9 1665.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00
10 468.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00
11 2938.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00
12 2818.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00
13 2573.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00
14 2243.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00
15 2010.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
16 657.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
17 134.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 33003.27(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 33003.27(lbs)
TOTAL AREA OF SLIDING MASS = 275.03(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 17 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 2 200.00 30.00
2 2 200.00 30.00
3 2 200.00 30.00
4 2 200.00 30.00
5 2 200.00 30.00
6 2 200.00 30.00
7 2 200.00 30.00
8 2 200.00 30.00
9 1 300.00 28.00
10 1 300.00 28.00
11 2 200.00 30.00
12 2 200.00 30.00
13 2 200.00 30.00
14 2 200.00 30.00
15 2 200.00 30.00
16 2 200.00 30.00
17 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 17 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 3.37 26.35 4.00 147.05 105.67 1.392
2 3.37 30.34 4.00 373.62 317.00 1.179
3 10.26 34.30 4.00 511.08 498.02 1.026
4 10.26 38.24 4.00 659.70 648.72 1.017
5 17.14 42.12 4.00 706.57 768.02 0.920
6 17.14 45.94 4.00 786.55 855.91 0.919
7 24.02 49.24 3.03 759.95 908.89 0.836
8 24.02 52.01 3.03 775.12 926.95 0.836
9 24.02 54.28 1.94 786.43 941.74 0.835
10 30.90 55.41 0.58 711.96 944.58 0.754
11 30.90 57.25 3.71 699.89 922.81 0.758
12 30.90 60.43 3.71 670.75 885.16 0.758
13 37.78 63.61 4.00 552.80 814.12 0.679
14 37.78 66.77 4.00 478.75 709.70 0.675
15 44.67 70.17 5.14 319.66 550.43 0.581
16 44.67 73.02 2.86 172.88 322.59 0.536
17 51.55 74.70 2.15 12.52 100.90 0.124
***TABLE 5A - Total Base Force Data on the 17 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 3.37 26.35 4.00 588.18 421.93 1.394
2 3.37 30.34 4.00 1494.50 1265.80 1.181
3 10.26 34.30 4.00 2044.33 1960.24 1.043
4 10.26 38.24 4.00 2638.79 2553.41 1.033
5 17.14 42.12 4.00 2826.28 2935.65 0.963
6 17.14 45.94 4.00 3146.19 3271.63 0.962
7 24.02 49.24 3.03 2304.23 2517.16 0.915
8 24.02 52.01 3.03 2350.23 2567.18 0.915
9 24.02 54.28 1.94 1522.42 1665.21 0.914
10 30.90 55.41 0.58 411.78 468.76 0.878
11 30.90 57.25 3.71 2597.15 2938.26 0.884
12 30.90 60.43 3.71 2489.04 2818.36 0.883
13 37.78 63.61 4.00 2211.19 2573.65 0.859
14 37.78 66.77 4.00 1915.01 2243.55 0.854
15 44.67 70.17 5.14 1641.90 2010.74 0.817
16 44.67 73.02 2.86 495.07 656.99 0.754
17 51.55 74.70 2.15 26.89 134.74 0.200
***TABLE 6 - Effective and Base Shear Stress Data on the 17 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 3.37 26.35 4.00 147.05 284.90 131.35
2 3.37 30.34 4.00 373.62 415.71 191.66
3 10.26 34.30 4.00 511.08 495.07 228.25
4 10.26 38.24 4.00 659.70 580.88 267.80
5 17.14 42.12 4.00 706.57 607.94 280.28
6 17.14 45.94 4.00 786.55 654.11 301.57
7 24.02 49.24 3.03 759.95 638.76 294.49
8 24.02 52.01 3.03 775.12 647.52 298.53
9 24.02 54.28 1.94 786.43 718.15 331.09
10 30.90 55.41 0.58 711.96 678.55 312.84
11 30.90 57.25 3.71 699.89 604.08 278.50
12 30.90 60.43 3.71 670.75 587.26 270.75
13 37.78 63.61 4.00 552.80 519.16 239.35
14 37.78 66.77 4.00 478.75 476.41 219.64
15 44.67 70.17 5.14 319.66 384.56 177.29
16 44.67 73.02 2.86 172.88 299.81 138.22
17 51.55 74.70 2.15 12.52 207.23 95.54
***TABLE 6A - Effective and Base Shear Force Data on the 17 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 3.37 26.35 4.00 588.18 1139.59 525.39
2 3.37 30.34 4.00 1494.50 1662.85 766.63
3 10.26 34.30 4.00 2044.33 1980.30 912.98
4 10.26 38.24 4.00 2638.79 2323.51 1071.21
5 17.14 42.12 4.00 2826.28 2431.75 1121.12
6 17.14 45.94 4.00 3146.19 2616.46 1206.27
7 24.02 49.24 3.03 2304.23 1936.76 892.91
8 24.02 52.01 3.03 2350.23 1963.32 905.15
9 24.02 54.28 1.94 1522.42 1390.24 640.95
10 30.90 55.41 0.58 411.78 392.46 180.94
11 30.90 57.25 3.71 2597.15 2241.63 1033.46
12 30.90 60.43 3.71 2489.04 2179.21 1004.69
13 37.78 63.61 4.00 2211.19 2076.63 957.39
14 37.78 66.77 4.00 1915.01 1905.63 878.56
15 44.67 70.17 5.14 1641.90 1975.23 910.64
16 44.67 73.02 2.86 495.07 858.55 395.82
17 51.55 74.70 2.15 26.89 445.00 205.16
Average Effective Normal Stress = 528.0235(psf)
Average Available Shear Strength = 507.6602(psf)
Total Length of Failure Surface = 58.1474(ft)
SUM OF MOMENTS = -0.109033E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.3303709E-08
SUM OF FORCES = -.190984E-05 (lbs);Imbalance (Fraction of Total Weight) = -0.5786835E-
10
Sum of Available Shear Forces = 29519.11(lbs)
Sum of Mobilized Shear Forces = 13609.26(lbs)
FS Balance Check: FS = 2.169046
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection A-A' Circular (Seismic)Ninyo & Moore / WRM\A-A' Circular (Seismic).gsdSpencer MethodPLATE E-6 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.083 2 1.084 3 1.089 4 1.099 5 1.102 6 1.105 7 1.105 8 1.107 9 1.10710 1.109GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.083 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.083 2 1.084 3 1.089 4 1.099 5 1.102 6 1.105 7 1.105 8 1.107 9 1.107 10 1.109 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Circular\A-A' Circular (Seismic).gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Circular\A-A' Circular (Seismic).OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section A-A' Circular (Seismic)
BOUNDARY DATA
11 Surface Boundaries
19 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 620.000 88.000 620.000 1
2 88.000 620.000 135.000 642.000 1
3 135.000 642.000 290.000 714.000 2
4 290.000 714.000 450.000 713.000 2
5 450.000 713.000 555.000 715.000 2
6 555.000 715.000 570.000 717.000 2
7 570.000 717.000 590.000 717.000 2
8 590.000 717.000 610.000 717.000 2
9 610.000 717.000 660.000 713.000 2
10 660.000 713.000 855.000 713.000 2
11 855.000 713.000 900.000 713.000 2
12 135.000 642.000 135.100 637.000 1
13 135.100 637.000 149.900 637.000 1
14 149.900 637.000 150.000 643.000 1
15 150.000 643.000 465.000 670.000 1
16 465.000 670.000 636.000 708.000 1
17 636.000 708.000 855.000 708.000 1
18 855.000 708.000 855.100 712.000 1
19 855.100 712.000 900.000 712.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g)
Default Velocity = 1.870(ft) per second
Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 88.00(ft)
and X = 135.00(ft)
Each Surface Enters within a Range Between X = 290.00(ft)
and X = 900.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 500.00(ft)
Specified Maximum Radius = 5000.000(ft)
25.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 1506
Number of Trial Surfaces With Valid FS = 3494
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 30.1 %
Statistical Data On All Valid FS Values:
FS Max = 3.094 FS Min = 1.083 FS Ave = 2.100
Standard Deviation = 0.443 Coefficient of Variation = 21.07 %
Critical Surface is Sequence Number 547 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 122.265688(ft) ; Y = 824.954712(ft); and Radius =
203.246462(ft)
Circular Trial Failure Surface Generated With 11 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 95.446 623.485
2 120.384 621.717
3 145.349 623.023
4 169.966 627.385
5 193.861 634.736
6 216.673 644.965
7 238.056 657.917
8 257.687 673.396
9 275.270 691.168
10 290.537 710.965
11 292.323 713.985
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.224198 1.031802 0.268 0.1923959E+00
2 19.9500 1.205217 1.045646 0.363 0.1595707E+00
3 44.0083 0.000000 1.156963 0.966 0.1156963E+01
4 22.8654 1.187821 1.054611 0.422 0.1332099E+00
5 25.0522 1.169927 1.061821 0.467 0.1081056E+00
6 34.4672 0.936700 1.099526 0.686 0.1628255E+00
7 28.8082 1.122790 1.075386 0.550 0.4740330E-01
8 30.0850 1.098995 1.080398 0.579 0.1859749E-01
9 30.9093 1.080307 1.083756 0.599 0.3448741E-02
10 30.7804 1.083437 1.083224 0.596 0.2134901E-03
11 30.7879 1.083256 1.083255 0.596 0.1654751E-05
12 30.7880 1.083255 1.083255 0.596 0.2918654E-09
Factor Of Safety For The Preceding Specified Surface = 1.083
Theta (fx = 1.0) = 30.79 Deg Lambda = 0.596
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 100.43 624.79 0.619 3110.71 1.000 30.79 1592.3
2 105.42 625.70 0.543 7316.76 1.000 30.79 3745.2
3 110.41 626.50 0.505 12618.13 1.000 30.79 6458.7
4 115.40 627.21 0.478 19014.83 1.000 30.79 9733.0
5 120.38 627.88 0.458 26506.86 1.000 30.79 13567.9
6 125.26 629.13 0.463 31570.58 1.000 30.79 16159.8
7 130.13 630.28 0.460 37055.18 1.000 30.79 18967.1
8 135.00 631.35 0.454 42960.67 1.000 30.79 21989.9
9 135.10 631.37 0.454 43086.29 1.000 30.79 22054.2
10 140.22 632.44 0.447 49759.20 1.000 30.79 25469.9
11 145.35 633.45 0.438 56893.79 1.000 30.79 29121.8
12 149.90 634.90 0.441 60236.22 1.000 30.79 30832.6
13 150.00 634.93 0.441 60310.67 1.000 30.79 30870.8
14 154.99 636.47 0.442 64081.42 1.000 30.79 32800.9
15 159.98 637.95 0.441 67959.12 1.000 30.79 34785.7
16 164.97 639.38 0.438 71943.78 1.000 30.79 36825.3
17 169.97 640.77 0.434 76035.40 1.000 30.79 38919.7
18 174.75 642.65 0.436 76713.82 1.000 30.79 39266.9
19 179.52 644.49 0.438 77369.67 1.000 30.79 39602.6
20 184.30 646.30 0.438 78002.94 1.000 30.79 39926.8
21 189.08 648.08 0.437 78613.65 1.000 30.79 40239.4
22 193.86 649.82 0.436 79201.78 1.000 30.79 40540.4
23 198.42 652.00 0.439 76955.53 1.000 30.79 39390.6
24 202.99 654.16 0.441 74701.37 1.000 30.79 38236.8
25 207.55 656.30 0.443 72439.31 1.000 30.79 37079.0
26 212.11 658.42 0.444 70169.35 1.000 30.79 35917.0
27 216.67 660.53 0.445 67891.48 1.000 30.79 34751.1
28 220.28 662.61 0.449 64261.68 1.000 30.79 32893.1
29 223.88 664.69 0.452 60702.18 1.000 30.79 31071.2
30 228.61 667.40 0.457 56240.59 1.000 30.79 28787.4
31 233.33 670.10 0.461 51887.66 1.000 30.79 26559.3
32 238.06 672.81 0.466 47643.37 1.000 30.79 24386.8
33 242.96 676.31 0.478 41401.36 1.000 30.79 21191.8
34 247.87 679.86 0.494 35533.39 1.000 30.79 18188.2
35 252.78 683.51 0.514 30039.44 1.000 30.79 15376.1
36 257.69 686.95 0.530 24454.65 0.880 27.66 11352.3
37 262.08 690.50 0.546 18952.25 0.768 24.59 7886.1
38 266.48 693.90 0.559 14195.87 0.656 21.36 5170.4
39 270.87 697.18 0.569 10140.11 0.545 17.98 3130.4
40 275.27 700.34 0.574 6744.67 0.433 14.47 1685.3
41 280.18 705.01 0.628 3168.39 0.308 10.41 572.6
42 285.09 710.24 0.810 983.91 0.184 6.25 107.1
43 290.00 712.86 0.694 242.90 0.059 2.01 8.5
44 290.54 712.45 0.490 258.75 0.045 1.55 7.0
45 292.32 713.99 0.000 669.53 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 45 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 4.99 1.34 97.94 623.31 624.65 -4.06 25.08 5.00
2 4.99 4.03 102.93 622.95 626.99 -4.06 25.08 5.00
3 4.99 6.72 107.91 622.60 629.32 -4.06 25.08 5.00
4 4.99 9.41 112.90 622.25 631.66 -4.06 25.08 5.00
5 4.99 12.10 117.89 621.89 633.99 -4.06 25.08 5.00
6 4.87 14.45 122.82 621.84 636.30 3.00 25.08 4.88
7 4.87 16.48 127.69 622.10 638.58 3.00 25.08 4.88
8 4.87 18.51 132.56 622.35 640.86 3.00 25.08 4.88
9 0.10 19.54 135.05 622.48 642.02 3.00 24.92 0.10
10 5.12 20.62 137.66 622.62 643.24 3.00 24.92 5.13
11 5.12 22.73 142.79 622.89 645.62 3.00 24.92 5.13
12 4.55 24.44 147.62 623.43 647.86 10.05 24.92 4.62
13 0.10 25.11 149.95 623.84 648.94 10.05 24.92 0.10
14 4.99 25.84 152.50 624.29 650.13 10.05 24.92 5.07
15 4.99 27.27 157.49 625.17 652.45 10.05 24.92 5.07
16 4.99 28.71 162.48 626.06 654.76 10.05 24.92 5.07
17 4.99 30.14 167.47 626.94 657.08 10.05 24.92 5.07
18 4.78 31.23 172.36 628.12 659.35 17.10 24.92 5.00
19 4.78 31.98 177.13 629.59 661.57 17.10 24.92 5.00
20 4.78 32.73 181.91 631.06 663.79 17.10 24.92 5.00
21 4.78 33.48 186.69 632.53 666.01 17.10 24.92 5.00
22 4.78 34.23 191.47 634.00 668.23 17.10 24.92 5.00
23 4.56 34.64 196.14 635.76 670.40 24.15 24.92 5.00
24 4.56 34.72 200.70 637.80 672.52 24.15 24.92 5.00
25 4.56 34.79 205.27 639.85 674.64 24.15 24.92 5.00
26 4.56 34.86 209.83 641.90 676.76 24.15 24.92 5.00
27 4.56 34.94 214.39 643.94 678.88 24.15 24.92 5.00
28 3.61 34.72 218.48 646.06 680.78 31.20 24.92 4.22
29 3.61 34.21 222.08 648.24 682.45 31.20 24.92 4.22
30 4.72 33.62 226.25 650.76 684.39 31.20 24.92 5.52
31 4.72 32.95 230.97 653.62 686.58 31.20 24.92 5.52
32 4.72 32.29 235.69 656.49 688.77 31.20 24.92 5.52
33 4.91 31.16 240.51 659.85 691.01 38.26 24.92 6.25
34 4.91 29.57 245.42 663.72 693.29 38.26 24.92 6.25
35 4.91 27.98 250.33 667.59 695.57 38.26 24.92 6.25
36 4.91 26.39 255.23 671.46 697.85 38.26 24.92 6.25
37 4.40 24.39 259.89 675.62 700.01 45.31 24.92 6.25
38 4.40 21.99 264.28 680.06 702.05 45.31 24.92 6.25
39 4.40 19.59 268.68 684.50 704.09 45.31 24.92 6.25
40 4.40 17.19 273.07 688.95 706.14 45.31 24.92 6.25
41 4.91 13.95 277.72 694.35 708.30 52.36 24.92 8.04
42 4.91 9.86 282.63 700.72 710.58 52.36 24.92 8.04
43 4.91 5.78 287.54 707.08 712.86 52.36 24.92 8.04
44 0.54 3.38 290.27 710.62 714.00 52.36 -0.36 0.88
45 1.79 1.52 291.43 712.48 713.99 59.41 -0.36 3.51
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 95.446289 623.485497
2 100.433763 623.131790
3 105.421236 622.778083
4 110.408710 622.424377
5 115.396183 622.070670
6 120.383657 621.716963
7 125.255771 621.971912
8 130.127886 622.226861
9 135.000000 622.481810
10 135.100000 622.487043
11 140.224749 622.755212
12 145.349499 623.023381
13 149.900000 623.829646
14 150.000000 623.847364
15 154.991522 624.731770
16 159.983043 625.616175
17 164.974565 626.500581
18 169.966087 627.384986
19 174.745064 628.855146
20 179.524042 630.325306
21 184.303020 631.795467
22 189.081998 633.265627
23 193.860976 634.735787
24 198.423309 636.781543
25 202.985642 638.827299
26 207.547974 640.873056
27 212.110307 642.918812
28 216.672640 644.964568
29 220.278686 647.148772
30 223.884732 649.332977
31 228.608469 652.194174
32 233.332207 655.055372
33 238.055944 657.916569
34 242.963798 661.786384
35 247.871652 665.656199
36 252.779506 669.526014
37 257.687361 673.395828
38 262.082988 677.838908
39 266.478616 682.281988
