Loading...
HomeMy WebLinkAboutAttachment 6.2- Appendices E-SWQMP_2_Atts3-6ATTACHMENT 3 Structural BMP Maintenance Information This is the cover sheet for Attachment 3. Page intentionally left blank for double-sided printing Indicate which items are included behind this cover sheet: Attachment Contents Checklist Sequence IZl Included Attachment 3a Structural BMP Maintenance Thresholds See Structural BMP Maintenance and Actions (Required) Information Checklist on the back of this Attachment cover sheet. Attachment 3b Draft Maintenance Agreement (when D Included applicable) IZl Not Applicable Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment: l:8:1 Preliminary Design/ Planning/ CEQA level submittal: Attachment 3a must identify: IZl Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7. 7 of the BMP Design Manual Attachment 3b is not required for preliminary design/ planning/ CEQA level submittal. □ Final Design level submittal: Attachment 3a must identify: D Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s) D How to access the structural BMP(s) to inspect and perform maintenance D Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds) D Manufacturer and part number for proprietary parts of structural BMP(s) when applicable D Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP) D Recommended equipment to perform maintenance D When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management Attachment 3b: For private entity operation and maintenance, Attachment 3b shall include a draft maintenance agreement in the local jurisdiction's standard format (PDP applicant to contact the City Engineer to obtain the current maintenance agreement forms). Chapter 7: Long Term Ope ration and Maintenance TABLE 7 -2. Mainte n a nce Indicators and A c tions for V egetate d BMPs Typical Maintenance i I I Inclicator(s) forVegetated I Maintenance Actions BMPs I I Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, debris without damage to the vegetation. Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans. Overgrown vegetatioH Mow or tLim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetatiGn height). E rosion due to concentrated Repair/re-seed/re-plant eroded areas and adjust the irrigation irrigation flow system. Erosion due to concentrated storm Repair/re-seed/re-plant eroded areas, and make appropriate water runoff flow c0rrective r:neasu(es such as adding ei:osion control blankets, adding stone at flow entry points, or ~runor (e-grading to t1:estore proper drainage aGco(ding to the original p lan. If the issue is not corrected by restoring the BMP to the original plan a.m<il gr.;ade, the City Em.gineer shall be contacted prior to any additional repairs or reconstruction. Standing water in vegetated swales Make appropriate corrective measures such as adjusting irrig-ation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infJtration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, the City Engineer shall be contacted prior to any additional repairs or reconsu.uction. Standing water ID bio.retention, Make appropriate corrective measures such as acljusting biofiltration with p>artial retention, or irrigation system, .removing obstructions of debris or invasive biofi1 tration areas, or flow-through vegetatic;m, clearing l]f,ldercdrains (whei:e applicabJe), or planter boxes for longer th an 96 repairing/i;eplaeing <clogged or compacted soils. hours following a storm evenft' Obstructed inlet or outlet structure Clear obstructions. Damage to structural components Repair or replace as applicable. such as weirs, inlet or outlet structures *These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event. BMP Design Manual December 2015 7 -8 OTYOF CHUlAVISTA I Task Pruning Mowing Mulching Mulch removal Watering Fertilization Remove and replace dead plants Inlet inspection Outlet inspection Miscellaneous upkeep STRUCTURAL BMP MAINTENANCE-BIOFILTRATION ,Frequency 1-2 times/year 2-12 times/year J-2 times/year J time/2-3 years t time/2-3 days for first 1-2 months; Sporadically after establishment 1 time initially 1 time/year Once after first rain of the season, then monthly during the rainy season Once after first rain of the season, then monthly during the rainy season 12 times/year Maintenance Notes Nutrients in runoff often cause bioretention vegetation to flourish. Frequency depends on location and desired aesthetic appeal. Between 1"-3' of mulch depth is ideal. Mulch accumulation reduces available water storage volume. Removal of mulch also increases surface infiltration rate offill soil. If drought conditions exist, watering after the initial year might be required. One time spot fertilization for firstyearvegetation. Within the first year, 10% of plants can die. Survival rates increase with time. Check for sediment accumulation to ensure that flow into the bioretention is as designed. Remove any accumulated sediment. Check for erosion atthe outlet and remove any accumulated mulch or sediment. Tasks include trash collection, plant health, spot weeding, removing rnvasive species, and removing mulch from the overflow device. ,n ;:;:: c; r: ~ 0 ;- 0 < ,..., v ro "' 0 -:: ~ ::: c; r;; 'f ry~ ;:;:: / .0,. ~ ::.: 'r) . Inspection and Maintenance Checklist for a Bioretention Area Property Address: _______________________ Property Owner: _____________ _ Treatment Measure No.: _____ Date oflnspection: ______ Type oflnspection: D Monthly D Pre-Wet Season D End of Wet Season D After heavy runoff Tnspec1or(s): D Other: ------------ Conditions when Maintenance ls Maintenance Results Expected when Maintenance Is Defect Needed Needed? {YIN) Comments• Performed 1. Standing waler Water stands in the bloretenlion area There should be no areas of standing water between storms and does not drain once inflow has ceased. Any of 1he following within 24 hours after rafnfall. could apply: sediment or trash blockages removed, Improved grade from head to foot of bioretention area, scarify media surface, flush underdralns. 2. Trash and debris Trash and debris accumulated in the Trash and debris removed from blotelention accumulation bloretenllon area and around the inlet area and disposed of properly. I and outlet I 3, Sediment Evidence of sedimentation in Material removed so that there is no clogging or biDl'etenlion area. blockage. Material is disposed of properly. 4. Erosion Channels have formed around inlets, Obstructions and sediment removed so that there are areas of bare soil, or other water flows freely and disperses over a wide evidence of erosion. area. Obstructions and SAdiment are disposed of properiy. 5. Vegetation Vegetation is dead, diseased or Vegetation Is heal1hy and attractive. overgrown. 6. Mulch Mulch is missing or patchy. Areas of bare earth are expos1:1d or mulch layer is less than 3 Inches deep. All bare earth Is covered, except mulch is kept 6 Inches away from trunks of trees and shrubs. Mulch Is even, at a depth of 3 Inches. 7.Sod Sod Is dead or requires mowing Sod is healthy and maintained at least 3 Inches (for sodden biorelentlon) In height. 