40 270.874243 686.725068
41 275.269871 691.168148
42 280.179914 697.534684
43 285.089957 703.901219
44 290.000000 710.267755
45 290.537453 710.964636
46 292.323147 713.985480
***Table 3 - Force and Pore Pressure Data On The 45 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 804.5 0.0 0.0 0.0 0.0 160.9 0.0 0.00
2 2413.4 0.0 0.0 0.0 0.0 482.7 0.0 0.00
3 4022.3 0.0 0.0 0.0 0.0 804.5 0.0 0.00
4 5631.2 0.0 0.0 0.0 0.0 1126.2 0.0 0.00
5 7240.1 0.0 0.0 0.0 0.0 1448.0 0.0 0.00
6 8450.7 0.0 0.0 0.0 0.0 1690.1 0.0 0.00
7 9635.0 0.0 0.0 0.0 0.0 1927.0 0.0 0.00
8 10819.2 0.0 0.0 0.0 0.0 2163.8 0.0 0.00
9 234.5 0.0 0.0 0.0 0.0 46.9 0.0 0.00
10 12678.0 0.0 0.0 0.0 0.0 2535.6 0.0 0.00
11 13977.0 0.0 0.0 0.0 0.0 2795.4 0.0 0.00
12 13344.6 0.0 0.0 0.0 0.0 2668.9 0.0 0.00
13 301.3 0.0 0.0 0.0 0.0 60.3 0.0 0.00
14 15476.2 0.0 0.0 0.0 0.0 3095.2 0.0 0.00
15 16335.3 0.0 0.0 0.0 0.0 3267.1 0.0 0.00
16 17194.4 0.0 0.0 0.0 0.0 3438.9 0.0 0.00
17 18053.5 0.0 0.0 0.0 0.0 3610.7 0.0 0.00
18 17911.0 0.0 0.0 0.0 0.0 3582.2 0.0 0.00
19 18340.9 0.0 0.0 0.0 0.0 3668.2 0.0 0.00
20 18770.9 0.0 0.0 0.0 0.0 3754.2 0.0 0.00
21 19200.9 0.0 0.0 0.0 0.0 3840.2 0.0 0.00
22 19630.8 0.0 0.0 0.0 0.0 3926.2 0.0 0.00
23 18966.3 0.0 0.0 0.0 0.0 3793.3 0.0 0.00
24 19006.5 0.0 0.0 0.0 0.0 3801.3 0.0 0.00
25 19046.8 0.0 0.0 0.0 0.0 3809.4 0.0 0.00
26 19087.0 0.0 0.0 0.0 0.0 3817.4 0.0 0.00
27 19127.3 0.0 0.0 0.0 0.0 3825.5 0.0 0.00
28 15023.8 0.0 0.0 0.0 0.0 3004.8 0.0 0.00
29 14803.5 0.0 0.0 0.0 0.0 2960.7 0.0 0.00
30 19058.5 0.0 0.0 0.0 0.0 3811.7 0.0 0.00
31 18680.5 0.0 0.0 0.0 0.0 3736.1 0.0 0.00
32 18302.4 0.0 0.0 0.0 0.0 3660.5 0.0 0.00
33 18351.2 0.0 0.0 0.0 0.0 3670.2 0.0 0.00
34 17414.7 0.0 0.0 0.0 0.0 3482.9 0.0 0.00
35 16478.3 0.0 0.0 0.0 0.0 3295.7 0.0 0.00
36 15541.9 0.0 0.0 0.0 0.0 3108.4 0.0 0.00
37 12867.1 0.0 0.0 0.0 0.0 2573.4 0.0 0.00
38 11600.5 0.0 0.0 0.0 0.0 2320.1 0.0 0.00
39 10333.9 0.0 0.0 0.0 0.0 2066.8 0.0 0.00
40 9067.3 0.0 0.0 0.0 0.0 1813.5 0.0 0.00
41 8217.4 0.0 0.0 0.0 0.0 1643.5 0.0 0.00
42 5810.1 0.0 0.0 0.0 0.0 1162.0 0.0 0.00
43 3402.7 0.0 0.0 0.0 0.0 680.5 0.0 0.00
44 218.1 0.0 0.0 0.0 0.0 43.6 0.0 0.00
45 324.9 0.0 0.0 0.0 0.0 65.0 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 561196.38(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 561196.38(lbs)
TOTAL AREA OF SLIDING MASS = 4676.64(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 45 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 1 300.00 28.00
2 1 300.00 28.00
3 1 300.00 28.00
4 1 300.00 28.00
5 1 300.00 28.00
6 1 300.00 28.00
7 1 300.00 28.00
8 1 300.00 28.00
9 1 300.00 28.00
10 1 300.00 28.00
11 1 300.00 28.00
12 1 300.00 28.00
13 1 300.00 28.00
14 1 300.00 28.00
15 1 300.00 28.00
16 1 300.00 28.00
17 1 300.00 28.00
18 1 300.00 28.00
19 1 300.00 28.00
20 1 300.00 28.00
21 1 300.00 28.00
22 1 300.00 28.00
23 1 300.00 28.00
24 1 300.00 28.00
25 1 300.00 28.00
26 1 300.00 28.00
27 1 300.00 28.00
28 1 300.00 28.00
29 1 300.00 28.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
34 2 200.00 30.00
35 2 200.00 30.00
36 2 200.00 30.00
37 2 200.00 30.00
38 2 200.00 30.00
39 2 200.00 30.00
40 2 200.00 30.00
41 2 200.00 30.00
42 2 200.00 30.00
43 2 200.00 30.00
44 2 200.00 30.00
45 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 45 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -4.06 97.94 5.00 518.23 161.30 3.213
2 -4.06 102.93 5.00 968.92 483.89 2.002
3 -4.06 107.91 5.00 1419.62 806.48 1.760
4 -4.06 112.90 5.00 1870.31 1129.07 1.657
5 -4.06 117.89 5.00 2321.00 1451.67 1.599
6 3.00 122.82 4.88 2195.60 1734.50 1.266
7 3.00 127.69 4.88 2475.70 1977.57 1.252
8 3.00 132.56 4.88 2755.80 2220.65 1.241
9 3.00 135.05 0.10 2898.70 2344.66 1.236
10 3.00 137.66 5.13 3047.59 2473.87 1.232
11 3.00 142.79 5.13 3339.69 2727.35 1.225
12 10.05 147.62 4.62 2998.66 2932.55 1.023
13 10.05 149.95 0.10 3077.12 3012.72 1.021
14 10.05 152.50 5.07 3163.02 3100.50 1.020
15 10.05 157.49 5.07 3331.45 3272.61 1.018
16 10.05 162.48 5.07 3499.88 3444.72 1.016
17 10.05 167.47 5.07 3668.31 3616.82 1.014
18 17.10 172.36 5.00 3245.30 3747.86 0.866
19 17.10 177.13 5.00 3321.36 3837.83 0.865
20 17.10 181.91 5.00 3397.43 3927.80 0.865
21 17.10 186.69 5.00 3473.50 4017.77 0.865
22 17.10 191.47 5.00 3549.56 4107.75 0.864
23 24.15 196.14 5.00 3098.89 4157.14 0.745
24 24.15 200.70 5.00 3105.40 4165.96 0.745
25 24.15 205.27 5.00 3111.90 4174.79 0.745
26 24.15 209.83 5.00 3118.41 4183.61 0.745
27 24.15 214.39 5.00 3124.91 4192.43 0.745
28 31.20 218.48 4.22 2685.03 4166.29 0.644
29 31.20 222.08 4.22 2645.63 4105.20 0.644
30 31.20 226.25 5.52 2600.00 4034.63 0.644
31 31.20 230.97 5.52 2548.39 3954.60 0.644
32 31.20 235.69 5.52 2496.79 3874.57 0.644
33 38.26 240.51 6.25 2071.86 3739.15 0.554
34 38.26 245.42 6.25 1964.98 3548.34 0.554
35 38.26 250.33 6.25 1858.10 3357.54 0.553
36 38.26 255.23 6.25 1792.58 3166.73 0.566
37 45.31 259.89 6.25 1455.13 2927.26 0.497
38 45.31 264.28 6.25 1343.46 2639.11 0.509
39 45.31 268.68 6.25 1223.07 2350.96 0.520
40 45.31 273.07 6.25 1093.46 2062.81 0.530
41 52.36 277.72 8.04 768.05 1673.59 0.459
42 52.36 282.63 8.04 528.67 1183.30 0.447
43 52.36 287.54 8.04 264.99 693.01 0.382
44 52.36 290.27 0.88 98.88 405.86 0.244
45 59.41 291.43 3.51 -68.58 181.92 -0.377
***TABLE 5A - Total Base Force Data on the 45 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -4.06 97.94 5.00 2591.14 804.46 3.221
2 -4.06 102.93 5.00 4844.61 2413.38 2.007
3 -4.06 107.91 5.00 7098.08 4022.30 1.765
4 -4.06 112.90 5.00 9351.55 5631.22 1.661
5 -4.06 117.89 5.00 11605.02 7240.14 1.603
6 3.00 122.82 4.88 10711.87 8450.67 1.268
7 3.00 127.69 4.88 12078.41 9634.96 1.254
8 3.00 132.56 4.88 13444.94 10819.24 1.243
9 3.00 135.05 0.10 290.27 234.47 1.238
10 3.00 137.66 5.13 15639.53 12677.97 1.234
11 3.00 142.79 5.13 17138.48 13977.00 1.226
12 10.05 147.62 4.62 13857.94 13344.56 1.038
13 10.05 149.95 0.10 312.50 301.27 1.037
14 10.05 152.50 5.07 16034.21 15476.21 1.036
15 10.05 157.49 5.07 16888.02 16335.29 1.034
16 10.05 162.48 5.07 17741.83 17194.38 1.032
17 10.05 167.47 5.07 18595.63 18053.46 1.030
18 17.10 172.36 5.00 16226.48 17910.96 0.906
19 17.10 177.13 5.00 16606.81 18340.93 0.905
20 17.10 181.91 5.00 16987.15 18770.89 0.905
21 17.10 186.69 5.00 17367.48 19200.86 0.905
22 17.10 191.47 5.00 17747.81 19630.82 0.904
23 24.15 196.14 5.00 15494.47 18966.26 0.817
24 24.15 200.70 5.00 15526.99 19006.51 0.817
25 24.15 205.27 5.00 15559.51 19046.77 0.817
26 24.15 209.83 5.00 15592.03 19087.02 0.817
27 24.15 214.39 5.00 15624.55 19127.27 0.817
28 31.20 218.48 4.22 11320.00 15023.85 0.753
29 31.20 222.08 4.22 11153.87 14803.53 0.753
30 31.20 226.25 5.52 14358.98 19058.55 0.753
31 31.20 230.97 5.52 14074.00 18680.49 0.753
32 31.20 235.69 5.52 13789.02 18302.43 0.753
33 38.26 240.51 6.25 12949.14 18351.19 0.706
34 38.26 245.42 6.25 12281.14 17414.75 0.705
35 38.26 250.33 6.25 11613.15 16478.31 0.705
36 38.26 255.23 6.25 11203.63 15541.87 0.721
37 45.31 259.89 6.25 9094.57 12867.13 0.707
38 45.31 264.28 6.25 8396.62 11600.54 0.724
39 45.31 268.68 6.25 7644.18 10333.94 0.740
40 45.31 273.07 6.25 6834.14 9067.35 0.754
41 52.36 277.72 8.04 6175.14 8217.41 0.751
42 52.36 282.63 8.04 4250.50 5810.07 0.732
43 52.36 287.54 8.04 2130.53 3402.73 0.626
44 52.36 290.27 0.88 87.02 218.13 0.399
45 59.41 291.43 3.51 -240.66 324.85 -0.741
***TABLE 6 - Effective and Base Shear Stress Data on the 45 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -4.06 97.94 5.00 518.23 575.55 531.31
2 -4.06 102.93 5.00 968.92 815.18 752.53
3 -4.06 107.91 5.00 1419.62 1054.82 973.75
4 -4.06 112.90 5.00 1870.31 1294.46 1194.97
5 -4.06 117.89 5.00 2321.00 1534.10 1416.19
6 3.00 122.82 4.88 2195.60 1467.42 1354.64
7 3.00 127.69 4.88 2475.70 1616.35 1492.13
8 3.00 132.56 4.88 2755.80 1765.28 1629.61
9 3.00 135.05 0.10 2898.70 1841.27 1699.75
10 3.00 137.66 5.13 3047.59 1920.43 1772.84
11 3.00 142.79 5.13 3339.69 2075.74 1916.21
12 10.05 147.62 4.62 2998.66 1894.42 1748.82
13 10.05 149.95 0.10 3077.12 1936.13 1787.33
14 10.05 152.50 5.07 3163.02 1981.81 1829.49
15 10.05 157.49 5.07 3331.45 2071.36 1912.17
16 10.05 162.48 5.07 3499.88 2160.92 1994.84
17 10.05 167.47 5.07 3668.31 2250.47 2077.51
18 17.10 172.36 5.00 3245.30 2025.55 1869.88
19 17.10 177.13 5.00 3321.36 2066.00 1907.21
20 17.10 181.91 5.00 3397.43 2106.45 1944.55
21 17.10 186.69 5.00 3473.50 2146.89 1981.89
22 17.10 191.47 5.00 3549.56 2187.34 2019.23
23 24.15 196.14 5.00 3098.89 1947.71 1798.02
24 24.15 200.70 5.00 3105.40 1951.17 1801.21
25 24.15 205.27 5.00 3111.90 1954.63 1804.40
26 24.15 209.83 5.00 3118.41 1958.09 1807.60
27 24.15 214.39 5.00 3124.91 1961.54 1810.79
28 31.20 218.48 4.22 2685.03 1727.66 1594.88
29 31.20 222.08 4.22 2645.63 1706.71 1575.54
30 31.20 226.25 5.52 2600.00 1701.11 1570.37
31 31.20 230.97 5.52 2548.39 1671.32 1542.86
32 31.20 235.69 5.52 2496.79 1641.52 1515.36
33 38.26 240.51 6.25 2071.86 1396.19 1288.88
34 38.26 245.42 6.25 1964.98 1334.48 1231.92
35 38.26 250.33 6.25 1858.10 1272.78 1174.96
36 38.26 255.23 6.25 1792.58 1234.95 1140.03
37 45.31 259.89 6.25 1455.13 1040.12 960.18
38 45.31 264.28 6.25 1343.46 975.65 900.66
39 45.31 268.68 6.25 1223.07 906.14 836.50
40 45.31 273.07 6.25 1093.46 831.31 767.42
41 52.36 277.72 8.04 768.05 643.44 593.98
42 52.36 282.63 8.04 528.67 505.23 466.40
43 52.36 287.54 8.04 264.99 352.99 325.86
44 52.36 290.27 0.88 98.88 257.09 237.33
45 59.41 291.43 3.51 0.00 0.00 0.00
***TABLE 6A - Effective and Base Shear Force Data on the 45 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -4.06 97.94 5.00 2591.14 2877.73 2656.56
2 -4.06 102.93 5.00 4844.61 4075.92 3762.66
3 -4.06 107.91 5.00 7098.08 5274.12 4868.77
4 -4.06 112.90 5.00 9351.55 6472.31 5974.87
5 -4.06 117.89 5.00 11605.02 7670.50 7080.97
6 3.00 122.82 4.88 10711.87 7159.24 6609.00
7 3.00 127.69 4.88 12078.41 7885.84 7279.76
8 3.00 132.56 4.88 13444.94 8612.44 7950.52
9 3.00 135.05 0.10 290.27 184.38 170.21
10 3.00 137.66 5.13 15639.53 9855.21 9097.78
11 3.00 142.79 5.13 17138.48 10652.22 9833.53
12 10.05 147.62 4.62 13857.94 8754.81 8081.95
13 10.05 149.95 0.10 312.50 196.63 181.52
14 10.05 152.50 5.07 16034.21 10046.32 9274.20
15 10.05 157.49 5.07 16888.02 10500.30 9693.28
16 10.05 162.48 5.07 17741.83 10954.28 10112.37
17 10.05 167.47 5.07 18595.63 11408.25 10531.46
18 17.10 172.36 5.00 16226.48 10127.77 9349.39
19 17.10 177.13 5.00 16606.81 10330.00 9536.07
20 17.10 181.91 5.00 16987.15 10532.23 9722.76
21 17.10 186.69 5.00 17367.48 10734.45 9909.44
22 17.10 191.47 5.00 17747.81 10936.68 10096.13
23 24.15 196.14 5.00 15494.47 9738.56 8990.09
24 24.15 200.70 5.00 15526.99 9755.85 9006.05
25 24.15 205.27 5.00 15559.51 9773.14 9022.01
26 24.15 209.83 5.00 15592.03 9790.43 9037.98
27 24.15 214.39 5.00 15624.55 9807.72 9053.94
28 31.20 218.48 4.22 11320.00 7283.74 6723.94
29 31.20 222.08 4.22 11153.87 7195.41 6642.40
30 31.20 226.25 5.52 14358.98 9394.70 8672.66
31 31.20 230.97 5.52 14074.00 9230.17 8520.77
32 31.20 235.69 5.52 13789.02 9065.63 8368.88
33 38.26 240.51 6.25 12949.14 8726.19 8055.53
34 38.26 245.42 6.25 12281.14 8340.52 7699.50
35 38.26 250.33 6.25 11613.15 7954.86 7343.47
36 38.26 255.23 6.25 11203.63 7718.42 7125.21
37 45.31 259.89 6.25 9094.57 6500.75 6001.13
38 45.31 264.28 6.25 8396.62 6097.79 5629.14
39 45.31 268.68 6.25 7644.18 5663.37 5228.10
40 45.31 273.07 6.25 6834.14 5195.69 4796.37
41 52.36 277.72 8.04 6175.14 5173.22 4775.62
42 52.36 282.63 8.04 4250.50 4062.02 3749.83
43 52.36 287.54 8.04 2130.53 2838.06 2619.94
44 52.36 290.27 0.88 87.02 226.25 208.86
45 59.41 291.43 3.51 0.00 0.00 0.00
Average Effective Normal Stress = 2223.4219(psf)
Average Available Shear Strength = 1465.0357(psf)
Total Length of Failure Surface = 228.5092(ft)
SUM OF MOMENTS = -0.877362E-04 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.1563377E-09
SUM OF FORCES = -.510676E-01 (lbs);Imbalance (Fraction of Total Weight) = -0.9099779E-
07
Sum of Available Shear Forces = 334774.08(lbs)
Sum of Mobilized Shear Forces = 309044.60(lbs)
FS Balance Check: FS = 1.083255
The FS Calculation To Determine The Seismic Yield
Coefficient (ky) Did Not Converge in 50 Iterations.
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection A-A' Block (Seismic)Ninyo & Moore / WRM\A-A' Block (Seismic).gsdSpencer MethodPLATE E-7 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.558 2 1.558 3 1.558 4 1.558 5 1.558 6 1.558 7 1.558 8 1.558 9 1.58810 1.588GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.558 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.558 2 1.558 3 1.558 4 1.558 5 1.558 6 1.558 7 1.558 8 1.558 9 1.588 10 1.588 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Block\A-A' Block (Seismic).gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\A-A'\Block\A-A' Block (Seismic).OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section A-A' Block (Seismic)
BOUNDARY DATA
11 Surface Boundaries
19 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 620.000 88.000 620.000 1
2 88.000 620.000 135.000 642.000 1
3 135.000 642.000 290.000 714.000 2
4 290.000 714.000 450.000 713.000 2
5 450.000 713.000 555.000 715.000 2
6 555.000 715.000 570.000 717.000 2
7 570.000 717.000 590.000 717.000 2
8 590.000 717.000 610.000 717.000 2
9 610.000 717.000 660.000 713.000 2
10 660.000 713.000 855.000 713.000 2
11 855.000 713.000 900.000 713.000 2
12 135.000 642.000 135.100 637.000 1
13 135.100 637.000 149.900 637.000 1
14 149.900 637.000 150.000 643.000 1
15 150.000 643.000 465.000 670.000 1
16 465.000 670.000 636.000 708.000 1
17 636.000 708.000 855.000 708.000 1
18 855.000 708.000 855.100 712.000 1
19 855.100 712.000 900.000 712.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g)
Default Velocity = 1.870(ft) per second
Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
A Non-Circular Zone Search Has Been Selected For Analysis
Using Random Generation Within Specified Zones.
2 Zones Defined For Generation Of Non-Circular Surfaces
5000 Trial Surfaces Have Been Generated.
Length Of Line Segments For Active And Passive Portions Of
Non-Circular Zone Search = 25.00(ft)
Zone X - 1 Y - 1 X - 2 Y - 2 Height
No. (ft) (ft) (ft) (ft) (ft)
1 150.00 643.50 150.00 643.50 0.10
2 150.10 643.50 465.00 670.50 0.10
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Constant (1.0)
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 3758
Number of Trial Surfaces With Valid FS = 1242
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 75.2 %
Statistical Data On All Valid FS Values:
FS Max = 12.184 FS Min = 1.558 FS Ave = 2.202
Standard Deviation = 1.194 Coefficient of Variation = 54.25 %
Critical Surface is Sequence Number 108 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 0.000000 1.518894 0.268 0.1518894E+01
2 19.9500 0.886289 1.527130 0.363 0.6408409E+00
3 23.5620 1.232911 1.533686 0.436 0.3007755E+00
4 26.7560 1.380052 1.539972 0.504 0.1599195E+00
5 30.3816 1.481424 1.547796 0.586 0.6637214E-01
6 32.9535 1.532456 1.553892 0.648 0.2143612E-01
7 34.1801 1.553046 1.556988 0.679 0.3941989E-02
8 34.4565 1.557423 1.557704 0.686 0.2811723E-03
9 34.4777 1.557756 1.557760 0.687 0.4007720E-05
10 34.4780 1.557760 1.557760 0.687 0.7232433E-08
Factor Of Safety For The Preceding Specified Surface = 1.558
Theta (fx = 1.0) = 34.48 Deg Lambda = 0.687
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Constant (1.0)
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 145.80 646.12 0.671 1801.21 1.000 34.48 1019.6
2 150.00 646.51 0.551 4735.02 1.000 34.48 2680.4
3 155.00 648.44 0.612 6112.47 1.000 34.48 3460.2
4 160.00 650.02 0.612 7619.60 1.000 34.48 4313.4
5 165.00 651.37 0.591 9256.41 1.000 34.48 5240.0
6 170.00 652.54 0.562 11022.89 1.000 34.48 6239.9
7 175.00 653.57 0.531 12919.05 1.000 34.48 7313.3
8 180.00 654.50 0.501 14944.89 1.000 34.48 8460.1
9 185.00 655.34 0.472 17100.40 1.000 34.48 9680.4
10 190.00 656.10 0.445 19385.59 1.000 34.48 10974.0
11 195.00 656.79 0.419 21800.46 1.000 34.48 12341.0
12 200.00 657.44 0.396 24345.01 1.000 34.48 13781.5
13 205.00 658.03 0.373 27019.23 1.000 34.48 15295.3
14 210.00 658.59 0.353 29823.14 1.000 34.48 16882.6
15 215.00 659.11 0.334 32756.71 1.000 34.48 18543.2
16 220.00 659.60 0.316 35819.97 1.000 34.48 20277.3
17 225.00 660.06 0.299 39012.90 1.000 34.48 22084.8
18 230.00 660.49 0.283 42335.51 1.000 34.48 23965.7
19 235.00 660.90 0.269 45787.80 1.000 34.48 25920.0
20 240.00 661.30 0.255 49369.77 1.000 34.48 27947.7
21 245.00 661.67 0.242 53081.41 1.000 34.48 30048.8
22 250.00 662.02 0.230 56922.73 1.000 34.48 32223.4
23 255.00 662.36 0.218 60893.72 1.000 34.48 34471.3
24 260.00 662.69 0.207 64994.40 1.000 34.48 36792.7
25 265.00 663.00 0.197 69224.75 1.000 34.48 39187.4
26 270.00 663.30 0.187 73584.78 1.000 34.48 41655.6
27 275.00 663.59 0.178 78074.48 1.000 34.48 44197.2
28 280.00 663.87 0.169 82693.86 1.000 34.48 46812.2
29 285.00 664.15 0.160 87442.93 1.000 34.48 49500.5
30 290.00 664.41 0.152 92321.66 1.000 34.48 52262.4
31 296.00 664.87 0.153 98229.06 1.000 34.48 55606.5
32 302.00 665.59 0.158 104091.20 1.000 34.48 58925.0
33 306.68 667.28 0.162 97082.22 1.000 34.48 54957.3
34 311.37 668.96 0.166 90315.66 1.000 34.48 51126.8
35 316.06 670.65 0.171 83791.53 1.000 34.48 47433.5
36 320.74 672.34 0.176 77509.81 1.000 34.48 43877.5
37 325.43 674.04 0.182 71470.52 1.000 34.48 40458.7
38 330.12 675.74 0.188 65673.65 1.000 34.48 37177.2
39 334.80 677.45 0.194 60119.21 1.000 34.48 34032.9
40 339.49 679.16 0.201 54807.19 1.000 34.48 31025.8
41 344.18 680.88 0.210 49737.59 1.000 34.48 28155.9
42 348.87 682.61 0.219 44910.41 1.000 34.48 25423.3
43 353.55 684.35 0.229 40325.66 1.000 34.48 22827.9
44 358.24 686.10 0.240 35983.33 1.000 34.48 20369.8
45 362.93 687.87 0.253 31883.42 1.000 34.48 18048.9
46 367.61 689.66 0.269 28025.93 1.000 34.48 15865.2
47 372.30 691.47 0.286 24410.87 1.000 34.48 13818.7
48 376.99 693.31 0.307 21038.23 1.000 34.48 11909.5
49 381.67 695.19 0.332 17908.02 1.000 34.48 10137.5
50 386.36 697.12 0.363 15020.22 1.000 34.48 8502.8
51 391.05 699.13 0.401 12374.85 1.000 34.48 7005.3
52 395.74 701.24 0.450 9971.90 1.000 34.48 5645.0
53 400.42 703.50 0.515 7811.38 1.000 34.48 4421.9
54 405.11 706.02 0.607 5893.28 1.000 34.48 3336.1
55 409.80 708.99 0.745 4217.60 1.000 34.48 2387.5
56 414.48 712.87 0.976 2784.34 1.000 34.48 1576.2
57 419.17 719.09 1.000+ 1593.51 1.000 34.48 902.1
58 423.86 735.50 1.000+ 645.10 1.000 34.48 365.2
59 428.54 462.56 0.000- -60.89 1.000 34.48 -34.5
60 433.23 688.01 0.000- -524.45 1.000 34.48 -296.9
61 437.92 700.54 0.000- -745.59 1.000 34.48 -422.1
62 442.61 706.11 0.000- -724.31 1.000 34.48 -410.0
63 446.30 709.34 0.000- -627.37 1.000 34.48 -355.1
64 450.00 711.78 0.000- -303.10 1.000 34.48 -171.6
65 452.23 713.04 0.000 0.00 1.000 34.48 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 65 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 4.20 1.37 143.70 644.68 646.04 -10.59 24.92 4.27
2 4.20 4.10 147.90 643.89 647.99 -10.59 24.92 4.27
3 5.00 6.42 152.50 643.71 650.13 4.90 24.92 5.02
4 5.00 8.31 157.50 644.14 652.45 4.90 24.92 5.02
5 5.00 10.20 162.50 644.57 654.77 4.90 24.92 5.02
6 5.00 12.10 167.50 645.00 657.10 4.90 24.92 5.02
7 5.00 13.99 172.50 645.43 659.42 4.90 24.92 5.02
8 5.00 15.89 177.50 645.85 661.74 4.90 24.92 5.02
9 5.00 17.78 182.50 646.28 664.06 4.90 24.92 5.02
10 5.00 19.68 187.50 646.71 666.39 4.90 24.92 5.02
11 5.00 21.57 192.50 647.14 668.71 4.90 24.92 5.02
12 5.00 23.46 197.50 647.57 671.03 4.90 24.92 5.02
13 5.00 25.36 202.50 648.00 673.35 4.90 24.92 5.02
14 5.00 27.25 207.50 648.42 675.68 4.90 24.92 5.02
15 5.00 29.15 212.50 648.85 678.00 4.90 24.92 5.02
16 5.00 31.04 217.50 649.28 680.32 4.90 24.92 5.02
17 5.00 32.94 222.50 649.71 682.65 4.90 24.92 5.02
18 5.00 34.83 227.50 650.14 684.97 4.90 24.92 5.02
19 5.00 36.72 232.50 650.57 687.29 4.90 24.92 5.02
20 5.00 38.62 237.50 650.99 689.61 4.90 24.92 5.02
21 5.00 40.51 242.50 651.42 691.94 4.90 24.92 5.02
22 5.00 42.41 247.50 651.85 694.26 4.90 24.92 5.02
23 5.00 44.30 252.50 652.28 696.58 4.90 24.92 5.02
24 5.00 46.20 257.50 652.71 698.90 4.90 24.92 5.02
25 5.00 48.09 262.50 653.14 701.23 4.90 24.92 5.02
26 5.00 49.99 267.50 653.56 703.55 4.90 24.92 5.02
27 5.00 51.88 272.50 653.99 705.87 4.90 24.92 5.02
28 5.00 53.77 277.50 654.42 708.19 4.90 24.92 5.02
29 5.00 55.67 282.50 654.85 710.52 4.90 24.92 5.02
30 5.00 57.56 287.50 655.28 712.84 4.90 24.92 5.02
31 6.00 58.23 293.00 655.75 713.98 4.90 -0.36 6.02
32 6.00 57.68 299.00 656.26 713.94 4.90 -0.36 6.02
33 4.69 56.52 304.34 657.39 713.91 20.38 -0.36 5.00
34 4.69 54.75 309.03 659.13 713.88 20.38 -0.36 5.00
35 4.69 52.98 313.71 660.87 713.85 20.38 -0.36 5.00
36 4.69 51.21 318.40 662.61 713.82 20.38 -0.36 5.00
37 4.69 49.44 323.09 664.35 713.79 20.38 -0.36 5.00
38 4.69 47.67 327.77 666.09 713.76 20.38 -0.36 5.00
39 4.69 45.90 332.46 667.84 713.73 20.38 -0.36 5.00
40 4.69 44.13 337.15 669.58 713.71 20.38 -0.36 5.00
41 4.69 42.36 341.83 671.32 713.68 20.38 -0.36 5.00
42 4.69 40.59 346.52 673.06 713.65 20.38 -0.36 5.00
43 4.69 38.82 351.21 674.80 713.62 20.38 -0.36 5.00
44 4.69 37.05 355.90 676.54 713.59 20.38 -0.36 5.00
45 4.69 35.27 360.58 678.28 713.56 20.38 -0.36 5.00
46 4.69 33.50 365.27 680.03 713.53 20.38 -0.36 5.00
47 4.69 31.73 369.96 681.77 713.50 20.38 -0.36 5.00
48 4.69 29.96 374.64 683.51 713.47 20.38 -0.36 5.00
49 4.69 28.19 379.33 685.25 713.44 20.38 -0.36 5.00
50 4.69 26.42 384.02 686.99 713.41 20.38 -0.36 5.00
51 4.69 24.65 388.70 688.73 713.38 20.38 -0.36 5.00
52 4.69 22.88 393.39 690.47 713.35 20.38 -0.36 5.00
53 4.69 21.11 398.08 692.21 713.32 20.38 -0.36 5.00
54 4.69 19.34 402.77 693.96 713.30 20.38 -0.36 5.00
55 4.69 17.57 407.45 695.70 713.27 20.38 -0.36 5.00
56 4.69 15.80 412.14 697.44 713.24 20.38 -0.36 5.00
57 4.69 14.03 416.83 699.18 713.21 20.38 -0.36 5.00
58 4.69 12.26 421.51 700.92 713.18 20.38 -0.36 5.00
59 4.69 10.49 426.20 702.66 713.15 20.38 -0.36 5.00
60 4.69 8.72 430.89 704.40 713.12 20.38 -0.36 5.00
61 4.69 6.95 435.57 706.14 713.09 20.38 -0.36 5.00
62 4.69 5.17 440.26 707.89 713.06 20.38 -0.36 5.00
63 3.70 3.45 444.45 709.58 713.03 24.00 -0.36 4.05
64 3.70 1.79 448.15 711.23 713.01 24.00 -0.36 4.05
65 2.23 0.48 451.11 712.55 713.02 24.00 1.09 2.44
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 141.606586 645.068866
2 145.803293 644.284222
3 150.000000 643.499579
4 155.000000 643.927823
5 160.000000 644.356067
6 165.000000 644.784311
7 170.000000 645.212555
8 175.000000 645.640799
9 180.000000 646.069043
10 185.000000 646.497287
11 190.000000 646.925531
12 195.000000 647.353775
13 200.000000 647.782019
14 205.000000 648.210263
15 210.000000 648.638506
16 215.000000 649.066750
17 220.000000 649.494994
18 225.000000 649.923238
19 230.000000 650.351482
20 235.000000 650.779726
21 240.000000 651.207970
22 245.000000 651.636214
23 250.000000 652.064458
24 255.000000 652.492702
25 260.000000 652.920946
26 265.000000 653.349190
27 270.000000 653.777434
28 275.000000 654.205678
29 280.000000 654.633922
30 285.000000 655.062166
31 290.000000 655.490410
32 295.997714 656.004107
33 301.995428 656.517804
34 306.682421 658.259098
35 311.369413 660.000393
36 316.056405 661.741687
37 320.743397 663.482982
38 325.430389 665.224276
39 330.117382 666.965570
40 334.804374 668.706865
41 339.491366 670.448159
42 344.178358 672.189453
43 348.865350 673.930748
44 353.552342 675.672042
45 358.239335 677.413337
46 362.926327 679.154631
47 367.613319 680.895925
48 372.300311 682.637220
49 376.987303 684.378514
50 381.674296 686.119809
51 386.361288 687.861103
52 391.048280 689.602397
53 395.735272 691.343692
54 400.422264 693.084986
55 405.109256 694.826281
56 409.796249 696.567575
57 414.483241 698.308869
58 419.170233 700.050164
59 423.857225 701.791458
60 428.544217 703.532752
61 433.231210 705.274047
62 437.918202 707.015341
63 442.605194 708.756636
64 446.302597 710.403109
65 450.000000 712.049581
66 452.229681 713.042470
***Table 3 - Force and Pore Pressure Data On The 65 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 688.4 0.0 0.0 0.0 0.0 137.7 0.0 0.00
2 2065.3 0.0 0.0 0.0 0.0 413.1 0.0 0.00
3 3849.2 0.0 0.0 0.0 0.0 769.8 0.0 0.00
4 4985.8 0.0 0.0 0.0 0.0 997.2 0.0 0.00
5 6122.4 0.0 0.0 0.0 0.0 1224.5 0.0 0.00
6 7259.0 0.0 0.0 0.0 0.0 1451.8 0.0 0.00
7 8395.6 0.0 0.0 0.0 0.0 1679.1 0.0 0.00
8 9532.2 0.0 0.0 0.0 0.0 1906.4 0.0 0.00
9 10668.8 0.0 0.0 0.0 0.0 2133.8 0.0 0.00
10 11805.4 0.0 0.0 0.0 0.0 2361.1 0.0 0.00
11 12942.0 0.0 0.0 0.0 0.0 2588.4 0.0 0.00
12 14078.6 0.0 0.0 0.0 0.0 2815.7 0.0 0.00
13 15215.2 0.0 0.0 0.0 0.0 3043.0 0.0 0.00
14 16351.8 0.0 0.0 0.0 0.0 3270.4 0.0 0.00
15 17488.4 0.0 0.0 0.0 0.0 3497.7 0.0 0.00
16 18625.0 0.0 0.0 0.0 0.0 3725.0 0.0 0.00
17 19761.6 0.0 0.0 0.0 0.0 3952.3 0.0 0.00
18 20898.2 0.0 0.0 0.0 0.0 4179.6 0.0 0.00
19 22034.8 0.0 0.0 0.0 0.0 4407.0 0.0 0.00
20 23171.4 0.0 0.0 0.0 0.0 4634.3 0.0 0.00
21 24308.0 0.0 0.0 0.0 0.0 4861.6 0.0 0.00
22 25444.6 0.0 0.0 0.0 0.0 5088.9 0.0 0.00
23 26581.2 0.0 0.0 0.0 0.0 5316.2 0.0 0.00
24 27717.8 0.0 0.0 0.0 0.0 5543.6 0.0 0.00
25 28854.4 0.0 0.0 0.0 0.0 5770.9 0.0 0.00
26 29991.0 0.0 0.0 0.0 0.0 5998.2 0.0 0.00
27 31127.6 0.0 0.0 0.0 0.0 6225.5 0.0 0.00
28 32264.2 0.0 0.0 0.0 0.0 6452.8 0.0 0.00
29 33400.9 0.0 0.0 0.0 0.0 6680.2 0.0 0.00
30 34537.5 0.0 0.0 0.0 0.0 6907.5 0.0 0.00
31 41912.5 0.0 0.0 0.0 0.0 8382.5 0.0 0.00
32 41515.8 0.0 0.0 0.0 0.0 8303.2 0.0 0.00
33 31790.1 0.0 0.0 0.0 0.0 6358.0 0.0 0.00
34 30794.3 0.0 0.0 0.0 0.0 6158.9 0.0 0.00
35 29798.4 0.0 0.0 0.0 0.0 5959.7 0.0 0.00
36 28802.6 0.0 0.0 0.0 0.0 5760.5 0.0 0.00
37 27806.7 0.0 0.0 0.0 0.0 5561.3 0.0 0.00
38 26810.9 0.0 0.0 0.0 0.0 5362.2 0.0 0.00
39 25815.1 0.0 0.0 0.0 0.0 5163.0 0.0 0.00
40 24819.2 0.0 0.0 0.0 0.0 4963.8 0.0 0.00
41 23823.4 0.0 0.0 0.0 0.0 4764.7 0.0 0.00
42 22827.5 0.0 0.0 0.0 0.0 4565.5 0.0 0.00
43 21831.7 0.0 0.0 0.0 0.0 4366.3 0.0 0.00
44 20835.8 0.0 0.0 0.0 0.0 4167.2 0.0 0.00
45 19840.0 0.0 0.0 0.0 0.0 3968.0 0.0 0.00
46 18844.1 0.0 0.0 0.0 0.0 3768.8 0.0 0.00
47 17848.3 0.0 0.0 0.0 0.0 3569.7 0.0 0.00
48 16852.4 0.0 0.0 0.0 0.0 3370.5 0.0 0.00
49 15856.6 0.0 0.0 0.0 0.0 3171.3 0.0 0.00
50 14860.7 0.0 0.0 0.0 0.0 2972.1 0.0 0.00
51 13864.9 0.0 0.0 0.0 0.0 2773.0 0.0 0.00
52 12869.0 0.0 0.0 0.0 0.0 2573.8 0.0 0.00
53 11873.2 0.0 0.0 0.0 0.0 2374.6 0.0 0.00
54 10877.3 0.0 0.0 0.0 0.0 2175.5 0.0 0.00
55 9881.5 0.0 0.0 0.0 0.0 1976.3 0.0 0.00
56 8885.6 0.0 0.0 0.0 0.0 1777.1 0.0 0.00
57 7889.8 0.0 0.0 0.0 0.0 1578.0 0.0 0.00
58 6893.9 0.0 0.0 0.0 0.0 1378.8 0.0 0.00
59 5898.1 0.0 0.0 0.0 0.0 1179.6 0.0 0.00
60 4902.2 0.0 0.0 0.0 0.0 980.4 0.0 0.00
61 3906.4 0.0 0.0 0.0 0.0 781.3 0.0 0.00
62 2910.6 0.0 0.0 0.0 0.0 582.1 0.0 0.00
63 1532.9 0.0 0.0 0.0 0.0 306.6 0.0 0.00
64 792.1 0.0 0.0 0.0 0.0 158.4 0.0 0.00
65 127.1 0.0 0.0 0.0 0.0 25.4 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 1146557.72(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 1146557.72(lbs)
TOTAL AREA OF SLIDING MASS = 9554.65(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 65 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 2 200.00 30.00
2 2 200.00 30.00
3 2 200.00 30.00
4 2 200.00 30.00
5 2 200.00 30.00
6 2 200.00 30.00
7 2 200.00 30.00
8 2 200.00 30.00
9 2 200.00 30.00
10 2 200.00 30.00
11 2 200.00 30.00
12 2 200.00 30.00