8. Inlet/outlet Sediment accumulations Intel/outlet Is clear of sediment and allows water to flow freely 9. Miscellaneous Any condition not covered above that Meet the design specifications. needs attention for the bioretention area to function as desl9ned. a Describe the maintenance completed; if the needed maintenance was not conducted, note when 11 wlll be done. Page intentionally left blank for double-sided printing 4 ATTACHMENT 4 Copy of Plan Sheets Showing Permanent Storm Water BMPs This is the cover sheet for Attachment 4. LEGEND PROPOSED DESCRIPTION BOONOARY RfGHT-Cf"-WAY/ PRCPERTY UHES CURB & GUTlIR CURB CIHlY SJOEW,u( E1CflllRATION BASIN (OETAll Sim 4) ------- STCRM DRAIN RQJ D-LO>.D 1350 W/ WATERTIGHT JCANTS (SZE PER PlAH) 6° FIRE H)1)RANT {6"X4"X25"X2.5") -------- CURB RAMP S'rMBOL a Llli -W---w--WATER MAJN (SZE PER PUN) SOER MAO! (SZE PER PU,H) SOER M""'°-E """Sc:IMCE -s---S-- CATCH BASIN ST®' DRAIN Cl£AHOOT n?E A (SORSO) P-WAY Ct/l\ERT D-25 {SORSD) ORl~AY eves 1A 8" FlRE SER\U "r WATER SER"°' 2" IRRIGATION SER"°' OESll..T BASIN NO. EXISTING DESCRIPTION WAlER MA!H (SZE PER Pl.AN) COOTDUI! FrnCE 100 'l£AR FlOCOWAY --0 0 El --0 --0 --0 SYMBOL ASSESSOR'S PARCEL NUMBERS 595-710-11 595-710-12 SI TE ADDRESS: 830, 831 SHO\IROOM PLACE. CHULA \1STA. CA PROJECT DA TA: LOT 7 5.60 ACRES LOT 8 4.82 ACRES TOT><. PR0-.1:CT ACREAGE: 10.42 ACRES LEGAL DESCRIPTION LOTS 7 .!t 8 OF CHULA \1STA ll<ACT NO. 00-02 EASTLAKE BUSINESS GENTER II, PHASE 2. IN THE OTY OF CHULA '1STA. COUNTY OF SAN DIECO, STATE OF CAUFDRMA. ACCOOROING TO MAP THEREOF NO. 14J95, ALEO IN THE OFACE OF THE COUNTY RECCROffi Of SAN OIEGC, MAY 16, 2002. ENGINEER K .!t S ENGINEERNG 7801 MlSSION CENTER COURT, SUITE 100 SAN DIEGO, CA 92108 (619) 296-5565 KAM><. S'lt£IS, RCE 48592 SOURCE OF TOPOGRAPHY AERlAL PHOTOGRAMMElRY BY K.!tS ENGINEERING, INC. DATE Of PHOTOGRAPHY: 201&12.12 BENCHMARK OTY Of CHULA \ISTA BM 2284 ELEV: 650.19 OATUM: NA',1J88 PUBLIC UTILITY COMPANIES 7t J6' J6' 5.5' l.Al<OSCAP£ 10' 26' 26' 10 5.5' LANDSCAPE EASEMfHT EASEMENT 5.5' SlOEW..u</ --t-s.~ SlOEW..u< i ! ~ t'----,_;...._ '--- ~ ~ I i.l ~ i.l ~ .. .. ~ ~ 2% __ v "" ...... i SHOWROOM PLACE HTS 50 YR WS POIDING (MAX.) 2:1 SLOPE MAX. -;,~~-:---,:"j--""'---"""-'"""'".,t;." 11.fT P1f'[ UHER IE=690.65 6" P£RfDRA TEO~ TN CLEANOOTS NOTE! ALL ENlRY ANO EXlT PIPES PASSING ~ LIO ORlf1CI: RISER 1HRl/ IMP€RMEABlE lJlllNG TO BE SEAl£O AT JOIN BMP1-BIOFILTRATION WITH PARTIAL INFILTRATION PR-1 NOT TO SCM.£ POOlliHG(MAY-) 2:1 SLOPE MAX. . .,~"' TLET P1l'E IE=-687.92 5• P£RfORATEO PlPE NOTE: ALL ENTRY ANO EXIT PIPES PASSING ~¾i~Tf RlSER 1HRl/ IMP€RMEABlE LINING TO BE SEAl£O AT .ON BMP2-BIOFILTRATION WITH PARTIAL INFILTRATION PR-1 NOT TO SCALE WATER SUPPLY: OTAY WATER OISlRICT SE\\£R DISPOSAL: OTY Of CHULA \1STA GAS AIID ELEClRIOTY: SOC&£ TELEPHONE COMPANY: AT&T DA TE OF PREPARA T/ON: CABLE COMP ANY: CCX ARE DEPARTMENT: ClTY Of CHULA \ISTA P!XJCE DEPARTMENT: aTY Of CHULA \ISTA ~ARCH 22, 2019 REVISIONS 700.5 J.5' 701.0 5.0' --,--,..eSUs,B!!<OIV~l~S:O~ 80.l!,N0_A_RY_ PROPER_lY ':'!IE LOTB ---~-I ~I 51 LOT2 I/ I KEY MAP SCALE : 1• = 100' NOTES EARTHWORK: THE FOU.O'MNG ESTIMATED EARTH\\IJRK QUANTITIES ARE BASED ON THE ABO',£ IO£NTIAED AERl>L. TOPOGRAPHY Alla CONCEPTU>L. GRADING PLAN. HO SHRINKAGE. SUBSIDENCE OR REMEDlAL CALCULATIONS, INQ.UO/NG FOOTING, ETC. ARE INCLUOEO. THIS IS AN ESTIMATE FOR GENER><. PLANNING PURPOS£S, ONLY. CUT: 61,000 C. Y. ALL: 10,000 C.Y. EXPOOT: 51,000 C.Y. 1. THE EXJSTING UTILITIES SHO'MI ON THIS PLAN Yi£RE OBTAINED FROM AVAILAE1..E RECORDS OF THE QTY Of CHULA \1STA. THE arv OF SAN OIEGC. AND THE OTAY WATER OISlRICT ANO ARE APFROXIMATIOOS. 2. BIORETENTION/ SlRUCTUR>L. BMP NOTES: SEE S'IW.P FOR DELINEATIOH Of DMA AREAS. SEE THIS Sl1EET FOR SPEOAc.A TIONS FOR CONSTRUCTION Of' BMP'S AllD MAINTENANCE. ',EHICULAR ACCESS TO BIOREIEHTION BASIN TO PERFOOM INSPECTION ANO MAJNTENANCE TO BE PR0\10ED 'MTHIN FUTURE DRIVE AISLES \\ITHIN LOJS 8 .!t 9. REQUIRED SlCNAGE ANO FEATURES TO FAClUTATE INSPECTION (OBSERVATION POOTS, CLEANOUTS, SllT POSTS, ETC.) ANO MAINTENCE. J. ONSITE ARE SVSTEM TO BE LOOPED TO 2 PDINJS Of' CONNECTION TO OTAY WATER OISlRICT PUBIJC WATER MAINS ARCHITECTS ACADIA HEALTHCARE CHULA VISTA BEHAVIORAL HEALTH 830 & 831 SHOWROOM PLACE CHULA VISTA, CA 91914 AGENCY STAMP AGENCY HUMBER ISSUE/REVISION DESIGN REVIEW /CIIP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT HO. SHEET TITLE xxxx xxxx 03-22 2019 03-22-2019 SW SW 20180024 GRADING PLAN TITLE SHEET SHEET HO. C-1 A ; --:,u-,,~\;~-~~~:\ T :--· ::·/ ~::-rl ,:,-; {:;1ii: 1T \\;..:__;r},--11 r~,· Ii I IT Ii / li!il ---------------- BMP1 8GYBJJnr:JI,,, 637.(J &Q/Mf:4•1461 ----- SEE SHEET C-3 li!il 6il li!il (jj ~ LOT7 ---- LOT6 li!il li!il 0 \ \ \ \ \ \ \ l.(") I u 1--w w :::r: en w w en 15' PRa>OSED ORl\1c 26.5 l'l1ll€± SECTION A-A MTS 64.6'± WAID< QUALITY I BASIN I I I I L------~~AAAlE SECTION ~ SECTION P-P MTS I ' ·~ 10' 1~ SECTION E-E MTS Ull.JTY OISPOSITIOO IJDI ITY P$:OSIT!Cfi AT CV!-Qf-SAC/DWX CK) REI.OCATE OTAY WATER DISTRICT EXIST. 81..0Y(f'F' & AIR REl.EASE (ID RELOCATE OR A8AN()Oi OTAY WATER DtSTRICT 2-IRRIGATION SE:Rw::£ (0 RB.OCAlE ct ABAtlXlN OTAY WAlER OISlRICT 2-2" DOMES11C SER\1CE (ID RELOCATE COX CABLE TV BOX 0 10 20 4-0 60 t..-L-! I i GRAPHIC SCALE: 1" -20' ARCHITECTS ACADIA HEALTHCARE CHULA VISTA BEHAVIORAL HEAL TH 830 & 831 SHOWROOM PLACE CHULA VISTA, CA 91914 A""'G"'E""N~C~Y ~S~T=AMP AGENCY NUt,4BER XXXX XXXX ISSUE/REVvitsisliiiONN _______ _ DESIGN REVIEW /Cl IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE GRADING PLAN SHEET NO. C-2 03-22-2019 03-22-2019 SW SW 20180024 LOT2 """"'""'tllMWL FfRWDSC4P£NKHTECT PUJI (1Wll;NIJ/1WWE · F!R ~ MOITlCT PUJI LOT7 SEE SHEET C-2 r L _...,_ ffR ~ AmlllCT PUJI. I I .._,. I u 1--w w :r [F:i=-:===--===-====;~ ; ~J~ . ffJ{~AJiQT/U:T PUJI ' . w (/) 31':t SECTION 8-8 Nl> 0 10 20 4,0 t..-L-I GRAPHIC SCALE: 1" = zo• 60 ! ARCHITECTS 48 east holly iYf~j pasadena,ca fel: 626.793.9805 . fax: 626.793.9807 ACADIA HEALTHCARE CHULA VISTA BEHAVIORAL HEAL TH 830 & 831 SHOWROOM PLACE CHULA VISTA, CA 91914 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION DESIGN RFYIEW/CIIP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE xxxx xxxx 03-22-2019 03-22-2019 SW SW 2D180D24 GRADING PLAN SHEET NO. C-3 n I u 1-w w :::i:: VJ w w VJ _,,.,_ ' FOiJ..lrllJSCN'f NKJITltT ··~ IMJ1/(;ND""""' ffll,IJOXll£NillllfCT P'.AII' /1WNCN()/11M/NI FfR -N/Of1lr:T FUJI SEE SHEET C-5 9 0 10 20 40 I t..-t.-I GRAPHIC SCALE: 1" = 20' ARCHITECTS 48 east holly l;otreet pasadena, ca ~1103 tel: 626. 793.9805 • fax: 626.793.9807 ACADIA HEALTHCARE CHULA VISTA BEHAVIORAL HEAL TH 830 & 831 SHOWROOM PLACE CHULA VISTA, CA 91914 AGENCY STAMP AGENCY NUMBER xxxx xxxx ISSUE/REVISIONN,. _____ _ DESIGN REYIEW/Cl!P PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE 03-22-2019 03-22-2019 SW SW 20180024 GRADING PLAN SHEET NO. C-4 N I u f-w w :r: (/") w w (/") ........ _____ _ SEE SHEET C-4 LOT9 I.,", I ~-----'---------'---------'---------'--'---.,----,-- I/ I C SECTION C-C NTS 64.6'± WAlER OU"1.ITY BASIN I I I I I L------~ S<CTION SECTION D-D NTS 0 10 20 40 60 t--.-I I GRAPHIC SCALE: 1" = 20' ARCHITECTS ACADIA HEALTHCARE CHULA VISTA BEHAVIORAL HEALTH 830 & 831 SHOWROOM Pl.ACE CHULA VISTA, CA 91914 AGENCY STAMP AGENCY NUMBER xxxx xxxx ISSUE/REVISION ------• DESIGN REVIEW IC! IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE 03-22-2019 03-22-2019 SW SW 20180024 GRADING PLAN SHEET NO. C-5 41) IN TOTAL 0 3) IN TOTAL C) 77) IN TOTAL PLANT MATERIAL LEGEND Plant sizes are indicated for general reference by height x width. EVERGREEN PATIO SHADE TREE Cha-acter defiring trees that provide a 1,.-ge canopy of shade for pedestrians in patio cf"Bas and along pathways SEMI-EVERGREEN AND EVERGREEN SHADE CANOPY TREE Fa-shade and to establish a formal plane ohegetation along the pa-king stalls PERIMETER SCREEN TREE For screening end trsnsition fa open space EVERGREEN SPREADING GROUNDCOVERS AND GRASSES MEDIUM HEIGHT (24"-42") EVERGREEN FOUNDATION SHRUBS AND ORNAMENTAL GRASSES [ls§ MATCHLINE -SEE SHEET L-2 WATER QUALITY BASIN PLANTING LOW HEIGHT (12"-18") FOREGROUND SHRUBS, GROUNDCOVERS, AND SUCCULENTS TALL HEIGHT (6'-8') EVERGREEN SCREENING SI-- LOW HEIGHT GARDEN PLANTINGS: MIXTURE OF SUCCULENTS, ORNAMENTAL GRASSES, AND GRASS-LIKE PLANTS AND PERENNIALS HYDROSEED MIX D TURFGRASS NOTE: ALL SHRUBS AND GROUNDCOVERS SHOWN AS HATCHES SHALL BE SPACED IN TRIANGULAR PATTERN PLAN KEY A ARRIVAL PLAZA B PRIVATE COURTYARD GARDEN C STAFF PATIO WITH SHADE CANOPY D SERVICE/ LOADING E FLEXIBLE RECREATION LAWN F FLAGPOLES T ARRIVAL PLAZA G STORMWATER TREATMENT (SEE CIVIL PLAN) ·f:_.,. . .,,}'.,.~~::;; . . -;~ g: ,-.-~ .. -'I· ~ Q; PAVING FINISH LEGEND STANDARD GRAY CONCRETE PAVING ENHANCED CONCRETE AT COURTYARDS & EMPLOYEE PATIO ENHANCED PAVING AT ARRIVAL PLAZA DECOMPOSED GRANITE KEY MAP 0 15' 30' ~ II I ■ t-.ORTH NOTTO~ SCALE '-.LJ J • ARCHITEC 48 east holly s pasadena, ca £ tel: 626. 