13 2 200.00 30.00
14 2 200.00 30.00
15 2 200.00 30.00
16 2 200.00 30.00
17 2 200.00 30.00
18 2 200.00 30.00
19 2 200.00 30.00
20 2 200.00 30.00
21 2 200.00 30.00
22 2 200.00 30.00
23 2 200.00 30.00
24 2 200.00 30.00
25 2 200.00 30.00
26 2 200.00 30.00
27 2 200.00 30.00
28 2 200.00 30.00
29 2 200.00 30.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
34 2 200.00 30.00
35 2 200.00 30.00
36 2 200.00 30.00
37 2 200.00 30.00
38 2 200.00 30.00
39 2 200.00 30.00
40 2 200.00 30.00
41 2 200.00 30.00
42 2 200.00 30.00
43 2 200.00 30.00
44 2 200.00 30.00
45 2 200.00 30.00
46 2 200.00 30.00
47 2 200.00 30.00
48 2 200.00 30.00
49 2 200.00 30.00
50 2 200.00 30.00
51 2 200.00 30.00
52 2 200.00 30.00
53 2 200.00 30.00
54 2 200.00 30.00
55 2 200.00 30.00
56 2 200.00 30.00
57 2 200.00 30.00
58 2 200.00 30.00
59 2 200.00 30.00
60 2 200.00 30.00
61 2 200.00 30.00
62 2 200.00 30.00
63 2 200.00 30.00
64 2 200.00 30.00
65 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 65 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -10.59 143.70 4.27 463.10 164.04 2.823
2 -10.59 147.90 4.27 979.77 492.13 1.991
3 4.90 152.50 5.02 886.65 769.84 1.152
4 4.90 157.50 5.02 1121.21 997.16 1.124
5 4.90 162.50 5.02 1355.76 1224.48 1.107
6 4.90 167.50 5.02 1590.32 1451.80 1.095
7 4.90 172.50 5.02 1824.88 1679.12 1.087
8 4.90 177.50 5.02 2059.43 1906.44 1.080
9 4.90 182.50 5.02 2293.99 2133.76 1.075
10 4.90 187.50 5.02 2528.55 2361.08 1.071
11 4.90 192.50 5.02 2763.10 2588.40 1.067
12 4.90 197.50 5.02 2997.66 2815.72 1.065
13 4.90 202.50 5.02 3232.21 3043.04 1.062
14 4.90 207.50 5.02 3466.77 3270.36 1.060
15 4.90 212.50 5.02 3701.33 3497.68 1.058
16 4.90 217.50 5.02 3935.88 3725.00 1.057
17 4.90 222.50 5.02 4170.44 3952.33 1.055
18 4.90 227.50 5.02 4405.00 4179.65 1.054
19 4.90 232.50 5.02 4639.55 4406.97 1.053
20 4.90 237.50 5.02 4874.11 4634.29 1.052
21 4.90 242.50 5.02 5108.67 4861.61 1.051
22 4.90 247.50 5.02 5343.22 5088.93 1.050
23 4.90 252.50 5.02 5577.78 5316.25 1.049
24 4.90 257.50 5.02 5812.34 5543.57 1.048
25 4.90 262.50 5.02 6046.89 5770.89 1.048
26 4.90 267.50 5.02 6281.45 5998.21 1.047
27 4.90 272.50 5.02 6516.01 6225.53 1.047
28 4.90 277.50 5.02 6750.56 6452.85 1.046
29 4.90 282.50 5.02 6985.12 6680.17 1.046
30 4.90 287.50 5.02 7219.67 6907.49 1.045
31 4.90 293.00 6.02 7302.83 6988.08 1.045
32 4.90 299.00 6.02 7234.58 6921.94 1.045
33 20.38 304.34 5.00 5175.73 6782.63 0.763
34 20.38 309.03 5.00 5014.71 6570.16 0.763
35 20.38 313.71 5.00 4853.69 6357.69 0.763
36 20.38 318.40 5.00 4692.67 6145.22 0.764
37 20.38 323.09 5.00 4531.65 5932.75 0.764
38 20.38 327.77 5.00 4370.63 5720.28 0.764
39 20.38 332.46 5.00 4209.61 5507.81 0.764
40 20.38 337.15 5.00 4048.59 5295.34 0.765
41 20.38 341.83 5.00 3887.57 5082.87 0.765
42 20.38 346.52 5.00 3726.55 4870.40 0.765
43 20.38 351.21 5.00 3565.53 4657.93 0.765
44 20.38 355.90 5.00 3404.51 4445.46 0.766
45 20.38 360.58 5.00 3243.49 4232.98 0.766
46 20.38 365.27 5.00 3082.47 4020.51 0.767
47 20.38 369.96 5.00 2921.45 3808.04 0.767
48 20.38 374.64 5.00 2760.43 3595.57 0.768
49 20.38 379.33 5.00 2599.41 3383.10 0.768
50 20.38 384.02 5.00 2438.40 3170.63 0.769
51 20.38 388.70 5.00 2277.38 2958.16 0.770
52 20.38 393.39 5.00 2116.36 2745.69 0.771
53 20.38 398.08 5.00 1955.34 2533.22 0.772
54 20.38 402.77 5.00 1794.32 2320.75 0.773
55 20.38 407.45 5.00 1633.30 2108.28 0.775
56 20.38 412.14 5.00 1472.28 1895.81 0.777
57 20.38 416.83 5.00 1311.26 1683.34 0.779
58 20.38 421.51 5.00 1150.24 1470.87 0.782
59 20.38 426.20 5.00 989.22 1258.40 0.786
60 20.38 430.89 5.00 828.20 1045.93 0.792
61 20.38 435.57 5.00 667.18 833.46 0.800
62 20.38 440.26 5.00 506.16 620.99 0.815
63 24.00 444.45 4.05 319.51 414.57 0.771
64 24.00 448.15 4.05 177.42 214.23 0.828
65 24.00 451.11 2.44 65.93 57.03 1.156
***TABLE 5A - Total Base Force Data on the 65 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -10.59 143.70 4.27 1977.19 688.45 2.872
2 -10.59 147.90 4.27 4183.07 2065.35 2.025
3 4.90 152.50 5.02 4449.48 3849.20 1.156
4 4.90 157.50 5.02 5626.56 4985.80 1.129
5 4.90 162.50 5.02 6803.63 6122.40 1.111
6 4.90 167.50 5.02 7980.71 7259.00 1.099
7 4.90 172.50 5.02 9157.78 8395.61 1.091
8 4.90 177.50 5.02 10334.86 9532.21 1.084
9 4.90 182.50 5.02 11511.94 10668.81 1.079
10 4.90 187.50 5.02 12689.01 11805.41 1.075
11 4.90 192.50 5.02 13866.09 12942.01 1.071
12 4.90 197.50 5.02 15043.16 14078.62 1.069
13 4.90 202.50 5.02 16220.24 15215.22 1.066
14 4.90 207.50 5.02 17397.32 16351.82 1.064
15 4.90 212.50 5.02 18574.39 17488.42 1.062
16 4.90 217.50 5.02 19751.47 18625.02 1.060
17 4.90 222.50 5.02 20928.55 19761.63 1.059
18 4.90 227.50 5.02 22105.62 20898.23 1.058
19 4.90 232.50 5.02 23282.70 22034.83 1.057
20 4.90 237.50 5.02 24459.77 23171.43 1.056
21 4.90 242.50 5.02 25636.85 24308.03 1.055
22 4.90 247.50 5.02 26813.93 25444.64 1.054
23 4.90 252.50 5.02 27991.00 26581.24 1.053
24 4.90 257.50 5.02 29168.08 27717.84 1.052
25 4.90 262.50 5.02 30345.15 28854.44 1.052
26 4.90 267.50 5.02 31522.23 29991.04 1.051
27 4.90 272.50 5.02 32699.31 31127.65 1.050
28 4.90 277.50 5.02 33876.38 32264.25 1.050
29 4.90 282.50 5.02 35053.46 33400.85 1.049
30 4.90 287.50 5.02 36230.53 34537.45 1.049
31 4.90 293.00 6.02 43960.64 41912.51 1.049
32 4.90 299.00 6.02 43549.81 41515.81 1.049
33 20.38 304.34 5.00 25878.63 31790.14 0.814
34 20.38 309.03 5.00 25073.54 30794.29 0.814
35 20.38 313.71 5.00 24268.44 29798.45 0.814
36 20.38 318.40 5.00 23463.34 28802.60 0.815
37 20.38 323.09 5.00 22658.24 27806.75 0.815
38 20.38 327.77 5.00 21853.15 26810.90 0.815
39 20.38 332.46 5.00 21048.05 25815.05 0.815
40 20.38 337.15 5.00 20242.95 24819.21 0.816
41 20.38 341.83 5.00 19437.85 23823.36 0.816
42 20.38 346.52 5.00 18632.76 22827.51 0.816
43 20.38 351.21 5.00 17827.66 21831.66 0.817
44 20.38 355.90 5.00 17022.56 20835.81 0.817
45 20.38 360.58 5.00 16217.46 19839.97 0.817
46 20.38 365.27 5.00 15412.37 18844.12 0.818
47 20.38 369.96 5.00 14607.27 17848.27 0.818
48 20.38 374.64 5.00 13802.17 16852.42 0.819
49 20.38 379.33 5.00 12997.07 15856.58 0.820
50 20.38 384.02 5.00 12191.98 14860.73 0.820
51 20.38 388.70 5.00 11386.88 13864.88 0.821
52 20.38 393.39 5.00 10581.78 12869.03 0.822
53 20.38 398.08 5.00 9776.68 11873.18 0.823
54 20.38 402.77 5.00 8971.59 10877.34 0.825
55 20.38 407.45 5.00 8166.49 9881.49 0.826
56 20.38 412.14 5.00 7361.39 8885.64 0.828
57 20.38 416.83 5.00 6556.29 7889.79 0.831
58 20.38 421.51 5.00 5751.20 6893.94 0.834
59 20.38 426.20 5.00 4946.10 5898.10 0.839
60 20.38 430.89 5.00 4141.00 4902.25 0.845
61 20.38 435.57 5.00 3335.90 3906.40 0.854
62 20.38 440.26 5.00 2530.81 2910.55 0.870
63 24.00 444.45 4.05 1293.20 1532.85 0.844
64 24.00 448.15 4.05 718.08 792.08 0.907
65 24.00 451.11 2.44 160.91 127.15 1.266
***TABLE 6 - Effective and Base Shear Stress Data on the 65 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -10.59 143.70 4.27 463.10 467.37 300.03
2 -10.59 147.90 4.27 979.77 765.67 491.52
3 4.90 152.50 5.02 886.65 711.91 457.01
4 4.90 157.50 5.02 1121.21 847.33 543.94
5 4.90 162.50 5.02 1355.76 982.75 630.87
6 4.90 167.50 5.02 1590.32 1118.17 717.81
7 4.90 172.50 5.02 1824.88 1253.59 804.74
8 4.90 177.50 5.02 2059.43 1389.01 891.67
9 4.90 182.50 5.02 2293.99 1524.43 978.61
10 4.90 187.50 5.02 2528.55 1659.86 1065.54
11 4.90 192.50 5.02 2763.10 1795.28 1152.47
12 4.90 197.50 5.02 2997.66 1930.70 1239.41
13 4.90 202.50 5.02 3232.21 2066.12 1326.34
14 4.90 207.50 5.02 3466.77 2201.54 1413.27
15 4.90 212.50 5.02 3701.33 2336.96 1500.21
16 4.90 217.50 5.02 3935.88 2472.38 1587.14
17 4.90 222.50 5.02 4170.44 2607.80 1674.07
18 4.90 227.50 5.02 4405.00 2743.23 1761.01
19 4.90 232.50 5.02 4639.55 2878.65 1847.94
20 4.90 237.50 5.02 4874.11 3014.07 1934.87
21 4.90 242.50 5.02 5108.67 3149.49 2021.81
22 4.90 247.50 5.02 5343.22 3284.91 2108.74
23 4.90 252.50 5.02 5577.78 3420.33 2195.67
24 4.90 257.50 5.02 5812.34 3555.75 2282.61
25 4.90 262.50 5.02 6046.89 3691.17 2369.54
26 4.90 267.50 5.02 6281.45 3826.60 2456.47
27 4.90 272.50 5.02 6516.01 3962.02 2543.41
28 4.90 277.50 5.02 6750.56 4097.44 2630.34
29 4.90 282.50 5.02 6985.12 4232.86 2717.27
30 4.90 287.50 5.02 7219.67 4368.28 2804.21
31 4.90 293.00 6.02 7302.83 4416.29 2835.03
32 4.90 299.00 6.02 7234.58 4376.89 2809.73
33 20.38 304.34 5.00 5175.73 3188.21 2046.66
34 20.38 309.03 5.00 5014.71 3095.24 1986.98
35 20.38 313.71 5.00 4853.69 3002.28 1927.30
36 20.38 318.40 5.00 4692.67 2909.31 1867.63
37 20.38 323.09 5.00 4531.65 2816.35 1807.95
38 20.38 327.77 5.00 4370.63 2723.38 1748.27
39 20.38 332.46 5.00 4209.61 2630.42 1688.59
40 20.38 337.15 5.00 4048.59 2537.45 1628.91
41 20.38 341.83 5.00 3887.57 2444.49 1569.23
42 20.38 346.52 5.00 3726.55 2351.53 1509.56
43 20.38 351.21 5.00 3565.53 2258.56 1449.88
44 20.38 355.90 5.00 3404.51 2165.60 1390.20
45 20.38 360.58 5.00 3243.49 2072.63 1330.52
46 20.38 365.27 5.00 3082.47 1979.67 1270.84
47 20.38 369.96 5.00 2921.45 1886.70 1211.16
48 20.38 374.64 5.00 2760.43 1793.74 1151.48
49 20.38 379.33 5.00 2599.41 1700.77 1091.81
50 20.38 384.02 5.00 2438.40 1607.81 1032.13
51 20.38 388.70 5.00 2277.38 1514.84 972.45
52 20.38 393.39 5.00 2116.36 1421.88 912.77
53 20.38 398.08 5.00 1955.34 1328.91 853.09
54 20.38 402.77 5.00 1794.32 1235.95 793.41
55 20.38 407.45 5.00 1633.30 1142.98 733.74
56 20.38 412.14 5.00 1472.28 1050.02 674.06
57 20.38 416.83 5.00 1311.26 957.06 614.38
58 20.38 421.51 5.00 1150.24 864.09 554.70
59 20.38 426.20 5.00 989.22 771.13 495.02
60 20.38 430.89 5.00 828.20 678.16 435.34
61 20.38 435.57 5.00 667.18 585.20 375.67
62 20.38 440.26 5.00 506.16 492.23 315.99
63 24.00 444.45 4.05 319.51 384.47 246.81
64 24.00 448.15 4.05 177.42 302.43 194.15
65 24.00 451.11 2.44 65.93 238.06 152.82
***TABLE 6A - Effective and Base Shear Force Data on the 65 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -10.59 143.70 4.27 1977.19 1995.41 1280.95
2 -10.59 147.90 4.27 4183.07 3268.98 2098.51
3 4.90 152.50 5.02 4449.48 3572.57 2293.40
4 4.90 157.50 5.02 5626.56 4252.15 2729.66
5 4.90 162.50 5.02 6803.63 4931.74 3165.92
6 4.90 167.50 5.02 7980.71 5611.33 3602.17
7 4.90 172.50 5.02 9157.78 6290.91 4038.43
8 4.90 177.50 5.02 10334.86 6970.50 4474.69
9 4.90 182.50 5.02 11511.94 7650.08 4910.95
10 4.90 187.50 5.02 12689.01 8329.67 5347.21
11 4.90 192.50 5.02 13866.09 9009.25 5783.46
12 4.90 197.50 5.02 15043.16 9688.84 6219.72
13 4.90 202.50 5.02 16220.24 10368.42 6655.98
14 4.90 207.50 5.02 17397.32 11048.01 7092.24
15 4.90 212.50 5.02 18574.39 11727.59 7528.49
16 4.90 217.50 5.02 19751.47 12407.18 7964.75
17 4.90 222.50 5.02 20928.55 13086.76 8401.01
18 4.90 227.50 5.02 22105.62 13766.35 8837.27
19 4.90 232.50 5.02 23282.70 14445.93 9273.53
20 4.90 237.50 5.02 24459.77 15125.52 9709.78
21 4.90 242.50 5.02 25636.85 15805.10 10146.04
22 4.90 247.50 5.02 26813.93 16484.69 10582.30
23 4.90 252.50 5.02 27991.00 17164.27 11018.56
24 4.90 257.50 5.02 29168.08 17843.86 11454.81
25 4.90 262.50 5.02 30345.15 18523.44 11891.07
26 4.90 267.50 5.02 31522.23 19203.03 12327.33
27 4.90 272.50 5.02 32699.31 19882.61 12763.59
28 4.90 277.50 5.02 33876.38 20562.20 13199.85
29 4.90 282.50 5.02 35053.46 21241.78 13636.10
30 4.90 287.50 5.02 36230.53 21921.37 14072.36
31 4.90 293.00 6.02 43960.64 26584.62 17065.92
32 4.90 299.00 6.02 43549.81 26347.43 16913.66
33 20.38 304.34 5.00 25878.63 15941.04 10233.30
34 20.38 309.03 5.00 25073.54 15476.21 9934.91
35 20.38 313.71 5.00 24268.44 15011.39 9636.52
36 20.38 318.40 5.00 23463.34 14546.57 9338.13
37 20.38 323.09 5.00 22658.24 14081.74 9039.74
38 20.38 327.77 5.00 21853.15 13616.92 8741.34
39 20.38 332.46 5.00 21048.05 13152.10 8442.95
40 20.38 337.15 5.00 20242.95 12687.27 8144.56
41 20.38 341.83 5.00 19437.85 12222.45 7846.17
42 20.38 346.52 5.00 18632.76 11757.63 7547.78
43 20.38 351.21 5.00 17827.66 11292.80 7249.38
44 20.38 355.90 5.00 17022.56 10827.98 6950.99
45 20.38 360.58 5.00 16217.46 10363.16 6652.60
46 20.38 365.27 5.00 15412.37 9898.33 6354.21
47 20.38 369.96 5.00 14607.27 9433.51 6055.82
48 20.38 374.64 5.00 13802.17 8968.69 5757.42
49 20.38 379.33 5.00 12997.07 8503.86 5459.03
50 20.38 384.02 5.00 12191.98 8039.04 5160.64
51 20.38 388.70 5.00 11386.88 7574.22 4862.25
52 20.38 393.39 5.00 10581.78 7109.39 4563.86
53 20.38 398.08 5.00 9776.68 6644.57 4265.46
54 20.38 402.77 5.00 8971.59 6179.75 3967.07
55 20.38 407.45 5.00 8166.49 5714.92 3668.68
56 20.38 412.14 5.00 7361.39 5250.10 3370.29
57 20.38 416.83 5.00 6556.29 4785.28 3071.90
58 20.38 421.51 5.00 5751.20 4320.45 2773.50
59 20.38 426.20 5.00 4946.10 3855.63 2475.11
60 20.38 430.89 5.00 4141.00 3390.81 2176.72
61 20.38 435.57 5.00 3335.90 2925.98 1878.33
62 20.38 440.26 5.00 2530.81 2461.16 1579.94
63 24.00 444.45 4.05 1293.20 1556.12 998.94
64 24.00 448.15 4.05 718.08 1224.07 785.79
65 24.00 451.11 2.44 160.91 581.05 373.01
Average Effective Normal Stress = 3393.7038(psf)
Average Available Shear Strength = 2159.3558(psf)
Total Length of Failure Surface = 321.6264(ft)
SUM OF MOMENTS = -0.359421E-02 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.3134784E-08
SUM OF FORCES = 0.153846E-05 (lbs);Imbalance (Fraction of Total Weight) = 0.1341808E-
11
Sum of Available Shear Forces = 694505.78(lbs)
Sum of Mobilized Shear Forces = 445836.05(lbs)
FS Balance Check: FS = 1.557760
The FS Calculation To Determine The Seismic Yield
Coefficient (ky) Did Not Converge in 50 Iterations.