793.9805 · fax: 626. ACADIA HEALTHCAR CHULA VIST, BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION DESIGN RfVIEW/CI IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE XXl 03- 0.l LANDSCAPE DEVELOPME PLAN SHEET NO. L-1 41) IN TOTAL 0 73) IN TOTAL 0 77) IN TOTAL PLANT MATERIAL LEGEND Plant sizes are indicated for general reference by height x width. EVERGREEN PATIO SHADE TREE Character defining trees that provide a la-ge canopy of shade for pedestrians in patio areas and along palhways SEMI-EVERGREEN AND EVERGREEN SHADE CANOPY TREE For shade and to establsh a formal plane of vegetation along Iha parl;ing stalls PERIMETER SCREEN TREE Forscraening and transiOOn to open space EVERGREEN SPREADING GROUNDCOVERS AND GRASSES MEDIUM HEIGHT (24"-42") EVERGREEN FOUNDATION SHRUBS AND ORNAMENTAL GRASSES WATER QUALITY BASIN PLANTING LOW HEIGHT (12"-18") FOREGROUND SHRUBS, GROUNDCOVERS, AND SUCCULENTS TALL HEIGHT (6'-8') EVERGREEN SCREENING SH LOW HEIGHT GARDEN PLANTINGS: MIXTURE OF SUCCULENTS, ORNAMENTAL GRASSES, AND GRASS-LIKE PLANTS AND PERENNIALS HYDROSEED MIX TURF GRASS NOTE: ALL SHRUBS AND GROUNDCOVERS SHOWN AS HATCHES SHALL BE SPACED IN TRIANGULAR PATTERN PLAN KEY A ARRIVAL PLAZA B PRIVATE COURTYARD GARDEN C STAFF PATIO WITH SHADE CANOPY D SERVICE/ LOADING E FLEXIBLE RECREATION LAWN F FLAGPOLES T ARRIVAL PLAZA G STORMWATER TREATMENT (SEE CIVIL PLAN) c:=:=J L'..d iii -~ ~ PAVING FINISH LEGEND STANDARD GRAY CONCRETE PAVING ENHANCED CONCRETE AT COURTYARDS & EMPLOYEE PATIO ENHANCED PAVING AT ARRIVAL PLAZA DECOMPOSED GRANITE KEY MAP 0 15' 30' 60' ~ II I ■ ~ E NORTH NOTffi~ SCALE '-.I.} .. ARCHITEC 48 east holly s pasadena, ca S tel: 626. 793.9805 • fax: 626. ACADIA HEALTHCAR CHULA VIST, BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/RE'mtoN DESIGN REYJEW/CI IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET 1ITlE xx: 03- 03 LANDSCAPE DEVELOPME PLAN SHEET NO. L-2 (41) IN TOTAL 0 (73) IN TOT Al. C) (77) IN TOT Al. PLANT MATERIAL LEGEND Plant sizes are indicated for general reference by height x width. EVERGREEN PATIO SHADE TREE Character denning ~ees that provide a large canopy of shade for pedeslrians in patio areas and along pathways 35• box size Olea europaea (Common Olive), 20' x 15' Quen:us virginiana (Southern Live Oa<), 40' .x. 60' Quertus egrifolia (Coast Live Ca<), 40' x 50' SEMI-EVERGREEN AND EVERGREEN SHADE CANOPY TREE For shade and to establish a formal plane of vegetation along the pai<ing stalls 50% 24' box size. 50% 36" box size Lophostemon confertus (Brisbane Box), 30' x 25' Prosopis chilensis (Thomless Chilean Mesquite), 20' x 20' Umus pavifolia 'True Green' True Green Chinese Bm), 40' x30' Quercus vigiriana (Southern Live Oak) PERIMETER SCREEN TREE For screening and transition to open space 50% 15 gallon size, 50% 24"box size Ouertus egrifolia (Coast Live Oak), 20'-70' x 30'-80' PlanhJs racemosa (California Syc,rnom), 30'-80' x 20'-50' Acacia salicina (Black Wattle), 40' x 15' Acacia stencph~la (Shoestring Acacia), 30' x 20' Lophostemon confert\Js (Brisbane Box) EVERGREEN SPREADING GROUNDCOVERS AND GRASSES 100% 1 gallon size@42" O.C. average spacing Festuca rubra (Creeping Red Fescue) Senecio mandraliscae (Blue Chalksticks) Bacchms piulans 'f¼eon Point' (Dwai Coyote Brush) Cotoneaster dammeri 'Lowfast' (Beabeny Cotoneaster) Wes1rin,ia fructicosa 'Mundi' (Low Coast Rosernmy) Lantma 111<Jntevidensis (Traling Lantana) Lantma 'New Gold' (New Gold Lantana) Cmssa macroca-pa 'Green Ca-pet' (Green C'"Pet Natal Plum) TOTAL LANDSCAPE AREA: 176,425 SF TOTAL SITE: 461,036 SF PERCENTAGE OF LANDSCAPE AREA TO TOTAL SITE: 38.3% ~ MEDIUM HEIGHT (24"-42") EVERGREEN FOUNDATION SHRUBS AND ORNAMENTAL GRASSES 100°k 5 gallon size@ 36" O.C. average spacing Cmssa macroca,pa (Natal Plum) CslUstemon 'Little John' (Dwart Callisternon) Crassula ovata (Baby Jade) Liguslrum i'!'Onicum 'T exanum' {Waxleaf Privet) Rhaphiclepis umbeUata Mina' (Dwarf Yeddo Hawthorn), 4' x 3' Senecio deceryi (Madagescs-Senecio) Wes1ringia fruticosa 'Blue Gem', (Coast Rosermry), 4' x 4' Wes1ringia fruticosa 'Grey Bot (Dwarf Coastal Rosemary) Festuca maira (Atlas Fescue) Lornandra 'Breeze' (Dwaf Mat Rush) Leonotis leonurus (Lion's Ear) Senecio barbertonicus (Succulent Bush Senecio WATER QUALITY BASIN PLANTING 100% 1 gallon size, 36" O.C. AchiUea millefoUum (Common YErTOW) Ca-ex praegacilis (California Field Sedge) Chondropetalum tectorum (Cape Rush), 4' x 6' Iris Douglasiana (Dooglas Iris) Juncus patens (California Gray Rush) Lornandra longifoiia Breeze (Dwaf Mat Rush) Leymus condensetus 'Canyon Prince' (Canyon Prince Wid Rye) LOW HEIGHT (12"-18") FOREGROUND SHRUBS, GROUNDCOVERS, AND SUCCULENTS Aloe 'Blue Elf (Blue Bf Aloe) Aloe brevifolia (ShcrHeaved Aloe) Aloe 'Cynlhia Giddy' (Cynthia Giddy Aloe) Aloe striata (Cera! Aloe) Ca-ex praegracilis (Clustered Field Sedge) Carissa macroca,pa 'Green C'"Pef (Green C'"Pel Natal Plum) Salvia chernaedl)'oides (Germander Sage) Senecio mandraliscae (Blue Chalksticl:s) Sesleria auturnnais (Autumn Mcxr Grass), 2.5' x 2.5' Trachelospennumjasminoides {Star jasmine) TALL HEIGHT (6'-8') EVERGREEN SCREENING SHRUBS 75% 5 gallon size, 25% 15 gallon size llanbusa dolichomerithella ~reen S1ripe' (Green Slripe Blowgun llanboo) Dodoneee viscose 'Alropu,purea' (Smoke Bush) Feijoa sellooiana (Pineapple Guava) Laurus nobilis (Sweet Bay) Liguslrum japoni<:um 'Texanum' (Waxleaf Privet) Prunus caoliniana (Cercline chenylaurel) Calistemon viminalis 'Stirn' (Slim Bottlebrush) LOW HEIGHT GARDEN PLANTINGS: MIXTURE OF SUCCULENTS, ORNAMENTAL GRASSES, AND GRASS-LIKE PLANTS AND PERENNIALS 25% 5 galon size, 75% 1 gallon size@42' O.C. Aeonium Erooram [Tree Aeonium) Aeonium allroreun var. atropurpureum (Pu,ple Aeonium) Aloe 'Blue Elf (Blue Bf Aloe) Aloe brevifolia (Short<eaved Aloe) Aloe 'Cynthia Giddy' (Cynthia Giddy Aloe) Aloe s1riata (Coral Aloe) Anigozanlhos 'Bush Range( (Dwarf Kangaroo Paw) Carex praegracilis (Ous1ered Field Sedge) Carissa macroc'"Pa 'Green Curpe! (Green C'"Pet Natal Plum) Cianella revoluta 'Little Rev' (Little Rev Flax Lily) Cianella tasmanica 'Veriegata'(White S1ripedTasman Flax Lily) H,,spe,aloe parvfficra (Texas Red Yucca) Lantana mortevidensis (Trailing Lantana) Lantana 'New Geld' (New Geld Lantana) Loma1dra 'Breeze' (Dwarf Ma: Rush) Salvia ch<mae<i'ycldes (Germander Sage) Salvia spalhacea (Hummingbird Sage) Senecio mandraliscae (Blue Chalksticl:s) Sesleria au1umnslis (Autumn Moor Grass), 2.5' x 2.5' Trachelospermum jasminades (Sia-jasrrine) Weslrini;ja fructicosa 'Mundi' (Low Coast Rosemary) HYDROSEED MIX Corrbination of tv.., seed mixes: 50% Ornamental, Low Growing Native Mix by S&S Seeds Achillea milefoliun (Yarrow) Aomispon glaber (Deerweed) Camissoniopsis cheiranlhifclia (Beach Evening Primrose) Cla-kia bottae (Punch-bov. Godetia) Collinsia helBrophylla (Chinese Houses) Eschsch<llzia californican (California Poppy) Festuca microstachys (Small Fescue) Lasthenia californica (Dwarf Gcldfields) Layia pletyglossa [Tidylips) Lupinus bicoloc (Bicclor Lupine) Lupinus nanus (Sky Lupine) Mimulus aurantiacus longffiorus (Sticky Morl<eyflower) Mimu!us aurantiacus puniceus {Mssion Red Monkeyflower) Muhlenbe,gla microsperma (Lillleseed Muhly) Nemophi a maculata (Five Spot) Sisyrinchium bellum (Blue-<iyed Grass) 50% NBti'le Fescue Mix Feslllca occidentalis (Western Moke!umne Fescue) Feslllca idahoensis (Idaho Fescue) Feslllca rubra (Creeping Red Fescue) TURF GRASS Marathon II SOD (Dwarf Tall Fescue) J • ARCHITEC 48 east holly s pasadena, ca S tel: 626. 793.9805 · fax: 626. ACADIA HEALTHCAR CHULA VIST1 BEHAVIORAL HE B30 & B31 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION D£51GN RfYIEW/CIIP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET 1ITlE xx: 03- 03 LANDSCAPE DEVELOPME PLAN SHEET NO. L-3 ... ,., ~ "- ,, ,, .:, a >•-\(1..:. ... ,\ c.t. ~ ,. a C • 1---t-K :::::i _:,./'".:..:,.:.,:. >-:,.,::,,c.""t.!,. ~ :.:.:.:.:,:,.: lJJ .:.t..:. Cl.. ~.:.t..:.t.t..:. ~ ::❖:· ~ lI 1---+-r,;., •·· ,.;_ ....... :;. :.• .. _._:-_., .:..e..:..:. ..:.t..:. .l,,;5, :,_,:;, t.t..:. _;,:..:;.:,. t.r..:. lI~f ~I; ;:~:~ IRRIGATION WATER BUDGET CALCULATION WATER BUDGET: (ETo)(0.62)1(0.7)(LA) + (0.3)(SLA)) (47)(0.62)[(0.7K159,469) +(0.3)(10,045)] = 3,340,662 GALJYR ESTIMATED TOTAL WATER USE: [(ETo)(0.62)11(PF x HAI IE) +SLA] HYDRO ZONE 1 -MEDIUM WATER USE -DRIP [(47)(0.62)][(0.5 x52,15110.81) +OJ= 938,074 GALJYR HYDROZONE 2 -LOW WATER USE -DRIP [(47K0.62)][(0.2 x 23,187 I 0.81) +OJ= 166,832 GALNR. HYDROZONE 3 -VERY LOW WATER USE -MP ROTATORS [(47K0.62)][(0.2 x 65,397 / 0.75) +OJ= 508,178 GALJYR HYDROZONE 4 -HIGH WATER USE -BUBBLER [(47)(0.62)][(0.8 x 1,94410.55) +OJ= 82,397 GALNR. HYDROZONES -MEDIUM WATER USE -MP ROTATORS [(47)(0.62)][(0.5 x 16,790 I 0.75) +OJ= 326,174 GAL.MR. HYDROZONE 6 -HIGH WATER USE -SLA-MP ROTATORS [(47)(0.62)][(0.8 x O I 0.75) + 10045] =292,711 GAL.MR. TOTAL ESTIMATED WATER USE= 2,314,367 GAL/YR. PROPERTY LINE ·--------- bJ ~ ---AREA IN SQUARE FEET ---HYDROZONE ID ID HYDROZONE PF AREA(SF) %AREA 1 MEDIUM 0.5 52,151 30.77% 2 LOW 0.2 23,187 13.68% 3 VERYLOW 0.2 65,397 38.58% 4 HIGH 0.8 1,944 1.15% 5 MEDIUM 0.5 16,790 9.90% 6 HIGH 0.8 10,045 5.93% TOTAL 169,514 100% I HAVE COMPLIED WITH THE CRITERIA OF THE ORDINANCE AND APPLIED THEM FOR THE EFFICIENT USE OF WATER INTHE LANDSCAPE DESIGN PLAN. IRRIGATION NOTES AN AUTOMATIC, ELECTRICALLY CONTROLLED IRRIGATION SYSTEM SH<\LL BE PROVIDED AS REQUIRED FOR PROPER IRRIGATION, DEVELOPMENT, AND MAINTENANCE OF THE VEGETATION IN A HEALTHY, DISEASE-RESISTANT CONDmON. THE DESIGN OF THE SYSTEM SHALL PROVIDE ADEQUATE SUPPORT FOR THE VEGETATION SELECTED.THIS SYSTEM WILL BE CONTROLLED BY A DUAL PROGRAM ELECTRONIC TIME CLOCK AND REMOTE CONTROL VALVES POP-UP TYPE HEADS WILL BE USED ADJACENT TO WALKWAYS AND ROADWAYS. BUBBLER HEADS WILL BE USED FOR LANDSCAPED AREAS LESS THAN 6' WIDE. DRIP IRRIGATION OR LOW-FLOW BUBBLERS SHALL BE USED IN PARKING AREAS AND ADJACENT TO LOW-LEVEL BUILDING GLASS. THE SYSTEM WILL BE INSTALLED AS SOON AS POSSIBLE AFTER CONSTRUCTION AND PRIOR TO PLACEMENT OF PLANT MATERIALS. A DEDICATED LANDSCAPE IRRIGATION METER WILL BE PROVIDED. 0 15' 30' 11 I ■ 60' ~ E KEY MAP ~ NORTH J • ARCHITEC 48 east holly s pasadena, ca !: tel: 626. 793.9805 • fax: 626 . ACADIA HEALTHCAR CHULA VIST, BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION 0£51GN REYJEW/CIIP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT ND. SHEET TITl£ xx: 03- 03 HYDROZONE DIAGRAM~ WATER ANALYSIS SHEET NO. L-4 IRRIGATION WATER BUDGET CALCULATION WATER BUDGET: (ET o)(0.62)1(0. 7)(l.A) + (O.J)(SLA)! (47)(0.62)1(0.7)(159,469) + (0.3)(10,045)] = 3,340,662 GAL/YR ESTIMATED TOTAL WATER USE: [(ETo)(0,62))[(PF x HA/ IE) +SLA] r-::::J HYDROZONE 1 • MEDIUM WATER USE· DRIP LJ {(47)(0.62)][(0.5 x 52,151 / 0.81) +OJ= 938,074GALNR. ~ HYDROZONE 2 • LOW WATER USE -DRIP ~ [(47)(0.62))[(0.2 x 23,187 / 0.81) +OJ= 166,832 GALNR E1 HYDRO ZONE 3 • VERY LOW WATER USE -MP ROTATORS ~ [(47)(0.62)][(0.2 x 65,397 I 0.75) +OJ= 508,178 GALNR. N HYDROZONE 4. HIGH WATER USE· BUBBLER LJ [(47)(0.62)][(0.8 x 1,944/ 0.55) +OJ= 82,397 GAL.MR. n HYDROZONE 5 • MEDIUM WATER USE -MP ROTATORS b [(47)(0.62)][(0.5 x 16.790 I 0.75) +OJ= 326,174 GAL./YR. ITT HYDRO ZONE 6 ·HIGHWATER USE· SLA • MP ROTATORS ~ [(47)(0.62)][(0.8x0/0.75)+10045]=292.711 GAL.MR. TOTAIL ESTIMATED WATER USE =2,314,367 GAL/YR. ~---AREA IN SQUARE FEET ---HYDROZONE ID ID HYDROZONE PF AREA(SF) %AREA 1 MEDIUM 0.5 52,151 30.77% 2 LOW 0.2 23,187 13.68% 3 VERY LOW 0.2 65,397 38.58% 4 HIGH 0.8 1,944 1.15% 5 MEDIUM 0.5 16,790 9.90% 6 HIGH 0.8 10,045 5.93% TOTAL 169,514 100% I HAVE COMPLIED WITH lliE CRITERIA OF THE ORDINANCE AND APPLIED THEM FOR lliE EFFICIENT USE OF WATER IN THE LANDSCAPE DESIGN PLAN. IRRIGATION NOTES AN AUTOMATIC, ELECTRICALLY CONTROLLED IRRIGATION SYSTEM SHALL BE PROVIDED AS REQUIRED FOR PROFER IRRIGATION, DEVELOPMENT, AND MAINTENANCE OF THE VEGETATION IN A HEALTHY, DISEASE-RESISTANT CONDITION. lliE DESIGN OF THE SYSTEM SHALL PROVIDE AIDEQUATE SUPPORT FOR lliE VEGETATION SELECTED.THIS SYSTEM WILL BE CONTROLLED BY A DUAL PROGRAM ELECTRONIC TIME CLOCK AND REMIOTE CONTROL VALVES POP-UP TYPE HEADS WILL BE USED ADJACENT TO WAl:I..WAYS AND ROADWAYS. BUBBLER HEADS WILL BE USED FOR LANDSCAPED AREAS LESS THAN 6' WIDE. DRIP IRRIGATION OR LOW-FLOW BUBBLERS SHALL BE USED IN PARKING AREAS AND AIDJACENT TO LOW-LEVEL BUILDING GLASS. lliE SYSTEM WILL BE INSTALLED AS SOON AS POSSIBLE AFTER CONSTRUCTION AND PRIOR TO PLACEMENT OF PLANT MATERIALS. A DEDICATED LANDSCAPE IRRIGATION METER WILL BE PROVIDED. 1 '/\.:":..-!.:. _.,,.,:. "l'.,t. ;/;, '." .,,..;l..,. 4,;.4,:; ~" .,_ ~ ' ~ ..l.,;. S:.L:., • ·-!&~ ",.'/:,4 .'?;;;:1 0 15' 30' II I ■ 60' ~ E r,.QRTH KEY MAP .. ARCHITEC 48 east holly s pasadena, ca !:; tel: 626.793.9805 · fax: 626. ACADIA HEALTHCAR CHULA VIST1 BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION QfSIGN REYJFW/CI IP PROJECT DATA DATE ARClfTTECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE xx: 03- HYDROZONE DIAGRAM c WATER ANALYSIS SHEET NO. L-5 LL.I z :::i ~ 0::: LL.I a_ 0 Cl'.'. a_ -______ P_RO_PERTY_L_IN_E ___ _ -,-~ '\I, 'J ,~· , ,, -w:r-.., MATCHLINE -SEE SHEET L-7 WALL & FENCE LEGEND CALLOUT W•1 W-2 W-3 W-4 a 15• 30' ~- SYMeot ---- = i 1---~- --·-·- 60' ~ E CESCRIPT!ON SEAT WALL • HEIGhl 18" • MATERIAL: CAST IN PLACE CONCRETE • MAY RETAIN UP TO 16" !N SOME COND!T!ONS LOW Sl~AGE WALL • HEIGHT, 3'-4' • MATERIAL: CAST IN PLACE DECOR<\TIVEANISH METAL FENCE AT PA.TIEN TS CO!JRTYAAOS (SEE AACH!TECTURE Pt.AN FOR MCRE CETA!LS) •HEIGHT-12' • MATERIAL METAL ACCEHTWAf.l • HEIGHT, 8' • MATERIAL: SOLID CMLI WALL 1/VITHART PAINTING OR TILE KEY MAP l©RTH JI ARCHITEC 48 east holly s pasadena, ca c tel: 626.793.9805 -fax: 626. ACADIA HEALTHCAR CHULA VIST1 BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION 0£51QN RfYIEW/CI IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE xx: 03- 0.l SITE WALL & FENCE PLAN SHEET NO. L-6 w z :::i j::: 0:: w a... 0 0:: a... W-3 TRASH ENCLOSURE PER ARCHITECTURE PLANS l5J "' "' PROPERTY LINE MA I CHLINI: -::;1:1: ::;Hl:I: I L-o I "' a !ol !ol u '{am D D D D WALL & FENCE LEGEND CALLOOT W-1 W-2 W-3 W-4 15' 30' 11 I ■ SY'I.BCL ---- = -·-·- --·-·- 60' ~ E DESCRJPTimJ SEAT WALL • HEIGHT 18" ■ M.A.. TERIAL: CPST 1N FL.ACE CON"CRETE ■ MAY RETAIN UP TO 16'' IN SOME CONDITIONS LOW SIGtl\GE WALL • HEIGHT' 3'-4' ■ MATERIAL: CAST IN PLACE OECORA. TIVE ANISH M:TAL FENCE AT PATIENTS COURTYARDS ($EE ARCHIT=:(:TURE F!..AN FORIAORE DETAILS) •HEIGHT 12' ■MATERIAL: METAL ACCENf WP-il •HEIGHT 8' •MAT::RIAL· sauo CMUWALL WITH ART PAINTING OR TILE KEY MAP ~ NORTH J • ARCHITEC 48 east holly s pasadena, ca !: tel: 626. 793.9805 • fax: 626. ACADIA HEALTHCAR CHULA VIST1 BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION DESIGN RfYIEW/CIIP PROJECT DATA DATE AACHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITLE XXl 03- Ol SITE WALL & FENCE PLAN SHEET NO. L-7 w z ::J >-~ w a.. 0 c:: a.. -PROPERTY LINE MATCHLINE -SEE SHEET L-9 0 15' 30' !I I ■ LIGHTING LEGEND Sn'E!Cl CESCA:PT!ON a POLE MOUNTED POST TOP LIGHT FOR VEHICULAR AREAS ILLUMINATION (20'· 25' HEIGHD EB PEDESTRIAN SCALE POLE MOUNTED LIGHT FOR GENERAL C/>MPUS ILLUMINATION (12'· 14' HEIGHT) 0 BOLLARD PAll-iWAY LIGHT FOR ENCLOSED GARDEN i (30'· 42' HEIGHT) l8! DOWNLIGHT MOUNTED WITH ARCHITECTURAL SHADE CANOPY KEY MAP NOTTO~ SCALE 60' ~ 'i'i' ... ~ l',ORll-i J • ARCHITEC 48 east holly s pasadena, ca £ tel: 626. 793.9805 • fax: 626. ACADIA HEALTHCAR CHULA VIST1 BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER ISSUE/REVISION 0£51GH Rf'YIEW/CIIP PROJECT DATA DATE ARCffJTECT CHECKED BY DRAWN BY PROJECT NO. SHEET 1ITlE SITE LIGHTING PLAN SHEET NO. L-8 xx: 03- 03 llJ z ::::; i:'.: a:: llJ a.. 0 a:: a.. L _ ___J- a ......_.~ MA I CH LI Ne -~cc ~Hee I L-8 =1 .. ':.-:.-:.-:.:.---.. -----.. --..... _ I U ~ fl I ~111~1111l~mtB c_ ..... n ______ .... o ______ .... n _____ o ~ 11 PROPERTY LINE 0 15' 30' 11 •• LIGHTING LEGEND SYMBOL ! DESCRIPTION i a i POLE MOUNTED POST TOP LIGHT FOR VEHICULAR I AREAS ILLUMINATlON (20'· 25' HEIGHT] EB ! PEDESTRIAN SCALE POLE MOUNTED LIGHT FOR GENERAL CAMPUS ILLUMINATlON (12'· 14' HEIGHT) 0 I BOLLARD PAll-lWAY LIGHT FOR ENCLOSED GARDEN ; (30'· 42' HEIGHT] ® ! DOWNLIGHT MOUNTED Will-I ARCHITECTURAL SHADE CANOPY KEY MAP NOTTO~ SCALE ~ NORTH JI ARCHITEC 48 east holly s pasadena, ca S tel! 626. 