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Circular (Seismic)Ninyo & Moore / WRM\B-B' East Slope Circular Seismic.gsdSpencer MethodPLATE E-8 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.098 2 1.099 3 1.107 4 1.107 5 1.108 6 1.109 7 1.113 8 1.115 9 1.11710 1.120GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.098 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.098 2 1.099 3 1.107 4 1.107 5 1.108 6 1.109 7 1.113 8 1.115 9 1.117 10 1.120 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Circular Seismic.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Circular Seismic.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Easterly Slope - Circular (Seismic)
BOUNDARY DATA
7 Surface Boundaries
17 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 640.000 30.000 643.000 1
2 30.000 643.000 57.000 657.000 1
3 57.000 657.000 155.000 708.000 2
4 155.000 708.000 205.000 710.000 2
5 205.000 710.000 828.000 710.000 2
6 828.000 710.000 876.000 686.000 2
7 876.000 686.000 900.000 686.000 1
8 57.000 657.000 57.100 652.000 1
9 57.100 652.000 71.900 652.000 1
10 71.900 652.000 72.000 658.000 1
11 72.000 658.000 245.000 683.000 1
12 245.000 683.000 371.000 705.000 1
13 371.000 705.000 700.000 705.000 1
14 700.000 705.000 700.100 709.000 1
15 700.100 709.000 813.000 709.000 1
16 813.000 709.000 861.000 686.000 1
17 861.000 686.000 876.000 686.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g)
Default Velocity = 1.870(ft) per second
Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 0.00(ft)
and X = 80.00(ft)
Each Surface Enters within a Range Between X = 130.00(ft)
and X = 600.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 500.00(ft)
Specified Maximum Radius = 5000.000(ft)
20.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 1231
Number of Trial Surfaces With Valid FS = 3769
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 24.6 %
Statistical Data On All Valid FS Values:
FS Max = 3.375 FS Min = 1.098 FS Ave = 2.168
Standard Deviation = 0.529 Coefficient of Variation = 24.38 %
Critical Surface is Sequence Number 908 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 43.988802(ft) ; Y = 798.171438(ft); and Radius =
158.753135(ft)
Circular Trial Failure Surface Generated With 11 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 17.107 641.711
2 36.993 639.573
3 56.989 639.952
4 76.779 642.842
5 96.049 648.197
6 114.492 655.933
7 131.817 665.926
8 147.747 678.018
9 162.031 692.018
10 174.441 707.702
11 175.107 708.804
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.261973 1.042377 0.268 0.2195959E+00
2 19.9500 1.240119 1.057185 0.363 0.1829341E+00
3 44.6444 0.000000 1.185282 0.988 0.1185282E+01
4 23.2510 1.216857 1.068154 0.430 0.1487032E+00
5 25.6396 1.192798 1.076774 0.480 0.1160239E+00
6 34.1183 0.946170 1.113848 0.678 0.1676778E+00
7 29.1064 1.138970 1.090539 0.557 0.4843103E-01
8 30.2304 1.113536 1.095376 0.583 0.1815981E-01
9 30.9045 1.095345 1.098376 0.599 0.3031443E-02
10 30.8081 1.098107 1.097942 0.596 0.1647498E-03
11 30.8131 1.097966 1.097965 0.596 0.8357895E-06
Factor Of Safety For The Preceding Specified Surface = 1.098
Theta (fx = 1.0) = 30.81 Deg Lambda = 0.596
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 21.40 642.76 1.000+ 2505.56 1.000 30.81 1283.4
2 25.70 643.69 1.000+ 5373.16 1.000 30.81 2752.3
3 30.00 644.56 1.000+ 8602.77 1.000 30.81 4406.7
4 33.50 645.13 1.000+ 11739.05 1.000 30.81 6013.2
5 36.99 645.51 0.842 15598.23 1.000 30.81 7990.0
6 41.99 646.67 0.733 19861.04 1.000 30.81 10173.6
7 46.99 647.65 0.655 24752.03 1.000 30.81 12679.0
8 51.99 648.52 0.596 30271.22 1.000 30.81 15506.1
9 56.99 649.32 0.550 36418.59 1.000 30.81 18655.0
10 57.00 649.32 0.550 36426.30 1.000 30.81 18659.0
11 57.10 649.35 0.549 36497.74 1.000 30.81 18695.6
12 62.03 650.79 0.534 40114.77 1.000 30.81 20548.4
13 66.97 652.15 0.517 43913.59 1.000 30.81 22494.3
14 71.90 653.43 0.499 47894.18 1.000 30.81 24533.3
15 72.00 653.45 0.499 47976.75 1.000 30.81 24575.6
16 76.78 654.63 0.482 52009.97 1.000 30.81 26641.5
17 81.60 656.41 0.477 53299.45 1.000 30.81 27302.1
18 86.41 658.13 0.471 54572.94 1.000 30.81 27954.4
19 91.23 659.80 0.463 55830.44 1.000 30.81 28598.5
20 96.05 661.41 0.454 57071.95 1.000 30.81 29234.5
21 100.66 663.50 0.452 55698.15 1.000 30.81 28530.8
22 105.27 665.56 0.449 54279.06 1.000 30.81 27803.9
23 109.88 667.57 0.445 52814.69 1.000 30.81 27053.8
24 114.49 669.55 0.439 51305.04 1.000 30.81 26280.5
25 120.27 672.71 0.439 46646.32 1.000 30.81 23894.1
26 126.04 675.85 0.437 42056.24 1.000 30.81 21542.9
27 131.82 678.94 0.434 37534.81 1.000 30.81 19226.8
28 132.98 679.72 0.434 36171.81 1.000 30.81 18528.6
29 137.91 683.04 0.437 30558.17 1.000 30.81 15653.1
30 142.83 686.40 0.443 25213.84 1.000 30.81 12915.5
31 147.75 689.50 0.438 19705.21 0.866 27.31 9041.4
32 151.37 692.15 0.431 15026.67 0.751 24.13 6143.1
33 155.00 694.66 0.417 10807.61 0.636 20.78 3834.7
34 158.52 696.98 0.430 7288.71 0.525 17.39 2178.2
35 162.03 699.21 0.442 4469.11 0.414 13.86 1070.9
36 168.24 706.73 0.792 577.07 0.217 7.39 74.2
37 174.44 708.21 0.471 34.22 0.021 0.72 0.4
38 175.11 708.80 0.000 242.55 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 38 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 4.30 0.45 19.26 641.48 641.93 -6.14 5.71 4.32
2 4.30 1.34 23.55 641.02 642.36 -6.14 5.71 4.32
3 4.30 2.23 27.85 640.56 642.79 -6.14 5.71 4.32
4 3.50 3.77 31.75 640.14 643.91 -6.14 27.41 3.52
5 3.50 5.96 35.24 639.76 645.72 -6.14 27.41 3.52
6 5.00 8.30 39.49 639.62 647.92 1.09 27.41 5.00
7 5.00 10.80 44.49 639.71 650.51 1.09 27.41 5.00
8 5.00 13.30 49.49 639.81 653.11 1.09 27.41 5.00
9 5.00 15.79 54.49 639.90 655.70 1.09 27.41 5.00
10 0.01 17.04 56.99 639.95 657.00 8.31 27.41 0.01
11 0.10 17.07 57.05 639.96 657.03 8.31 27.49 0.10
12 4.93 18.01 59.57 640.33 658.34 8.31 27.49 4.99
13 4.93 19.85 64.50 641.05 660.90 8.31 27.49 4.99
14 4.93 21.70 69.43 641.77 663.47 8.31 27.49 4.99
15 0.10 22.64 71.95 642.14 664.78 8.31 27.49 0.10
16 4.78 23.56 74.39 642.49 666.05 8.31 27.49 4.83
17 4.82 25.04 79.19 643.51 668.55 15.53 27.49 5.00
18 4.82 26.20 84.01 644.85 671.05 15.53 27.49 5.00
19 4.82 27.37 88.82 646.19 673.56 15.53 27.49 5.00
20 4.82 28.54 93.64 647.53 676.07 15.53 27.49 5.00
21 4.61 29.36 98.35 649.16 678.52 22.75 27.49 5.00
22 4.61 29.82 102.97 651.10 680.92 22.75 27.49 5.00
23 4.61 30.29 107.58 653.03 683.32 22.75 27.49 5.00
24 4.61 30.75 112.19 654.97 685.72 22.75 27.49 5.00
25 5.77 30.82 117.38 657.60 688.42 29.98 27.49 6.67
26 5.77 30.50 123.15 660.93 691.43 29.98 27.49 6.67
27 5.77 30.17 128.93 664.26 694.43 29.98 27.49 6.67
28 1.17 29.87 132.40 666.37 696.24 37.20 27.49 1.47
29 4.92 29.14 135.45 668.68 697.82 37.20 27.49 6.18
30 4.92 27.97 140.37 672.42 700.38 37.20 27.49 6.18
31 4.92 26.79 145.29 676.15 702.95 37.20 27.49 6.18
32 3.63 25.37 149.56 679.80 705.17 44.42 27.49 5.08
33 3.63 23.71 153.19 683.35 707.06 44.42 27.49 5.08
34 3.52 21.22 156.76 686.85 708.07 44.42 2.29 4.92
35 3.52 17.92 160.27 690.29 708.21 44.42 2.29 4.92
36 6.21 12.47 165.13 695.94 708.41 51.65 2.29 10.00
37 6.21 4.87 171.34 703.78 708.65 51.65 2.29 10.00
38 0.67 0.54 174.77 708.25 708.79 58.87 2.29 1.29
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 17.107421 641.710742
2 21.404948 641.248642
3 25.702474 640.786543
4 30.000000 640.324443
5 33.496397 639.948486
6 36.992794 639.572529
7 41.991896 639.667273
8 46.990999 639.762017
9 51.990101 639.856760
10 56.989203 639.951504
11 57.000000 639.953081
12 57.100000 639.967685
13 62.033333 640.688150
14 66.966667 641.408615
15 71.900000 642.129080
16 72.000000 642.143684
17 76.779278 642.841651
18 81.596689 644.180514
19 86.414100 645.519376
20 91.231510 646.858238
21 96.048921 648.197101
22 100.659765 650.131039
23 105.270610 652.064977
24 109.881454 653.998915
25 114.492298 655.932853
26 120.267093 659.263946
27 126.041889 662.595039
28 131.816685 665.926132
29 132.984845 666.812839
30 137.905603 670.548002
31 142.826361 674.283166
32 147.747119 678.018330
33 151.373560 681.572552
34 155.000000 685.126774
35 158.515382 688.572150
36 162.030764 692.017526
37 168.235841 699.859530
38 174.440917 707.701534
39 175.106928 708.804277
***Table 3 - Force and Pore Pressure Data On The 38 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 230.0 0.0 0.0 0.0 0.0 46.0 0.0 0.00
2 689.9 0.0 0.0 0.0 0.0 138.0 0.0 0.00
3 1149.8 0.0 0.0 0.0 0.0 230.0 0.0 0.00
4 1581.8 0.0 0.0 0.0 0.0 316.4 0.0 0.00
5 2500.2 0.0 0.0 0.0 0.0 500.0 0.0 0.00
6 4980.3 0.0 0.0 0.0 0.0 996.1 0.0 0.00
7 6478.5 0.0 0.0 0.0 0.0 1295.7 0.0 0.00
8 7976.7 0.0 0.0 0.0 0.0 1595.3 0.0 0.00
9 9474.8 0.0 0.0 0.0 0.0 1895.0 0.0 0.00
10 22.1 0.0 0.0 0.0 0.0 4.4 0.0 0.00
11 204.8 0.0 0.0 0.0 0.0 41.0 0.0 0.00
12 10660.6 0.0 0.0 0.0 0.0 2132.1 0.0 0.00
13 11754.0 0.0 0.0 0.0 0.0 2350.8 0.0 0.00
14 12847.3 0.0 0.0 0.0 0.0 2569.5 0.0 0.00
15 271.7 0.0 0.0 0.0 0.0 54.3 0.0 0.00
16 13510.3 0.0 0.0 0.0 0.0 2702.1 0.0 0.00
17 14472.9 0.0 0.0 0.0 0.0 2894.6 0.0 0.00
18 15148.2 0.0 0.0 0.0 0.0 3029.6 0.0 0.00
19 15823.5 0.0 0.0 0.0 0.0 3164.7 0.0 0.00
20 16498.8 0.0 0.0 0.0 0.0 3299.8 0.0 0.00
21 16243.3 0.0 0.0 0.0 0.0 3248.7 0.0 0.00
22 16500.9 0.0 0.0 0.0 0.0 3300.2 0.0 0.00
23 16758.5 0.0 0.0 0.0 0.0 3351.7 0.0 0.00
24 17016.1 0.0 0.0 0.0 0.0 3403.2 0.0 0.00
25 21360.1 0.0 0.0 0.0 0.0 4272.0 0.0 0.00
26 21134.3 0.0 0.0 0.0 0.0 4226.9 0.0 0.00
27 20908.5 0.0 0.0 0.0 0.0 4181.7 0.0 0.00
28 4187.1 0.0 0.0 0.0 0.0 837.4 0.0 0.00
29 17208.7 0.0 0.0 0.0 0.0 3441.7 0.0 0.00
30 16515.3 0.0 0.0 0.0 0.0 3303.1 0.0 0.00
31 15821.8 0.0 0.0 0.0 0.0 3164.4 0.0 0.00
32 11042.0 0.0 0.0 0.0 0.0 2208.4 0.0 0.00
33 10316.5 0.0 0.0 0.0 0.0 2063.3 0.0 0.00
34 8951.9 0.0 0.0 0.0 0.0 1790.4 0.0 0.00
35 7557.8 0.0 0.0 0.0 0.0 1511.6 0.0 0.00
36 9282.9 0.0 0.0 0.0 0.0 1856.6 0.0 0.00
37 3628.5 0.0 0.0 0.0 0.0 725.7 0.0 0.00
38 43.0 0.0 0.0 0.0 0.0 8.6 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 380753.31(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 380753.31(lbs)
TOTAL AREA OF SLIDING MASS = 3172.94(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 38 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 1 300.00 28.00
2 1 300.00 28.00
3 1 300.00 28.00
4 1 300.00 28.00
5 1 300.00 28.00
6 1 300.00 28.00
7 1 300.00 28.00
8 1 300.00 28.00
9 1 300.00 28.00
10 1 300.00 28.00
11 1 300.00 28.00
12 1 300.00 28.00
13 1 300.00 28.00
14 1 300.00 28.00
15 1 300.00 28.00
16 1 300.00 28.00
17 1 300.00 28.00
18 1 300.00 28.00
19 1 300.00 28.00
20 1 300.00 28.00
21 1 300.00 28.00
22 1 300.00 28.00
23 1 300.00 28.00
24 1 300.00 28.00
25 1 300.00 28.00
26 1 300.00 28.00
27 1 300.00 28.00
28 1 300.00 28.00
29 2 200.00 30.00
30 2 200.00 30.00
31 2 200.00 30.00
32 2 200.00 30.00
33 2 200.00 30.00
34 2 200.00 30.00
35 2 200.00 30.00
36 2 200.00 30.00
37 2 200.00 30.00
38 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 38 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -6.14 19.26 4.32 402.50 53.51 7.522
2 -6.14 23.55 4.32 560.92 160.53 3.494
3 -6.14 27.85 4.32 719.34 267.56 2.689
4 -6.14 31.75 3.52 992.97 452.40 2.195
5 -6.14 35.24 3.52 1381.79 715.07 1.932
6 1.09 39.49 5.00 1414.88 996.25 1.420
7 1.09 44.49 5.00 1775.62 1295.93 1.370
8 1.09 49.49 5.00 2136.36 1595.62 1.339
9 1.09 54.49 5.00 2497.11 1895.30 1.318
10 8.31 56.99 0.01 2214.59 2045.39 1.083
11 8.31 57.05 0.10 2217.11 2047.88 1.083
12 8.31 59.57 4.99 2331.69 2160.94 1.079
13 8.31 64.50 4.99 2556.31 2382.56 1.073
14 8.31 69.43 4.99 2780.92 2604.19 1.068
15 8.31 71.95 0.10 2895.51 2717.25 1.066
16 8.31 74.39 4.83 3006.59 2826.85 1.064
17 15.53 79.19 5.00 2701.83 3004.29 0.899
18 15.53 84.01 5.00 2823.88 3144.47 0.898
19 15.53 88.82 5.00 2945.93 3284.64 0.897
20 15.53 93.64 5.00 3067.98 3424.82 0.896
21 22.75 98.35 5.00 2705.99 3522.85 0.768
22 22.75 102.97 5.00 2748.25 3578.72 0.768
23 22.75 107.58 5.00 2790.50 3634.59 0.768
24 22.75 112.19 5.00 2832.76 3690.46 0.768
25 29.98 117.38 6.67 2445.00 3698.84 0.661
26 29.98 123.15 6.67 2419.20 3659.74 0.661
27 29.98 128.93 6.67 2393.39 3620.64 0.661
28 37.20 132.40 1.47 2032.25 3584.36 0.567
29 37.20 135.45 6.18 1983.03 3497.17 0.567
30 37.20 140.37 6.18 1902.34 3356.25 0.567
31 37.20 145.29 6.18 1868.31 3215.33 0.581
32 44.42 149.56 5.08 1556.35 3044.85 0.511
33 44.42 153.19 5.08 1492.80 2844.81 0.525
34 44.42 156.76 4.92 1366.74 2546.50 0.537
35 44.42 160.27 4.92 1173.74 2149.93 0.546
36 51.65 165.13 10.00 710.48 1496.02 0.475
37 51.65 171.34 10.00 212.31 584.76 0.363
38 58.87 174.77 1.29 -126.71 64.57 -1.963
***TABLE 5A - Total Base Force Data on the 38 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -6.14 19.26 4.32 1739.72 229.97 7.565
2 -6.14 23.55 4.32 2424.47 689.90 3.514