793.9805 • fax: 626. ACADIA HEALTHCAR CHULA VIST, BEHAVIORAL HE 830 & 831 SHOWROOM P CHULA VISTA, CA 919 AGENCY STAMP AGENCY NUMBER 15SUE/REVlSION DESIGN REYJEW/CI IP PROJECT DATA DATE ARCHITECT CHECKED BY DRAWN BY PROJECT NO. SHEET TITl£ SITE LIGHTING PLAN SHEET NO. L-9 xx: 03- 03 Page intentionally left blank for double-sided printing Use this checklist to ensure the required information has been included on the plans: The plans must identify: ~ Structural BMP(s) with ID numbers matching Form 1-6 Summary of PDP Structural BMPs ~ The grading and drainage design shown on the plans must be consistent with the delineation of DMAs shown on the OMA exhibit D Details and specifications for construction of structural BMP(s) D Signage indicating the location and boundary of structural BMP(s) as required by the [City Engineer] ~ How to access the structural BMP(s) to inspect and perform maintenance D Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds) D Manufacturer and part number for proprietary parts of structural BMP(s) when applicable D Maintenance thresholds specific to the structural BMP(s), with a location-specific frame of reference (e.g., level of accumulated materials that triggers removal of the materials, to be identified based on viewing marks on silt posts or measured with a survey rod with respect to a fixed benchmark within the BMP) D Recommended equipment to perform maintenance D When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management ~ Include landscaping plan sheets showing vegetation requirements for vegetated structural BMP(s) ~ All BMPs must be fully dimensioned on the plans D When proprietary BMPs are used, site-specific cross section with outflow, inflow, and model number shall be provided. Photocopies of general brochures are not acceptable. Page intentionally left blank for double-sided printing 5 ATTACHMENT 5 Copy of Project's Drainage Report K&S ENGCI.\H:feRti~Gs ~fNlC. Planning Engineering SuNeying Drainage Study For ACADIA HEALTH CARE CUP No. __ _ Prepared for: ACADIA HEALTHCARE 6100 Tower Circle, Suite 1000 Franklin, TN 91914 370067 Prepared by : K&.S ENGINEERING, INC. 780 I Mission Center Court, Suite I 00 San Dieg o, CA 92108 619 .296.5565 F e bruary 28, 2019 K&S JN 18-062 ~~ s.sw~d\ No. 48592 Exp. 6-30-20 7801 Mission Center ou11, S uite 100 . San D iego, Cali fo rnia 92 108 . (6 19)296-5565 . Fax (6 19)296-5564 TABLE OF CONTENTS SECTION l -VICINITY MAP SECTION 2 -INTRODUCTION SECTION 3 -PURPOSE OF THIS STUDY SECTION 4 -PROJECT INFORMATION HYDROLOGY STUDY 4 .1 Existing Condition ............................................................................................ . 4.2 Proposed Condition ..................................................... . 4.3 Summary ..................................................... . SECTION 5 -DESIGN CRITERIA AND METHODOLOGY SECTION 6-HYDROLOGY DESIGN MODELS SECTION 7 -HYDROLOGY CALCULATIONS 7 .1 Rational Method Calculations ........ . 7.2 Hydrograph Calculations ........... . 7.3 Detention Basin Calculations TABLE OF FIGURES APPENDIX A Tables and Charts APPENDIXB Drainage Exhibit HYDROLOGY STUDY 1 VICINITY MAP MAP HYDROLOGY STUDY 2 INTRODUCTION The project consists of two existing undeveloped lots, i.e., Lots 7 & 8 of Map No. 14395. The project proposes the construction of one medical building with parking and landscape areas. This site will drain to two proposed multipurpose bioretention BMP' s for treatment, hydromodification and peak flow detention. The subject report reflects the proposed precise grading and drainage as shown on precise grading plan Drawing No. __ _ 3 PURPOSE OF THIS STUDY The purpose of this study is to determine the proposed peak flows produced for the proposed driveway as shown on the grading plan for the Acadia Heath Care in Chula Vista as well as to determine the proposed pipe and inlet sizes. 4 PROJECT INFORMATION 4.1 Existing Condition For the existing condition a runoff coefficient of 0.65 was used to determine the existing runoff flows. The existing Q(50) at node 9 is 13.4 CFS. Likewise, The existing Q(50) at node 16 is 18.8 CFS 4.2 Proposed Condition The proposed land use for the proposed site will be commercial. A runoff coefficient of 0.85 was used to determine the proposed runoff flows. The proposed Q(50) at node 16 before detention is 17.6 CFS and the proposed Q(50) at node 31 before detention is 24.5 CFS As required on City of Chula Vista, two detention basins were designed for this project. The purpose of these basins is to temporarily store the increased runoff and release it at a rate equal or less than the existing. Hydrographs were determined using Rational Method Hydrograph Program by Rick Engineering and routed for proposed (inflow) conditions using Hydraflow Software by Inteli SOL VE, respectively. 4.3 Summary A proposed multipurpose Infiltration BMP is proposed to detain the increased proposed flows. The following is a summary of existing, before detention and detained flows, areas and C factors .. HYDROLOGY STUDY BASIN 1-PEAK FLOW TABLE (CFS) AT DETENTION BASIN STORM EXISTING PROPOSED CONDITION PROPOSED EVENT CONDITION BEFORE DETENTION CONDITION AFTER DETENTION 50-YEAR 13.4 24.5 10.7 BASIN 2-PEAK FLOW TABLE (CFS) AT DETENTION BASIN STORM EXISTING PROPOSED CONDITION PROPOSED EVENT CONDITION BEFORE DETENTION CONDITION AFTER DETENTION 50-YEAR 10.8 17.6 7.8 5 DESIGN CRITERIA AND METHODOLOGY The proposed storm flow were determined using the Rational Method Hydrology Program CIVILCADD/CIVILDESIGN which is based on the City of Chula Vista Subdivision Manual. The pipes were sized using the 50 year storm event. Hydrographs for these drainage basins were determined using Rational Method Hydrograph Program by Rick Engineering and routed for proposed (inflow) conditions using Hydraflow Software by Inteli SOL VE, respectively. HYDROLOGY STUDY 6. HYDROLOGY DESIGN MODELS A. DESIGN METHODS THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY; THE RATIONAL FORMULA IS AS FOLLOWS: Q = CIA, WHERE : Q= PEAK DISCHARGE IN CUBIC FEET/SECOND * C = RUNOFF COEFFICIENT (DIMENSIONLESS) I =RAINFALL INTENSITY IN INCHES/HOUR A= TRIBUTARY DRAINAGE AREA IN ACRES * 1 ACRE INCHES/HOUR= 1.008 CUBIC FEET/SEC THE OVERLAND METHOD IS ALSO USED IN THIS HYDROLOGY STUDY; THE URBAN AREAS OVERLAND FORMULA IS AS FOLLOWS: T=[ l.8(1. l-C)(L)C-5l)]/[S(1 OO)J-333 L = LENGTH OF WATERSHED C = COEFFICIENT OF RUNOFF T = TIME IN MINUTES S = DIFFERENCE IN ELEV,ATION DIVIDED BY DE LENGTH OF WATERSHED B. DESIGN CRITERIA -FREQUENCY SO YEAR STORM. -LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP. -RAIN FALL INTENSITY PER CITY OF SAN DIEGO DRAINAGE DESIGN MANUAL, DATED APRIL 1984. C. REFERENCES -CITY OF CHULA VISTA SUBDIVISION MANUAL, REVISED 03/13/2012 -COUNTY OF SAN DIEGO HYDROLOGY MANUAL, JUNE 2003 -HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION. HYDROLOGY STUDY 7 HYDROLOGY CALCULATIONS HYDROLOGY STU DY 7.1 RATIONAL METHOD CALCULATIONS JN 18-062 Existing Condition 50 Yr City of Chula Vista Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992-2007 Version 7.3 Rational Hydrology Study Date: 03/25/19 ********* Hydrology Study Control Information********** Program License Serial Number 6303 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation(inches) = 2.450 24 hour precipitation(inches) 5.000 Adjusted 6 hour precipitation (inches) P6/P24 49.0% Runoff values by rational method 2.450 50.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION**** [BARREN SLOPES -FLAT area type Initial subarea flow distance Highest elevation= 713.200(Ft.) Lowest elevation= 709.750(Ft.) l 21 9 . 0 0 0 ( Ft . ) Elevation difference= 3.450(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 10.30 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.6500)*( 219.000A.5)/( l.575A(l/3)]= 10.30 Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(10.302)( 2.450)A-0.645: Intensity= 4.050(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.650 Subarea runoff= 0.974(CFS) Total initial stream area= 0.370(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 10.30 min. Rainfall intensity 4.050(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 2.474(CFS) for 0.940(Ac.) Total runoff= 3.448(CFS) Total area= l.3l(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= Downstream point elevation 7 1 0 . 0 0 ( Ft . ) 7 0 3 . 0 0 (Ft. ) 1 Channel length thru subarea 404.00(Ft.) Channel base width =/. 0.000(Ft.) Slope or 'Z' of left channel bank= 100.000 Slope or 'Z' of right channel bank= 100.000 Manning's 'N' = 0.020 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 3.448(CFS) Depth of flow= 0.143(Ft.), Average velocity Channel flow top width= 28.610(Ft.) Flow Velocity= l.69(Ft/s) Travel time 4.00 min. Time of concentration 14.30 min. Critical depth= 0.149(Ft.) 1. 685 (Ft/s) JN 18-062 Existing Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 14.30 min. Rainfall intensity 3.278(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 6.520(CFS) for 3.060(Ac.) Total runoff = 9. 968 (CFS) Total area = 4. 37 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 703.00(Ft.) Downstream point elevation 700.00(Ft.) Channel length thru subarea 150.00(Ft.) Channel base width 3.500(Ft.) Slope or 'Z' of left channel bank= 0.000 Slope or 'Z' of right channel bank= 0.000 Manning's 'N' = 0.015 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 9.968(CFS) Depth of flow= 0.419(Ft.), Average velocity Channel flow top width= 3.500(Ft.) Flow Velocity= 6.80(Ft/s) Travel time 0.37 min. Time of concentration 14.67 min. Critical depth= 0.633(Ft.) 6. 798 (Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 16.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 14.67 min. Rainfall intensity 3.225(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 0.859(CFS) for 0.410(Ac.) Total runoff= 10.827(CFS) Total area= 4.78(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 2 Upstream point/station elevation= 687.42(Ft.) Downstream point/station elevation 685.30(Ft.) Pipe length 77.00(Ft.) Manning's N = 0.012 No. of pipes= 1 Required pipe flow 10.827(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 10.827(CFS) Normal flow depth in pipe= 9.77(In.) Flow top width inside pipe= 17.93(In.) Critical Depth= 15.15(In.) Pipe flow velocity= ll.05(Ft/s) Travel time through pipe= 0.12 min. Time of concentration (TC) = 14.78 min. JN 18-062 Existing Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION**** [BARREN SLOPES -FLAT area type Initial subarea flow distance 245.000(Ft.) Highest elevation= 717.000(Ft.) Lowest elevation= 712.000(Ft.) Elevation difference= 5.000(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 10.00 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.6500)*( 245.000A.5)/( 2.041A(l/3)]= 10.00 Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(9.995)( 2.450)A-0.645: Intensity= 4.129(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.650 Subarea runoff= 0.966(CFS) Total initial stream area= 0.360(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 10.00 min. Rainfall intensity 4.129(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 5.690(CFS) for 2.120(Ac.) Total runoff= 6.656(CFS) Total area= 2.48(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 712.00(Ft.) Downstream point elevation 704.50(Ft.) Channel length thru subarea 430.00(Ft.) Channel base width 0.000(Ft.) Slope or 'Z' of left channel bank= 100.000 Slope or 'Z' of right channel bank= 100.000 Manning's 'N' = 0.020 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 6.656(CFS) Depth of flow= 0.183(Ft.)., Average velocity Channel flow top width= 36.567(Ft.) 3 1. 991 (Ft/s) Flow Velocity= l.99(Ft/s) Travel time 3.60 min. Time of concentration 13.59 min. Critical depth= 0.193(Ft.) JN 18-062 Existing Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 704.50(Ft.) Downstream point elevation 702.50(Ft.) Channel length thru subarea 135.00(Ft.) Channel base width 3.500(Ft.) Slope or 'Z' of left channel bank= 0.000 Slope or 'Z' of right channel bank= 0.000 Manning's 'N' = 0.015 Maximum depth of channel 0.500(Ft.) Flow(q) thru subarea = 6.656(CFS) Depth of flow= 0.356(Ft.), Average velocity Channel flow top width= 3.500(Ft.) Flow Velocity= 5.35(Ft/s) Travel time 0.42 min. Time of concentration 14.02 min. Critical depth= 0.484(Ft.) 5.349(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 14.02 min. Rainfall intensity 3.320(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 0.928(CFS) for 0.430(Ac.) Total runoff = 7. 584 (CFS) Total area = 2. 91 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION**** [BARREN SLOPES -FLAT area type Time of concentration 14.02 min. Rainfall intensity 3.320(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.650 Subarea runoff 5.784(CFS) for 2.680(Ac.) Total runoff = 13.368 (CFS) Total area = 5.59 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 690.00(Ft.) Downstream point/station elevation 685.40(Ft.) Pipe length 82.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 13.368(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 13.368(CFS) Normal flow depth in pipe= 9.40(In.) Flow top width inside pipe= 17.98(In.) 4 Critical Depth= 16.35(In.) Pipe flow velocity 14.33(Ft/s) Travel time through pipe= 0.10 min. Time of concentration (TC) 14.11 min. End of computations, total study area= 5 l 0 . 3 7 0 (Ac . ) JN 18-062 Existing Condition 50 Yr JN 18-062 Proposed Condition 50 Yr City of Chula Vista Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1992-2007 Version 7.3 Rational Hydrology Study Date: 03/24/19 ********* Hydrology Study Control Information********** Program License Serial Number 6303 Rational hydrology study storm event year is 50.0 Map data precipitation entered: 6 hour, precipitation(inches) = 2.450 24 hour precipitation(inches) 5.000 Adjusted 6 hour precipitation (inches) P6/P24 49.0% Runoff values by rational method 2.450 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance Highest elevation= 713.230(Ft.) Lowest elevation= 710.350(Ft.) l 4 0 4 . 0 0 0 ( Ft. ) Elevation difference= 2.BB0(Ft.) Time of cohcentration calculated by Page 12 Section 3-400 developed areas with overland flow= 10.13 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 404.000A.5)/( 0.713A(l/3)]= 10.13 Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(10.125) ( 2.450)A-0.645: Intensity= 4.095(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff= l.914(CFS) Total initial stream area= 0.550(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 706.00(Ft.) Downstream point/station elevation 702.68(Ft.) Pipe length 90.97(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow l.914(CFS) Given pipe size= 8.00(In.) Calculated individual pipe flow l.914(CFS) Normal flow depth in pipe= 5.56(In.) Flow top width inside pipe= 7.37(In.) Critical Depth= 7.44(In.) Pipe flow velocity= 7.39(Ft/s) Travel time through pipe= 0.21 min. Time of concentration (TC) = 10.33 min. 1 JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** SUBAREA FLOW ADDITION**** 10.33 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.042(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C l.649(CFS) for 0.480(Ac.) Total runoff= 3. 564 (CFS) Total area = 1. 03 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= l.030(Ac.) Runoff from this stream 3.564(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 10.33 min. 4.042(In/Hr) Stream No. Flow rate TC (CFS) (min) Rainfall Intensity (In/Hr) 1 Qmax(l) 3.564 10.33 1. 000 * 1. 000 * Total of 1 streams to confluence: 4.042 3.564) + Flow rates before confluence point: 3. 564 3.564 Maximum flow rates at confluence using above data: 3.564 Area of streams before confluence: 1.030 Results of confluence: Total flow rate= 3.564(CFS) Time of concentration 10.330 min. Effective stream area after confluence 1. 030 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 5.