3 -6.14 27.85 4.32 3109.22 1149.83 2.704
4 -6.14 31.75 3.52 3491.82 1581.77 2.208
5 -6.14 35.24 3.52 4859.14 2500.17 1.944
6 1.09 39.49 5.00 7074.38 4980.34 1.420
7 1.09 44.49 5.00 8878.10 6478.50 1.370
8 1.09 49.49 5.00 10681.81 7976.66 1.339
9 1.09 54.49 5.00 12485.53 9474.82 1.318
10 8.31 56.99 0.01 24.16 22.08 1.094
11 8.31 57.05 0.10 224.06 204.79 1.094
12 8.31 59.57 4.99 11625.05 10660.62 1.090
13 8.31 64.50 4.99 12744.90 11753.97 1.084
14 8.31 69.43 4.99 13864.75 12847.32 1.079
15 8.31 71.95 0.10 292.62 271.72 1.077
16 8.31 74.39 4.83 14521.73 13510.28 1.075
17 15.53 79.19 5.00 13509.13 14472.88 0.933
18 15.53 84.01 5.00 14119.39 15148.18 0.932
19 15.53 88.82 5.00 14729.65 15823.48 0.931
20 15.53 93.64 5.00 15339.91 16498.78 0.930
21 22.75 98.35 5.00 13529.94 16243.30 0.833
22 22.75 102.97 5.00 13741.23 16500.91 0.833
23 22.75 107.58 5.00 13952.51 16758.52 0.833
24 22.75 112.19 5.00 14163.79 17016.13 0.832
25 29.98 117.38 6.67 16300.01 21360.06 0.763
26 29.98 123.15 6.67 16127.98 21134.26 0.763
27 29.98 128.93 6.67 15955.95 20908.46 0.763
28 37.20 132.40 1.47 2980.45 4187.11 0.712
29 37.20 135.45 6.18 12250.77 17208.75 0.712
30 37.20 140.37 6.18 11752.32 16515.30 0.712
31 37.20 145.29 6.18 11542.05 15821.85 0.730
32 44.42 149.56 5.08 7902.75 11041.95 0.716
33 44.42 153.19 5.08 7580.08 10316.52 0.735
34 44.42 156.76 4.92 6727.42 8951.93 0.752
35 44.42 160.27 4.92 5777.45 7557.83 0.764
36 51.65 165.13 10.00 7104.79 9282.90 0.765
37 51.65 171.34 10.00 2123.10 3628.48 0.585
38 58.87 174.77 1.29 -163.24 43.00 -3.796
***TABLE 6 - Effective and Base Shear Stress Data on the 38 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -6.14 19.26 4.32 402.50 514.01 468.15
2 -6.14 23.55 4.32 560.92 598.25 544.87
3 -6.14 27.85 4.32 719.34 682.48 621.59
4 -6.14 31.75 3.52 992.97 827.97 754.09
5 -6.14 35.24 3.52 1381.79 1034.71 942.39
6 1.09 39.49 5.00 1414.88 1052.30 958.41
7 1.09 44.49 5.00 1775.62 1244.11 1133.11
8 1.09 49.49 5.00 2136.36 1435.92 1307.80
9 1.09 54.49 5.00 2497.11 1627.73 1482.50
10 8.31 56.99 0.01 2214.59 1477.52 1345.69
11 8.31 57.05 0.10 2217.11 1478.86 1346.91
12 8.31 59.57 4.99 2331.69 1539.78 1402.40
13 8.31 64.50 4.99 2556.31 1659.21 1511.17
14 8.31 69.43 4.99 2780.92 1778.64 1619.95
15 8.31 71.95 0.10 2895.51 1839.57 1675.43
16 8.31 74.39 4.83 3006.59 1898.63 1729.23
17 15.53 79.19 5.00 2701.83 1736.59 1581.64
18 15.53 84.01 5.00 2823.88 1801.48 1640.75
19 15.53 88.82 5.00 2945.93 1866.38 1699.85
20 15.53 93.64 5.00 3067.98 1931.27 1758.96
21 22.75 98.35 5.00 2705.99 1738.80 1583.66
22 22.75 102.97 5.00 2748.25 1761.27 1604.12
23 22.75 107.58 5.00 2790.50 1783.74 1624.58
24 22.75 112.19 5.00 2832.76 1806.20 1645.05
25 29.98 117.38 6.67 2445.00 1600.03 1457.27
26 29.98 123.15 6.67 2419.20 1586.31 1444.77
27 29.98 128.93 6.67 2393.39 1572.59 1432.28
28 37.20 132.40 1.47 2032.25 1380.57 1257.39
29 37.20 135.45 6.18 1983.03 1344.90 1224.90
30 37.20 140.37 6.18 1902.34 1298.32 1182.48
31 37.20 145.29 6.18 1868.31 1278.67 1164.58
32 44.42 149.56 5.08 1556.35 1098.56 1000.54
33 44.42 153.19 5.08 1492.80 1061.87 967.12
34 44.42 156.76 4.92 1366.74 989.09 900.84
35 44.42 160.27 4.92 1173.74 877.66 799.35
36 51.65 165.13 10.00 710.48 610.20 555.75
37 51.65 171.34 10.00 212.31 322.58 293.80
38 58.87 174.77 1.29 0.00 0.00 0.00
***TABLE 6A - Effective and Base Shear Force Data on the 38 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -6.14 19.26 4.32 1739.72 2221.71 2023.48
2 -6.14 23.55 4.32 2424.47 2585.80 2355.09
3 -6.14 27.85 4.32 3109.22 2949.89 2686.69
4 -6.14 31.75 3.52 3491.82 2911.60 2651.81
5 -6.14 35.24 3.52 4859.14 3638.61 3313.96
6 1.09 39.49 5.00 7074.38 5261.52 4792.06
7 1.09 44.49 5.00 8878.10 6220.57 5665.54
8 1.09 49.49 5.00 10681.81 7179.62 6539.02
9 1.09 54.49 5.00 12485.53 8138.67 7412.51
10 8.31 56.99 0.01 24.16 16.12 14.68
11 8.31 57.05 0.10 224.06 149.45 136.12
12 8.31 59.57 4.99 11625.05 7676.85 6991.88
13 8.31 64.50 4.99 12744.90 8272.28 7534.19
14 8.31 69.43 4.99 13864.75 8867.72 8076.50
15 8.31 71.95 0.10 292.62 185.91 169.32
16 8.31 74.39 4.83 14521.73 9170.33 8352.12
17 15.53 79.19 5.00 13509.13 8682.93 7908.20
18 15.53 84.01 5.00 14119.39 9007.41 8203.73
19 15.53 88.82 5.00 14729.65 9331.89 8499.26
20 15.53 93.64 5.00 15339.91 9656.37 8794.79
21 22.75 98.35 5.00 13529.94 8694.00 7918.28
22 22.75 102.97 5.00 13741.23 8806.34 8020.60
23 22.75 107.58 5.00 13952.51 8918.68 8122.92
24 22.75 112.19 5.00 14163.79 9031.02 8225.23
25 29.98 117.38 6.67 16300.01 10666.87 9715.12
26 29.98 123.15 6.67 16127.98 10575.40 9631.82
27 29.98 128.93 6.67 15955.95 10483.93 9548.51
28 37.20 132.40 1.47 2980.45 2024.71 1844.05
29 37.20 135.45 6.18 12250.77 8308.55 7567.22
30 37.20 140.37 6.18 11752.32 8020.76 7305.12
31 37.20 145.29 6.18 11542.05 7899.37 7194.55
32 44.42 149.56 5.08 7902.75 5578.21 5080.49
33 44.42 153.19 5.08 7580.08 5391.91 4910.82
34 44.42 156.76 4.92 6727.42 4868.53 4434.14
35 44.42 160.27 4.92 5777.45 4320.06 3934.61
36 51.65 165.13 10.00 7104.79 6101.95 5557.51
37 51.65 171.34 10.00 2123.10 3225.77 2937.96
38 58.87 174.77 1.29 0.00 0.00 0.00
Average Effective Normal Stress = 1903.5370(psf)
Average Available Shear Strength = 1296.5061(psf)
Total Length of Failure Surface = 181.2883(ft)
SUM OF MOMENTS = -0.486694E-01 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.1278241E-06
SUM OF FORCES = 0.412015E-02 (lbs);Imbalance (Fraction of Total Weight) = 0.1082104E-
07
Sum of Available Shear Forces = 235041.34(lbs)
Sum of Mobilized Shear Forces = 214069.92(lbs)
FS Balance Check: FS = 1.097965
The FS Calculation To Determine The Seismic Yield
Coefficient (ky) Did Not Converge in 50 Iterations.
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Block (Seismic)Ninyo & Moore / WRM\B-B' East Slope Block Seismic.gsdSpencer MethodPLATE E-9 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.377 2 1.377 3 1.377 4 1.377 5 1.377 6 1.377 7 1.377 8 1.377 9 1.37710 1.377GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.377 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.377 2 1.377 3 1.377 4 1.377 5 1.377 6 1.377 7 1.377 8 1.377 9 1.377 10 1.377 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Block Seismic.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' East Slope Block Seismic.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Easterly Slope - Block (Seismic)
BOUNDARY DATA
7 Surface Boundaries
17 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 640.000 30.000 643.000 1
2 30.000 643.000 57.000 657.000 1
3 57.000 657.000 155.000 708.000 2
4 155.000 708.000 205.000 710.000 2
5 205.000 710.000 828.000 710.000 2
6 828.000 710.000 876.000 686.000 2
7 876.000 686.000 900.000 686.000 1
8 57.000 657.000 57.100 652.000 1
9 57.100 652.000 71.900 652.000 1
10 71.900 652.000 72.000 658.000 1
11 72.000 658.000 245.000 683.000 1
12 245.000 683.000 371.000 705.000 1
13 371.000 705.000 700.000 705.000 1
14 700.000 705.000 700.100 709.000 1
15 700.100 709.000 813.000 709.000 1
16 813.000 709.000 861.000 686.000 1
17 861.000 686.000 876.000 686.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 500.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g)
Default Velocity = 1.870(ft) per second
Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
A Non-Circular Zone Search Has Been Selected For Analysis
Using Random Generation Within Specified Zones.
2 Zones Defined For Generation Of Non-Circular Surfaces
5000 Trial Surfaces Have Been Generated.
Length Of Line Segments For Active And Passive Portions Of
Non-Circular Zone Search = 25.00(ft)
Zone X - 1 Y - 1 X - 2 Y - 2 Height
No. (ft) (ft) (ft) (ft) (ft)
1 72.00 658.50 72.00 658.50 0.10
2 72.10 658.50 370.00 704.50 0.10
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 3640
Number of Trial Surfaces With Valid FS = 1360
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 72.8 %
Statistical Data On All Valid FS Values:
FS Max = 18.439 FS Min = 1.377 FS Ave = 2.223
Standard Deviation = 1.621 Coefficient of Variation = 72.91 %
Critical Surface is Sequence Number 32 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.439362 1.213403 0.268 0.2259582E+00
2 19.9500 1.435144 1.249919 0.363 0.1852253E+00
3 42.4547 0.000000 1.131334 0.915 0.1131334E+01
4 23.1155 1.428559 1.277321 0.427 0.1512379E+00
5 25.3994 1.420794 1.299971 0.475 0.1208233E+00
6 34.4702 1.307135 1.437779 0.687 0.1306439E+00
7 29.7568 1.393295 1.353420 0.572 0.3987502E-01
8 30.8597 1.381702 1.369990 0.598 0.1171238E-01
9 31.3183 1.375972 1.377357 0.608 0.1385114E-02
10 31.2698 1.376608 1.376564 0.607 0.4374176E-04
11 31.2713 1.376588 1.376588 0.607 0.1028740E-06
Factor Of Safety For The Preceding Specified Surface = 1.377
Theta (fx = 1.0) = 31.27 Deg Lambda = 0.607
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 68.86 661.74 0.544 4577.35 1.000 31.27 2376.1
2 72.00 661.35 0.449 13158.97 1.000 31.27 6830.7
3 77.09 663.83 0.555 14438.51 1.000 31.27 7494.9
4 82.17 666.06 0.596 15795.63 1.000 31.27 8199.4
5 87.26 668.06 0.605 17230.35 1.000 31.27 8944.1
6 92.34 669.85 0.597 18742.66 1.000 31.27 9729.2
7 97.43 671.46 0.578 20332.55 1.000 31.27 10554.5
8 102.51 672.89 0.553 22000.03 1.000 31.27 11420.0
9 107.60 674.16 0.526 23745.11 1.000 31.27 12325.9
10 112.68 675.30 0.496 25567.77 1.000 31.27 13272.0
11 117.77 676.31 0.466 27468.01 1.000 31.27 14258.4
12 122.85 677.21 0.436 29445.85 1.000 31.27 15285.1
13 127.94 678.00 0.406 31501.28 1.000 31.27 16352.0
14 133.64 683.09 0.417 22354.62 1.000 31.27 11604.1
15 139.33 688.49 0.447 14474.49 0.996 31.18 7493.6
16 145.03 693.64 0.473 7810.98 0.687 22.63 3005.9
17 150.01 699.77 0.493 2511.13 0.415 14.16 614.3
18 155.00 676.49 0.000- -9.54 0.144 5.01 -0.8
19 157.22 707.66 0.510 24.43 0.023 0.81 0.3
20 157.65 708.11 0.000 178.38 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 20 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 3.14 1.57 67.29 660.79 662.35 -25.54 27.49 3.48
2 3.14 4.70 70.43 659.28 663.99 -25.54 27.49 3.48
3 5.09 7.20 74.54 658.92 666.13 8.75 27.49 5.15
4 5.09 9.07 79.63 659.71 668.78 8.75 27.49 5.15
5 5.09 10.93 84.71 660.49 671.42 8.75 27.49 5.15
6 5.09 12.80 89.80 661.27 674.07 8.75 27.49 5.15
7 5.09 14.66 94.88 662.05 676.72 8.75 27.49 5.15
8 5.09 16.53 99.97 662.84 679.36 8.75 27.49 5.15
9 5.09 18.39 105.05 663.62 682.01 8.75 27.49 5.15
10 5.09 20.25 110.14 664.40 684.65 8.75 27.49 5.15
11 5.09 22.12 115.22 665.18 687.30 8.75 27.49 5.15
12 5.09 23.98 120.31 665.97 689.95 8.75 27.49 5.15
13 5.09 25.85 125.40 666.75 692.59 8.75 27.49 5.15
14 5.70 25.22 130.79 670.18 695.40 46.87 27.49 8.33
15 5.70 22.10 136.48 676.26 698.36 46.87 27.49 8.33
16 5.70 18.99 142.18 682.34 701.33 46.87 27.49 8.33
17 4.99 14.26 147.52 689.85 704.11 60.81 27.49 10.22
18 4.99 7.93 152.51 698.77 706.70 60.81 27.49 10.22
19 2.22 2.83 156.11 705.22 708.04 60.81 2.29 4.56
20 0.43 0.44 157.44 707.66 708.10 64.39 2.29 1.00
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 65.715803 661.535775
2 68.857901 660.034571
3 72.000000 658.533368
4 77.085279 659.315708
5 82.170558 660.098047
6 87.255837 660.880387
7 92.341116 661.662727
8 97.426394 662.445067
9 102.511673 663.227406
10 107.596952 664.009746
11 112.682231 664.792086
12 117.767510 665.574426
13 122.852789 666.356765
14 127.938068 667.139105
15 133.635309 673.220708
16 139.332550 679.302310
17 145.029792 685.383913
18 150.014896 694.306946
19 155.000000 703.229978
20 157.222909 707.208851
21 157.652988 708.106120
***Table 3 - Force and Pore Pressure Data On The 20 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 591.3 0.0 0.0 0.0 0.0 118.3 0.0 0.00
2 1773.9 0.0 0.0 0.0 0.0 354.8 0.0 0.00
3 4396.6 0.0 0.0 0.0 0.0 879.3 0.0 0.00
4 5534.1 0.0 0.0 0.0 0.0 1106.8 0.0 0.00
5 6671.7 0.0 0.0 0.0 0.0 1334.3 0.0 0.00
6 7809.2 0.0 0.0 0.0 0.0 1561.8 0.0 0.00
7 8946.7 0.0 0.0 0.0 0.0 1789.3 0.0 0.00
8 10084.2 0.0 0.0 0.0 0.0 2016.8 0.0 0.00
9 11221.8 0.0 0.0 0.0 0.0 2244.4 0.0 0.00
10 12359.3 0.0 0.0 0.0 0.0 2471.9 0.0 0.00
11 13496.8 0.0 0.0 0.0 0.0 2699.4 0.0 0.00
12 14634.3 0.0 0.0 0.0 0.0 2926.9 0.0 0.00
13 15771.9 0.0 0.0 0.0 0.0 3154.4 0.0 0.00
14 17241.6 0.0 0.0 0.0 0.0 3448.3 0.0 0.00
15 15110.8 0.0 0.0 0.0 0.0 3022.2 0.0 0.00
16 12980.0 0.0 0.0 0.0 0.0 2596.0 0.0 0.00
17 8532.4 0.0 0.0 0.0 0.0 1706.5 0.0 0.00
18 4746.5 0.0 0.0 0.0 0.0 949.3 0.0 0.00
19 753.6 0.0 0.0 0.0 0.0 150.7 0.0 0.00
20 22.7 0.0 0.0 0.0 0.0 4.5 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 172679.35(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 172679.35(lbs)
TOTAL AREA OF SLIDING MASS = 1438.99(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 20 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 2 200.00 30.00