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance Highest elevation= 707.870(Ft.) Lowest elevation= 707.500(Ft.) l 7 5 . 5 3 0 ( Ft . ) Elevation difference= 0.370(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 4.96 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 75.530A.5)/( 0.490A(l/3)]= 4.96 Setting time of concentration to 5 minutes Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(5.000) ( 2.450)A-0.645: Intensity= 6.455(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff= l.207(CFS) 2 Total initial stream area 0.220(Ac.) JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 704.50(Ft.) Downstream point/station elevation 704.05(Ft.) Pipe length 89.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.207(CFS) Given pipe size= 10.00(In.) Calculated individual pipe flow l.207(CFS) Normal flow depth in pipe= 6.6l(In.) Flow top width inside pipe= 9.47(In.) Critical Depth= 5.88(In.) Pipe flow velocity= 3.15(Ft/s) Travel time through pipe= 0.47 min. Time of concentration (TC)= 5.47 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 704.05(Ft.) Downstream point/station elevation 703.58(Ft.) Pipe length 95.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.207(CFS) Given pipe size= 10.00(In.) Calculated individual pipe flow l.207(CFS) Normal flow depth in pipe= 6.66(In.) Flow top width inside pipe= 9.43(In.) Critical Depth= 5.88(In.) Pipe flow velocity= 3.13(Ft/s) Travel time through pipe= 0.51 min. Time of concentration (TC) = 5.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** SUBAREA FLOW ADDITION**** 5.98 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.753(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.440(CFS) for 0.090(Ac.) Total runoff= 1. 64 7 (CFS) Total area = 0.3l(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 7.000 **** SUBAREA FLOW ADDITION**** 5.98 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.753(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.978(CFS) for 0.200(Ac.) Total runoff 2. 625 (CFS) Total area = 0. 51 (Ac.) 3 0.850 JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 703.58(Ft.) Downstream point/station elevation 702.96(Ft.) Pipe length 124.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.625(CFS) Given pipe size= 15.00(In.) Calculated individual pipe flow 2.625(CFS) Normal flow depth in pipe= 8.16(In.) Flow top width inside pipe= 14.94(In.) Critical Depth= 7.79(In.) Pipe flow velocity= 3.85(Ft/s) Travel time through pipe= 0.54 min. Time of concentration (TC) = 6.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 8.000 **** SUBAREA FLOW ADDITION**** 6.51 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.443(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 2.591(CFS) for 0.560(Ac.) Total runoff= 5.216 (CFS) Total area = 1. 07 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 3.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 702.96(Ft.) Downstream point/station elevation 702.68(Ft.) Pipe length 38.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 5.216(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 5.216(CFS) Normal flow depth in pipe= 9.82(In,) Flow top width inside pipe= 17.93(In.) Critical Depth= 10.56(In.) Pipe flow velocity= 5.29(Ft/s) Travel time through pipe= 0.12 min. Time of concentration (TC) = 6.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8.000 to Point/Station 3.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= l.070(Ac.) Runoff from this stream 5.216(CFS) Time of concentration= Rainfall intensity= Summary of stream data: Stream No. Flow rate (CFS) 6.63 min. 5.379 (In/Hr) TC (min) 4 Rainfall Intensity (In/Hr) JN 18-062 Proposed Condition 1 3.564 10.33 4.042 2 5.216 6.63 5.379 Qmax(l) 1. 000 * 1. 000 * 3.564) + 0.751 * 1.000 * 5. 216) + 7.483 Qmax (2) 1. 000 * 0.642 * 3.564) + 1. 000 * 1.000 * 5. 216) + 7.504 Total of 2 streams to confluence: Flow rates before confluence point: 3.564 5.216 Maximum flow rates at confluence using above data: 7.483 7.504 Area of streams before confluence: 1.030 1.070 Results of confluence: Total flow rate= 7.504(CFS) Time of concentration 6.633 min. Effective stream area after confluence 2 .100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 9.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 702.68(Ft.) Downstream point/station elevation 702.00(Ft.) Pipe length 96.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 7.504(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 7.504(CFS) Normal flow depth in pipe= 12.73(In.) Flow top width inside pipe= 16.38(In.) Critical Depth= 12.73(In.) Pipe flow velocity= 5.6l(Ft/s) Travel time through pipe= 0.29 min. Time of concentration (TC) = 6.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 9.000 **** SUBAREA FLOW ADDITION**** 6.92 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.235(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.445(CFS) for 0.l00(Ac.) Total runoff= 7. 949 (CFS) Total area = 2. 20 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 702.00(Ft.) Downstream point/station elevation 700.55(Ft.) Pipe length 146.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 7.949(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 7.949(CFS) Normal flow depth in pipe= ll.73(In.) 5 50 Yr Flow top width inside pipe 17.15(In.) Critical Depth= 13.ll(In.) Pipe flow velocity= 6.52(Ft/s) Travel time through pipe= 0.37 min. Time of concentration (TC) = 7.29 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 9.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 2.200(Ac.) Runoff from this stream 7.949(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 7.29 min. 5.06l(In/Hr) Stream No. Flow rate TC (CFS) (min) Rainfall Intensity (In/Hr) 1 Qmax(l) 7.949 7.29 l. 000 * 1. 000 * Total of 1 streams to confluence: 5.061 7.949) + Flow rates before confluence point: 7.949 7.949 Maximum flow rates at confluence using above data: 7. 94 9 Area of streams before confluence: 2.200 Results of confluence: Total flow rate= 7.949(CFS) Time of concentration 7.291 min. Effective stream area after confluence 2.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance Highest elevation= 704.840(Ft.) Lowest elevation= 703.800(Ft.) l 2 0 8 . 0 0 0 (Ft. ) Elevation difference= l.040(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 8.18 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*( 208.000A.5)/( 0.500A(l/3)]= 8.18 Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(8.177) ( 2.450)A-0.645: Intensity= 4.700(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff= l.438(CFS) Total initial stream area= 0.360(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** 6 Upstream point/station elevation= 703.80(Ft.) Downstream point/station elevation 703.50(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.438(CFS) Given pipe size= 10.00(In.) Calculated individual pipe flow l.438(CFS) Normal flow depth in pipe= 7.62(In.) Flow top width inside pipe= 8.52(In.) Critical Depth= 6.45(In.) Pipe flow velocity= 3.23(Ft/s) Travel time through pipe= 0.31 min. Time of concentration (TC) = 8.49 min. JN 18-062 Proposed Condition SO Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 13.000 **** SUBAREA FLOW ADDITION**** 8.49 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.589(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.390(CFS) for 0.l00(Ac.) Total runoff= l.828(CFS) Total area= 0. 46 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 703.50(Ft.) Downstream point/station elevation 702.50(Ft.) Pipe length 144.54(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.828(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow l.828(CFS) Normal flow depth in pipe= 6.82(In.) Flow top width inside pipe= ll.89(In.) Critical Depth= 6.9l(In.) Pipe flow velocity= 3.97(Ft/s) Travel time through pipe= 0.61 min. Time of concentration (TC) = 9.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 14.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 9.09 min. Rainfall intensity 4.389(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff l.64l(CFS) for 0.440(Ac.) Total runoff= 3.470(CFS) Total area= 0.