2 2 200.00 30.00
3 2 200.00 30.00
4 2 200.00 30.00
5 2 200.00 30.00
6 2 200.00 30.00
7 2 200.00 30.00
8 2 200.00 30.00
9 2 200.00 30.00
10 2 200.00 30.00
11 2 200.00 30.00
12 2 200.00 30.00
13 2 200.00 30.00
14 2 200.00 30.00
15 2 200.00 30.00
16 2 200.00 30.00
17 2 200.00 30.00
18 2 200.00 30.00
19 2 200.00 30.00
20 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 20 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -25.54 67.29 3.48 1267.85 188.18 6.737
2 -25.54 70.43 3.48 2565.83 564.55 4.545
3 8.75 74.54 5.15 913.87 864.58 1.057
4 8.75 79.63 5.15 1131.44 1088.27 1.040
5 8.75 84.71 5.15 1349.01 1311.95 1.028
6 8.75 89.80 5.15 1566.58 1535.64 1.020
7 8.75 94.88 5.15 1784.16 1759.33 1.014
8 8.75 99.97 5.15 2001.73 1983.02 1.009
9 8.75 105.05 5.15 2219.30 2206.71 1.006
10 8.75 110.14 5.15 2436.87 2430.40 1.003
11 8.75 115.22 5.15 2654.44 2654.09 1.000
12 8.75 120.31 5.15 2872.01 2877.78 0.998
13 8.75 125.40 5.15 3089.58 3101.47 0.996
14 46.87 130.79 8.33 1407.64 3026.31 0.465
15 46.87 136.48 8.33 1230.62 2652.31 0.464
16 46.87 142.18 8.33 1160.61 2278.30 0.509
17 60.81 147.52 10.22 668.65 1711.58 0.391
18 60.81 152.51 10.22 367.82 952.13 0.386
19 60.81 156.11 4.56 45.22 339.01 0.133
20 64.39 157.44 1.00 -133.50 52.80 -2.528
***TABLE 5A - Total Base Force Data on the 20 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -25.54 67.29 3.48 4415.04 591.29 7.467
2 -25.54 70.43 3.48 8934.99 1773.87 5.037
3 8.75 74.54 5.15 4701.96 4396.61 1.069
4 8.75 79.63 5.15 5821.39 5534.13 1.052
5 8.75 84.71 5.15 6940.81 6671.66 1.040
6 8.75 89.80 5.15 8060.24 7809.18 1.032
7 8.75 94.88 5.15 9179.67 8946.71 1.026
8 8.75 99.97 5.15 10299.10 10084.23 1.021
9 8.75 105.05 5.15 11418.52 11221.75 1.018
10 8.75 110.14 5.15 12537.95 12359.28 1.014
11 8.75 115.22 5.15 13657.38 13496.80 1.012
12 8.75 120.31 5.15 14776.81 14634.33 1.010
13 8.75 125.40 5.15 15896.23 15771.85 1.008
14 46.87 130.79 8.33 11730.37 17241.64 0.680
15 46.87 136.48 8.33 10255.13 15110.85 0.679
16 46.87 142.18 8.33 9671.74 12980.05 0.745
17 60.81 147.52 10.22 6834.42 8532.39 0.801
18 60.81 152.51 10.22 3759.53 4746.45 0.792
19 60.81 156.11 4.56 206.11 753.58 0.274
20 64.39 157.44 1.00 -132.83 22.71 -5.849
***TABLE 6 - Effective and Base Shear Stress Data on the 20 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -25.54 67.29 3.48 1267.85 931.99 677.03
2 -25.54 70.43 3.48 2565.83 1681.38 1221.41
3 8.75 74.54 5.15 913.87 727.62 528.57
4 8.75 79.63 5.15 1131.44 853.24 619.82
5 8.75 84.71 5.15 1349.01 978.85 711.07
6 8.75 89.80 5.15 1566.58 1104.47 802.32
7 8.75 94.88 5.15 1784.16 1230.08 893.57
8 8.75 99.97 5.15 2001.73 1355.70 984.82
9 8.75 105.05 5.15 2219.30 1481.31 1076.07
10 8.75 110.14 5.15 2436.87 1606.93 1167.33
11 8.75 115.22 5.15 2654.44 1732.54 1258.58
12 8.75 120.31 5.15 2872.01 1858.16 1349.83
13 8.75 125.40 5.15 3089.58 1983.77 1441.08
14 46.87 130.79 8.33 1407.64 1012.70 735.66
15 46.87 136.48 8.33 1230.62 910.50 661.42
16 46.87 142.18 8.33 1160.61 870.08 632.05
17 60.81 147.52 10.22 668.65 586.05 425.72
18 60.81 152.51 10.22 367.82 412.36 299.55
19 60.81 156.11 4.56 45.22 226.11 164.25
20 64.39 157.44 1.00 0.00 0.00 0.00
***TABLE 6A - Effective and Base Shear Force Data on the 20 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -25.54 67.29 3.48 4415.04 3245.48 2357.63
2 -25.54 70.43 3.48 8934.99 5855.08 4253.33
3 8.75 74.54 5.15 4701.96 3743.70 2719.55
4 8.75 79.63 5.15 5821.39 4390.00 3189.04
5 8.75 84.71 5.15 6940.81 5036.30 3658.54
6 8.75 89.80 5.15 8060.24 5682.60 4128.03
7 8.75 94.88 5.15 9179.67 6328.91 4597.53
8 8.75 99.97 5.15 10299.10 6975.21 5067.02
9 8.75 105.05 5.15 11418.52 7621.51 5536.52
10 8.75 110.14 5.15 12537.95 8267.81 6006.02
11 8.75 115.22 5.15 13657.38 8914.11 6475.51
12 8.75 120.31 5.15 14776.81 9560.41 6945.01
13 8.75 125.40 5.15 15896.23 10206.72 7414.50
14 46.87 130.79 8.33 11730.37 8439.20 6130.52
15 46.87 136.48 8.33 10255.13 7587.47 5511.79
16 46.87 142.18 8.33 9671.74 7250.65 5267.11
17 60.81 147.52 10.22 6834.42 5990.08 4351.40
18 60.81 152.51 10.22 3759.53 4214.79 3061.77
19 60.81 156.11 4.56 206.11 1030.54 748.62
20 64.39 157.44 1.00 0.00 0.00 0.00
Average Effective Normal Stress = 1474.9544(psf)
Average Available Shear Strength = 1050.4976(psf)
Total Length of Failure Surface = 114.5558(ft)
SUM OF MOMENTS = -0.550249E-04 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.3186534E-09
SUM OF FORCES = -.188141E-01 (lbs);Imbalance (Fraction of Total Weight) = -0.1089538E-
06
Sum of Available Shear Forces = 120340.57(lbs)
Sum of Mobilized Shear Forces = 87419.43(lbs)
FS Balance Check: FS = 1.376588
The FS Calculation To Determine The Seismic Yield
Coefficient (ky) Did Not Converge in 50 Iterations.
**** END OF GEOSTASE OUTPUT ****
Acadia Medical Facility, Chula Vista, CASection B-B' Stability Fill (Seismic)Ninyo & Moore / WRM\B-B' Stability Fill Seismic.gsdSpencer MethodPLATE E-10 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.504 2 1.510 3 1.513 4 1.524 5 1.530 6 1.531 7 1.532 8 1.533 9 1.53310 1.534GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.504 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775No. FS1 1.504 2 1.510 3 1.513 4 1.524 5 1.530 6 1.531 7 1.532 8 1.533 9 1.533 10 1.534 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0
*** GEOSTASE(R) ***
** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE **
** Current Version 4.30.30-Double Precision, January 2019 **
(All Rights Reserved-Unauthorized Use Prohibited)
*********************************************************************************
SLOPE STABILITY ANALYSIS SOFTWARE
Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options.
(Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath)
Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads
Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads
Nonlinear Undrained Shear Strength, Curved Strength Envelope,
Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown
2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses.
*********************************************************************************
Analysis Date: 3/ 5/ 2019
Analysis Time:
Analysis By: Ninyo & Moore / WRM
Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' Stability Fill Seismic.gsd
Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability
Calcs\B-B'\Stability Fill\B-B' Stability Fill Seismic.OUT
Unit System: English
PROJECT: Acadia Medical Facility, Chula Vista, CA
DESCRIPTION: Section B-B' Stability Fill (Seismic)
BOUNDARY DATA
3 Surface Boundaries
6 Total Boundaries
Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type
No. (ft) (ft) (ft) (ft) Below Bnd
1 0.000 686.000 24.000 686.000 1
2 24.000 686.000 72.000 710.000 2
3 72.000 710.000 200.000 710.000 2
4 24.000 686.000 39.000 686.000 1
5 39.000 686.000 87.000 709.000 1
6 87.000 709.000 200.000 709.000 1
User Specified X-Origin = 0.000(ft)
User Specified Y-Origin = 650.000(ft)
MOHR-COULOMB SOIL PARAMETERS
2 Type(s) of Soil Defined
Soil Number Moist Saturated Cohesion Friction Pore Pressure Water
Water
and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface
Option
Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No.
1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0
0
2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0
0
SEISMIC (EARTHQUAKE) DATA
Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g)
Default Velocity = 1.870(ft) per second
Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g)
Specified Vertical Earthquake Coefficient (kv) = 0.000(g)
(NOTE:Input Velocity = 0.0 will result in default Peak
Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps)
Specified Seismic Pore-Pressure Factor = 0.000
Horizontal Seismic Force is Applied at Center of Gravity of Slices
TRIAL FAILURE SURFACE DATA
Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure.
5000 Trial Surfaces Have Been Generated.
5000 Surfaces Generated at Increments of 0.0360(in) Equally Spaced Within the
Start Range
Along The Specified Surface Between X = 15.00(ft)
and X = 30.00(ft)
Each Surface Enters within a Range Between X = 65.00(ft)
and X = 200.00(ft)
Unless XCLUDE Lines Were Specified, The Minimum Elevation
To Which A Surface Extends Is Y = 650.00(ft)
Specified Maximum Radius = 5000.000(ft)
8.000(ft) Line Segments Were Used For Each Trial Failure Surface.
The Spencer Method Was Selected for FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Allowable negative side force = -1000.0(lbs)
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Specified Tension Crack Water Depth Factor = 0.000
Total Number of Trial Surfaces Attempted = 5000
WARNING! The Factor of Safety Calculation for one or More Trial Surfaces
Did Not Converge in 50 Iterations.
Number of Trial Surfaces with Non-Converged FS = 973
Number of Trial Surfaces With Valid FS = 4027
Percentage of Trial Surfaces With Non-Converged and/or
Non-Valid FS Solutions of the Total Attempted = 19.5 %
Statistical Data On All Valid FS Values:
FS Max = 3.230 FS Min = 1.504 FS Ave = 2.301
Standard Deviation = 0.421 Coefficient of Variation = 18.31 %
Critical Surface is Sequence Number 2355 of Those Analyzed.
*****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*****
BACK-CALCULATED CIRCULAR SURFACE PARAMETERS:
Circle Center At X = 34.835015(ft) ; Y = 741.325658(ft); and Radius =
56.571786(ft)
Circular Trial Failure Surface Generated With 10 Coordinate Points
Point X-Coord. Y-Coord.
No. (ft) (ft)
1 23.027 686.000
2 30.949 684.888
3 38.949 684.904
4 46.867 686.048
5 54.544 688.298
6 61.827 691.608
7 68.570 695.913
8 74.638 701.126
9 79.911 707.142
10 81.776 710.000
Iter. Theta FS FS
No. (deg) (Moment) (Force)
(fx=1.0) Lambda Delta FS
1 15.0000 1.775816 1.427048 0.268 0.3487675E+00
2 19.9500 1.737002 1.449784 0.363 0.2872182E+00
3 43.0444 0.000000 1.616067 0.934 0.1616067E+01
4 23.4344 1.690233 1.467403 0.433 0.2228301E+00
5 25.8141 1.641901 1.480397 0.484 0.1615036E+00
6 32.0798 1.337240 1.519496 0.627 0.1822560E+00
7 28.7573 1.548547 1.497772 0.549 0.5077562E-01
8 29.4817 1.516229 1.502302 0.565 0.1392772E-01
9 29.7555 1.502619 1.504042 0.572 0.1422601E-02
10 29.7302 1.503916 1.503880 0.571 0.3635844E-04
11 29.7308 1.503884 1.503884 0.571 0.1797223E-06
Factor Of Safety For The Preceding Specified Surface = 1.504
Theta (fx = 1.0) = 29.73 Deg Lambda = 0.571
The Spencer Method Has Been Selected For FS Analysis.
Selected fx function = Bi-linear
SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD:
Initial estimate of FS = 1.500
FS tolerance = 0.000001000
Initial estimate of theta(deg) = 15.00
Theta tolerance(radians) = 0.0001000
Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00
Theta convergence Step Factor = 5000.00
Maximum number of iterations = 50
Maximum force imbalance = 100.000000(lbs)
Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs)
Selected Lambda Coefficient = 1.00
Tension Crack Water Force = 0.00(lbs)
Specified Tension Crack Water Depth Factor = 0.000
Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft)
Depth of Water in Tension Crack = 0.000(ft)
Theoretical Tension Crack Depth = 5.774(ft)
NOTE: In Table 1 following, when a tension crack with water is present on the
first slice (right facing slope) or on the last slice (left facing slope), the
"side force" in the tension crack is set equal to the water pressure resultant.
*** Table 1 - Line of Thrust(if applicable) and Slice Force Data ***
Slice X Y Side Force fx Force Angle Vert. Shear
No. Coord. Coord. h/H (lbs) (Deg) Force(lbs)
1 24.00 686.21 1.000+ 345.41 1.000 29.73 171.3
2 27.47 686.87 0.632 1836.18 1.000 29.73 910.6
3 30.95 687.29 0.523 3812.84 1.000 29.73 1890.9
4 34.95 688.15 0.495 5545.59 1.000 29.73 2750.2
5 38.95 688.88 0.463 7486.72 1.000 29.73 3712.9
6 39.00 688.89 0.463 7499.51 1.000 29.73 3719.2
7 42.93 690.03 0.455 8483.00 1.000 29.73 4206.9
8 46.87 691.06 0.440 9465.51 1.000 29.73 4694.2
9 50.71 692.49 0.437 9424.46 1.000 29.73 4673.8
10 54.54 693.85 0.428 9320.26 1.000 29.73 4622.2
11 58.19 695.57 0.427 8352.33 1.000 29.73 4142.1
12 61.83 697.24 0.423 7361.61 1.000 29.73 3650.8
13 65.20 699.26 0.428 5822.08 1.000 29.73 2887.3
14 68.57 701.28 0.434 4365.51 1.000 29.73 2165.0
15 72.00 703.82 0.445 2522.84 0.832 25.41 1082.7
16 74.64 705.59 0.503 1434.88 0.607 19.13 470.3
17 77.59 707.64 0.572 593.04 0.357 11.51 118.3
18 79.91 708.49 0.470 278.16 0.159 5.18 25.1
19 81.78 710.00 0.000 522.85 0.000 0.00 0.0
NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below
the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that
the line of thrust is at or above the upper boundary of the sliding mass.
***Table 2 - Geometry Data on the 19 Slices***
Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length
No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft)
1 0.97 0.07 23.51 685.93 686.00 -7.99 0.00 0.98
2 3.47 1.25 25.74 685.62 686.87 -7.99 26.57 3.51
3 3.47 3.47 29.21 685.13 688.61 -7.99 26.57 3.51
4 4.00 5.58 32.95 684.89 690.47 0.12 26.57 4.00
5 4.00 7.57 36.95 684.90 692.47 0.12 26.57 4.00
6 0.05 8.58 38.97 684.91 693.49 8.22 26.57 0.05
7 3.93 9.29 40.97 685.20 694.48 8.22 26.57 3.97
8 3.93 10.69 44.90 685.76 696.45 8.22 26.57 3.97
9 3.84 11.78 48.79 686.61 698.39 16.33 26.57 4.00
10 3.84 12.58 52.62 687.74 700.31 16.33 26.57 4.00
11 3.64 13.06 56.36 689.13 702.18 24.44 26.57 4.00
12 3.64 13.22 60.01 690.78 704.00 24.44 26.57 4.00
13 3.37 13.07 63.51 692.68 705.76 32.55 26.57 4.00
14 3.37 12.61 66.88 694.84 707.44 32.55 26.57 4.00
15 3.43 11.76 70.28 697.39 709.14 40.66 26.57 4.52
16 2.64 10.01 73.32 699.99 710.00 40.66 0.00 3.48
17 2.95 7.19 76.11 702.81 710.00 48.77 0.00 4.47
18 2.32 4.18 78.75 705.82 710.00 48.77 0.00 3.53
19 1.86 1.43 80.84 708.57 710.00 56.88 0.00 3.41
***Table 2A - Coordinates of Slice Points Defining the Slip Surface***
Point X-Pt Y-Pt
No. (ft) (ft)
1 23.026605 686.000000
2 24.000000 685.863310
3 27.474438 685.375409
4 30.948875 684.887507
5 34.948867 684.895577
6 38.948859 684.903648
7 39.000000 684.911040
8 42.933288 685.479569
9 46.866575 686.048099
10 50.705131 687.173037
11 54.543688 688.297975
12 58.185180 689.953129
13 61.826672 691.608283
14 65.198279 693.760554
15 68.569885 695.912824
16 72.000000 698.859164
17 74.638478 701.125518
18 77.586267 704.489253
19 79.911093 707.142123
20 81.775568 710.000000
***Table 3 - Force and Pore Pressure Data On The 19 Slices (Excluding Reinforcement)***
Ubeta Ubeta Ualpha Earthquake
Force Stress Force Pore Force Distributed
Slice Weight Top Top Bot Pressure Hor Ver Load
No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs)
1 8.0 0.0 0.0 0.0 0.0 1.6 0.0 0.00
2 520.9 0.0 0.0 0.0 0.0 104.2 0.0 0.00
3 1448.6 0.0 0.0 0.0 0.0 289.7 0.0 0.00
4 2679.8 0.0 0.0 0.0 0.0 536.0 0.0 0.00
5 3635.9 0.0 0.0 0.0 0.0 727.2 0.0 0.00
6 52.7 0.0 0.0 0.0 0.0 10.5 0.0 0.00
7 4383.9 0.0 0.0 0.0 0.0 876.8 0.0 0.00
8 5043.8 0.0 0.0 0.0 0.0 1008.8 0.0 0.00
9 5427.3 0.0 0.0 0.0 0.0 1085.5 0.0 0.00
10 5793.2 0.0 0.0 0.0 0.0 1158.6 0.0 0.00
11 5705.5 0.0 0.0 0.0 0.0 1141.1 0.0 0.00
12 5777.8 0.0 0.0 0.0 0.0 1155.6 0.0 0.00
13 5288.8 0.0 0.0 0.0 0.0 1057.8 0.0 0.00
14 5100.0 0.0 0.0 0.0 0.0 1020.0 0.0 0.00
15 4839.1 0.0 0.0 0.0 0.0 967.8 0.0 0.00
16 3168.6 0.0 0.0 0.0 0.0 633.7 0.0 0.00
17 2544.3 0.0 0.0 0.0 0.0 508.9 0.0 0.00
18 1167.3 0.0 0.0 0.0 0.0 233.5 0.0 0.00
19 319.7 0.0 0.0 0.0 0.0 63.9 0.0 0.00
TOTAL WEIGHT OF SLIDING MASS = 62905.06(lbs)
EFFECTIVE WEIGHT OF SLIDING MASS = 62905.06(lbs)
TOTAL AREA OF SLIDING MASS = 524.21(ft2)
***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 19 SLICES***
Slice Soil Cohesion Phi(Deg) Options
No. Type (psf)
1 1 300.00 28.00
2 1 300.00 28.00
3 1 300.00 28.00
4 1 300.00 28.00
5 1 300.00 28.00
6 1 300.00 28.00
7 1 300.00 28.00
8 1 300.00 28.00
9 1 300.00 28.00
10 1 300.00 28.00
11 1 300.00 28.00
12 1 300.00 28.00
13 1 300.00 28.00
14 1 300.00 28.00
15 1 300.00 28.00
16 1 300.00 28.00
17 1 300.00 28.00
18 2 200.00 30.00
19 2 200.00 30.00
SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C),
F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH,
R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH
NOTE: Phi and C in Table 4 are modified values based on specified
Soil Options (if any).
***TABLE 5 - Total Base Stress Data on the 19 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert.
* (ft) (ft) (psf) (psf) Stress Ratio
1 -7.99 23.51 0.98 223.28 8.20 27.224
2 -7.99 25.74 3.51 411.12 149.91 2.742
3 -7.99 29.21 3.51 765.06 416.92 1.835
4 0.12 32.95 4.00 883.74 669.95 1.319
5 0.12 36.95 4.00 1148.42 908.98 1.263
6 8.22 38.97 0.05 1070.13 1029.58 1.039
7 8.22 40.97 3.97 1150.91 1114.56 1.033
8 8.22 44.90 3.97 1310.41 1282.34 1.022
9 16.33 48.79 4.00 1223.36 1413.88 0.865
10 16.33 52.62 4.00 1302.34 1509.20 0.863
11 24.44 56.36 4.00 1158.19 1566.80 0.739
12 24.44 60.01 4.00 1172.63 1586.67 0.739
13 32.55 63.51 4.00 991.14 1568.62 0.632
14 32.55 66.88 4.00 955.42 1512.64 0.632
15 40.66 70.28 4.52 777.38 1410.78 0.551
16 40.66 73.32 3.48 686.57 1200.92 0.572
17 48.77 76.11 4.47 409.87 863.11 0.475
18 48.77 78.75 3.53 234.50 502.12 0.467
19 56.88 80.84 3.41 -20.38 171.47 -0.119
***TABLE 5A - Total Base Force Data on the 19 Slices***
Slice Alpha X-Coord. Base Total Total Total
No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert.
* (ft) (ft) (lbs) (lbs) Force Ratio
1 -7.99 23.51 0.98 219.47 7.98 27.492
2 -7.99 25.74 3.51 1442.43 520.85 2.769
3 -7.99 29.21 3.51 2684.24 1448.58 1.853
4 0.12 32.95 4.00 3534.97 2679.78 1.319
5 0.12 36.95 4.00 4593.69 3635.91 1.263
6 8.22 38.97 0.05 55.30 52.65 1.050
7 8.22 40.97 3.97 4573.92 4383.89 1.043
8 8.22 44.90 3.97 5207.79 5043.80 1.033
9 16.33 48.79 4.00 4893.44 5427.27 0.902
10 16.33 52.62 4.00 5209.36 5793.16 0.899
11 24.44 56.36 4.00 4632.75 5705.49 0.812
12 24.44 60.01 4.00 4690.53 5777.85 0.812
13 32.55 63.51 4.00 3964.55 5288.76 0.750
14 32.55 66.88 4.00 3821.69 5100.03 0.749
15 40.66 70.28 4.52 3515.16 4839.13 0.726
16 40.66 73.32 3.48 2388.04 3168.60 0.754
17 48.77 76.11 4.47 1833.17 2544.28 0.721
18 48.77 78.75 3.53 827.16 1167.34 0.709
19 56.88 80.84 3.41 -69.54 319.71 -0.218
***TABLE 6 - Effective and Base Shear Stress Data on the 19 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress
* (ft) (ft) (psf) (psf) (psf)
1 -7.99 23.51 0.98 223.28 418.72 278.43
2 -7.99 25.74 3.51 411.12 518.60 344.84
3 -7.99 29.21 3.51 765.06 706.79 469.98
4 0.12 32.95 4.00 883.74 769.89 511.94
5 0.12 36.95 4.00 1148.42 910.63 605.52
6 8.22 38.97 0.05 1070.13 869.00 577.84
7 8.22 40.97 3.97 1150.91 911.95 606.40
8 8.22 44.90 3.97 1310.41 996.76 662.79
9 16.33 48.79 4.00 1223.36 950.47 632.01
10 16.33 52.62 4.00 1302.34 992.47 659.94
11 24.44 56.36 4.00 1158.19 915.82 608.97
12 24.44 60.01 4.00 1172.63 923.50 614.08
13 32.55 63.51 4.00 991.14 827.00 549.91
14 32.55 66.88 4.00 955.42 808.01 537.28
15 40.66 70.28 4.52 777.38 713.34 474.33
16 40.66 73.32 3.48 686.57 665.06 442.23
17 48.77 76.11 4.47 409.87 517.93 344.39
18 48.77 78.75 3.53 234.50 335.39 223.01
19 56.88 80.84 3.41 0.00 0.00 0.00
***TABLE 6A - Effective and Base Shear Force Data on the 19 Slices***
Slice Alpha X-Coord. Base Effective Available Mobilized
No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force
* (ft) (ft) (lbs) (lbs) (lbs)
1 -7.99 23.51 0.98 219.47 411.58 273.68
2 -7.99 25.74 3.51 1442.43 1819.51 1209.87
3 -7.99 29.21 3.51 2684.24 2479.79 1648.93
4 0.12 32.95 4.00 3534.97 3079.58 2047.75
5 0.12 36.95 4.00 4593.69 3642.51 2422.07
6 8.22 38.97 0.05 55.30 44.90 29.86
7 8.22 40.97 3.97 4573.92 3624.25 2409.92
8 8.22 44.90 3.97 5207.79 3961.28 2634.03
9 16.33 48.79 4.00 4893.44 3801.89 2528.05
10 16.33 52.62 4.00 5209.36 3969.86 2639.74
11 24.44 56.36 4.00 4632.75 3663.28 2435.88
12 24.44 60.01 4.00 4690.53 3694.00 2456.31
13 32.55 63.51 4.00 3964.55 3307.99 2199.63
14 32.55 66.88 4.00 3821.69 3232.03 2149.12
15 40.66 70.28 4.52 3515.16 3225.58 2144.83
16 40.66 73.32 3.48 2388.04 2313.20 1538.15
17 48.77 76.11 4.47 1833.17 2316.49 1540.34
18 48.77 78.75 3.53 827.16 1183.04 786.66
19 56.88 80.84 3.41 0.00 0.00 0.00
Average Effective Normal Stress = 860.6457(psf)
Average Available Shear Strength = 738.3039(psf)
Total Length of Failure Surface = 67.4123(ft)
SUM OF MOMENTS = -0.758897E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = -
0.1206416E-07
SUM OF FORCES = -.116901E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.1858371E-
09
Sum of Available Shear Forces = 49770.76(lbs)
Sum of Mobilized Shear Forces = 33094.81(lbs)
FS Balance Check: FS = 1.503884
The FS Calculation To Determine The Seismic Yield
Coefficient (ky) Did Not Converge in 50 Iterations.
**** END OF GEOSTASE OUTPUT ****
Problem Description:Surficial Stability of Existing Cut Slopes
Acadia San Diego Medical Facility, Chula Vista, CA
Parameters
Depth of Saturation (ft), z =4.0
Buoyant Unit Weight of Soil (pcf), Yb =67.6
Total Unit Weight of Soil (pcf), Yt =130
Slope Angle, α =26.6
Angle of Internal Friction, Φ =28.0
Cohesion (psf), c =300.0
Driving Force Acting in Downslope Direction
FD = (1/2) z.Yt.sin2α =208.19 lb/ft
Resisting Force Acting in Upslope Direction
FR = z.Yb.cos 2α.tanΦ + c
=414.95 lb/ft
Factor of Safety, F.S.
F.S. = 2.z.Yb.cos2 α.tanΦ2c
z.Yt.sin2α
=1.99
Project Name: Acadia San Diego Medical
Project No: 108727001
Designed/Checked: WRM/KHM
SURFICIAL SLOPE STABILITY
ANALYSIS
FLOWLINES z
FR
FD
Surficial Stability Evaluation of Cut Slopes
Problem Description:Surficial Stability of Existing Fill Slopes
Acadia San Diego Medical Facility, Chula Vista, CA
Parameters
Depth of Saturation (ft), z =4.0
Buoyant Unit Weight of Soil (pcf), Yb =67.6
Total Unit Weight of Soil (pcf), Yt =130
Slope Angle, α =26.6
Angle of Internal Friction, Φ =30.0
Cohesion (psf), c =200.0
Driving Force Acting in Downslope Direction
FD = (1/2) z.Yt.sin2α =208.19 lb/ft
Resisting Force Acting in Upslope Direction
FR = z.Yb.cos 2α.tanΦ + c
=324.82 lb/ft
Factor of Safety, F.S.
F.S. = 2.z.Yb.cos2 α.tanΦ2c
z.Yt.sin2α
=1.56
Project Name: Acadia San Diego Medical
Project No: 108727001
Designed/Checked: WRM/KHM
SURFICIAL SLOPE STABILITY
ANALYSIS
FLOWLINES z
FR
FD
Surficial Stability Evaluation of Fill Slopes
APPENDIX F
Derivation of Pseudostatic Coefficient
Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019
DETERMINATION OF PSEUDOSTATIC PARAMETER
FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY
References:
Given: Modal Magnitude, M = 6.69
Modal Distance, r = 17.5 km
Screening Threshold, u = 5 cm
0.37 g
For r > 10 km
For r < 10 km
ln(D 5-95 ) = 2.4858
(D 5-95 ) = 12.01 sec
Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models,
report prepared for Brookhaven National Laboratory, New York, NY, 144 p.
Design Ground Acceleration (rock), MHA =
Duration (D5-95)
Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., 2002, Recommended
Procedures for Implementation of DMG Special Publication 117-Guidelines
for Analyzing and Mitigating Landslide Hazards in California: Committee
Organized Through the ASCE, Los Angeles Section Geotechnical Group,
Document Published by the Southern California Earthquake Center, 101p.
Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified
Seismic Design Procedure for Geosynthetic-Lined Solid Waste Landfills:
Geosynthetics International, V.5, No. 1-2, pp. 203-235.
Stewart, J.P., Blake, T.F. and Hollingsworth, R.A., 2003, A Screen Analysis
Procedure for Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp.
697-712.
8664.0107.15
10/6851.0204.5expln)ln(6
3/105.165.1
955
MMD
8664.0)10(063.0107.15
10/6851.0204.5expln)ln(6
3/105.165.1
955
rMD
M
DETERMINATION OF PSEUDOSTATIC PARAMETER
FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY
Non-Linear Response Factor (NRF)
NRF ≈1.0192
Seismicity Factor (f eq )
f eq =0.54
Seismic Coefficient (k)
k =0.20
4449.0/exp9196.06225.0 MHANRF
)()()(log87.1477.3/
955
10 DNRFMHA
uNRFfeq
MHAfkeq
3/5/2019 Unified Hazard Tool
https://earthquake.usgs.gov/hazards/interactive/1/5
Uni ed Hazard Tool
Input
U.S. Geological Survey - Earthquake Hazards Program
Please do not use this tool to obtain ground motion parameter values for the design code
reference documents covered by the U.S. Seismic Design Maps web tools (e.g., the
International Building Code and the ASCE 7 or 41 Standard). The values returned by the two
applications are not identical.
Edition
Dynamic: Conterminous U.S. 2008 (v3.3.
Latitude
Decimal degrees
32.65539
Longitude
Decimal degrees, negative values for western longitudes
-116.95575
Site Class
760 m/s (B/C boundar y)
Spectral Period
Peak ground acceleration
Time Horizon
Return period in years
2475
3/5/2019 Unified Hazard Tool
https://earthquake.usgs.gov/hazards/interactive/2/5
Hazard Curve
View Raw Data
Hazard Curves
1e-2 1e-1 1e+0
Ground Motion (g)
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
Annual Frequency of ExceedanceUniform Hazard Response Spectrum
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Spectral Period (s)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
Ground Motion (g)Please select “Edition”, “Location” & “Site Class” above to
compute a hazard curve.
Compute Hazard Cur veCompute Hazard Cur veCompute Hazard Cur ve
3/5/2019 Unified Hazard Tool
https://earthquake.usgs.gov/hazards/interactive/3/5
Deaggregation
Component
Total
ε = (-∞ .. -2.5)
ε = [-2.5 .. -2)
ε = [-2 .. -1.5)
ε = [-1.5 .. -1)
ε = [-1 .. -0.5)
ε = [-0.5 .. 0)
ε = [0 .. 0.5)
ε = [0.5 .. 1)
ε = [1 .. 1.5)
ε = [1.5 .. 2)
ε = [2 .. 2.5)
ε = [2.5 .. +∞)
5
25
45
Closest Distance, rRup (km)
65
85
10598.587.5M agn itu de (M w )76.565.554.55% Contribution to Hazard10155
25
45
65
Closest Distance, rRup (km)85
105 98.587.576.5M agn itu de (M w )65.554.5
3/5/2019 Unified Hazard Tool
https://earthquake.usgs.gov/hazards/interactive/4/5
Summary statistics for, Deaggregation: Total
Deaggregation targets
Return period:2475 yrs
Exceedance rate:0.0004040404 yr⁻¹
PGA ground motion:0.30518296 g
Recovered targets
Return period:2722.9266 yrs
Exceedance rate:0.00036725191 yr⁻¹
Totals
Binned:100 %
Residual:0 %
Trace:0.06 %
Mean (for all sources)
r:18.03 km
m:6.39
ε₀:1.12 σ
Mode (largest r-m bin)
r:17.48 km
m:6.69
ε₀:1.16 σ
Contribution:9.85 %
Mode (largest ε₀ bin)
r:19.14 km
m:6.71
ε₀:1.35 σ
Contribution:6.32 %
Discretization
r:min = 0.0, max = 1000.0, Δ = 20.0 km
m:min = 4.4, max = 9.4, Δ = 0.2
ε:min = -3.0, max = 3.0, Δ = 0.5 σ
Epsilon keys
ε0:[-∞ ‥ -2.5)
ε1:[-2.5 ‥ -2.0)
ε2:[-2.0 ‥ -1.5)
ε3:[-1.5 ‥ -1.0)
ε4:[-1.0 ‥ -0.5)
ε5:[-0.5 ‥ 0.0)
ε6:[0.0 ‥ 0.5)
ε7:[0.5 ‥ 1.0)
ε8:[1.0 ‥ 1.5)
ε9:[1.5 ‥ 2.0)
ε10:[2.0 ‥ 2.5)
ε11:[2.5 ‥ +∞]
3/5/2019 Unified Hazard Tool
https://earthquake.usgs.gov/hazards/interactive/5/5
Deaggregation Contributors
Source Set Source Type r m ε0 lon lat az %
bFault.ch Fault 22.76
Rose Canyon 19.13 6.79 1.33 117.151°W 32.603°N 252.43 9.45
Coronado Bank 33.91 7.37 1.64 117.298°W 32.552°N 250.35 3.62
Palos Verdes Connected 33.91 7.72 1.37 117.298°W 32.552°N 250.35 3.57
Newport Inglewood Connected alt 2 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.07
Newport Inglewood Connected alt 1 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.05
CAmap.21.ch.in (opt)Grid 20.28
PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.97
PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38
PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46
PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70
PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41
PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38
CAmap.24.ch.in (opt)Grid 20.27
PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.96
PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38
PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46
PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70
PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41
PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38
bFault.gr Fault 14.00
Rose Canyon 19.55 6.66 1.44 117.151°W 32.603°N 252.43 6.33
Coronado Bank 34.27 7.00 1.91 117.298°W 32.552°N 250.35 2.92
Palos Verdes Connected 34.58 7.30 1.70 117.298°W 32.552°N 250.35 2.64
Newport Inglewood Connected alt 2 22.65 7.12 1.27 117.151°W 32.603°N 252.43 1.06
Newport Inglewood Connected alt 1 22.66 7.12 1.27 117.151°W 32.603°N 252.43 1.05
CAmap.24.gr.in (opt)Grid 9.98
PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98
PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69
PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23
CAmap.21.gr.in (opt)Grid 9.98
PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98
PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69
PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23
Ninyo & Moore | Imperial Avenue Bikeway, San Diego, California | 108478004 | October 22, 2018
5710 Ruffin Road | San Diego, California 92123 | p. 858.576.1000
ARIZONA | CALIFORNIA | COLORADO | NEVADA | TEXAS | UTAH
www.ninyoandmoore.com