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 10.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation 7 702.50(Ft.) 700.55(Ft.) Pipe length 131.65(Ft.) Manning's N = 0.013 No. of pipes 1 Required pipe flow 3.470(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 3.470(CFS) Normal flow depth in pipe= 8.12(In.) Flow top width inside pipe= 11.23(In.) Critical Depth= 9.55(In.) Pipe flow velocity= 6.13(Ft/s) Travel time through pipe= 0.36 min. Time of concentration (TC) = 9.45 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 14.000 to Point/Station 10.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.900(Ac.) Runoff from this stream 3.470(CFS) Time of concentration= 9.45 min. Rainfall intensity= 4.281(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 7.949 7.29 5.061 2 3.470 9.45 4.281 Qrnax(l) 1. 000 * 1. 000 * 7. 94 9) + 1. 000 * 0.771 * 3.470) + 10.626 Qmax(2) 0.846 * 1. 000 * 7. 949) + 1. 000 * 1. 000 * 3. 470) + 10.194 Total of 2 streams to confluence: Flow rates before confluence point: 7.949 3.470 Maximum flow rates at confluence using above data: 10.626 10.194 Area of streams before confluence: 2.200 0.900 Results of confluence: Total flow rate= 10.626(CFS) Time of concentration 7.291 min. Effective stream area after confluence 3 .100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 15.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 700.55(Ft.) Downstream point/station elevation 697.96(Ft.) Pipe length 118.38(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow 10.626(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 10.626(CFS) Normal flow depth in pipe= 10.92(In.) Flow top width inside pipe= 17.58(In.) Critical Depth= 15.02(In.) Pipe flow velocity= 9.46(Ft/s) 8 Travel time through pipe Time of concentration (TC) 0.21 min. 7.50 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 15.000 **** SUBAREA FLOW ADDITION**** 7.50 min. (COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.970(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C l.225(CFS) for 0.290(Ac.) Total runoff= 11. 851 (CFS) Total area = 3. 39 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 15.000 **** SUBAREA FLOW ADDITION**** 7.50 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.970(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 2.577(CFS) for 0.610(Ac.) Total runoff= 14. 428 (CFS) Total area = 4.00(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 697.96(Ft.) Downstream point/station elevation 696.00(Ft.) Pipe length 98.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 14.428(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 14.428(CFS) Normal flow depth in pipe= 14.30(In.) Flow top width inside pipe= 14.55(In.) Critical Depth= 16.7l(In.) Pipe flow velocity= 9.58(Ft/s) Travel time through pipe= 0.17 min. Time of concentration (TC) = 7.67 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** SUBAREA FLOW ADDITION**** 7.67 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.898(In/Hr) for a 50.0 year storm used ·for sub-area, Rational method, Q=KCIA, C l.540(CFS) for 0.370(Ac.) Total runoff= 15.969(CFS) Total area= 4. 37 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16~000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type 9 Time of concentration= 7.67 min. Rainfall intensity 4.898(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff 0.458(CFS) for 0.ll0(Ac.) Total runoff= 16.427(CFS) Total area= 4.48(Ac.) JN 18-062 Proposed Condition 50 Yr 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 16.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 7.67 min. Rainfall intensity 4.898(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,~=KCIA, C 0.850 Subarea runoff l.207(CFS) for 0.290(Ac.) Total runoff = 17. 634 (CFS) Total area = 4. 77 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 16.000 to Point/Station 17.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 687.42(Ft.) Downstream point/station elevation 685.30(Ft.) Pipe length 75.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 17.634(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 17.634(CFS) Normal flow depth in pipe= 14.72(In.) Flow top width inside pipe= 13.90(In.) Critical depth could not be calculated. Pipe flow velocity= ll.39(Ft/s) Travel time through pipe 0.11 min. Time of concentration (TC) = 7.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 18.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance Highest elevation= 713.230(Ft.) Lowest elevation= 712.220(Ft.) l 14 7 . 0 0 0 ( Ft. ) Elevation difference= l.0l0(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 6.18 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 147.000A.5)/( 0.687A(l/3)]= 6.18 Rainfall intensity I= 7.44P6*TCA-0.645): I= 7.44(6.183)( 2.450)A-0.645: Intensity= 5.629(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 Subarea runoff= l.005(CFS) Total initial stream area= 0.210 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.D00 to Point/Station 19.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 708.20 (Ft.) 10 Downstream point/station elevation= 702.54(Ft.) Pipe length 133.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.005(CFS) Given pipe size= 8.00(In.) Calculated individual pipe flow l.005(CFS) Normal flow depth in pipe= 3.53(In.) Flow top width inside pipe= 7.95(In.) Critical Depth= 5.7l(In.) Pipe flow velocity= 6.76(Ft/s) Travel time through pipe= 0.33 min. Time of concentration (TC) = 6.51 min. JN 18-062 Proposed Condition SO Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** SUBAREA FLOW ADDITION**** 6.51 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.444(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 5.275(CFS) for l.140(Ac.) Total runoff= 6.280(CFS) Total area= 1. 35 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** SUBAREA FLOW ADDITION**** 6.51 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.444(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.416(CFS) for 0.090(Ac.) Total runoff= 6. 697 (CFS) Total area = 1. 44 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 18.000 to Point/Station 19.000 **** SUBAREA FLOW ADDITION**** 6.51 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.444(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.185(CFS) for 0.040(Ac.) Total runoff= 6.882(CFS) Total area= 1. 48 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 702.54(Ft.) Downstream point/station elevation 702.33(Ft.) Pipe length 27.93(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 6.882(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 6.882(CFS) Normal flow depth in pipe= ll.70(In.) Flow top width inside pipe= 17.17(In.) Critical Depth= 12.19(In.) Pipe flow velocity= 5.67(Ft/s) 11 Travel time through pipe Time of concentration (TC) 0.08 min. 6.59 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 19.000 to Point/Station 20.000 **** SUBAREA FLOW ADDITION**** 6.59 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.400(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.780(CFS) for 0.170(Ac.) Total runoff= 7. 662 (CFS) Total area = 1. 65 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 702.33(Ft.) Downstream point/station elevation 701.33(Ft.) Pipe length 118.00(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow 7.662(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 7.662(CFS) Normal flow depth in pipe= 12.09(In.) Flow top width inside pipe= 16.90(In.) Critical Depth= 12.87(In.) Pipe flow velocity= 6.07(Ft/s) Travel time through pipe= 0.32 min. Time of concentration (TC) = 6.92 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** SUBAREA FLOW ADDITION**** 6.92 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.236(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.445(CFS) for O.lOO(Ac.) Total runoff= 8 .107 (CFS) Total area = l. 75 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 701.33(Ft.) Downstream point/station elevation 700.33(Ft.) Pipe length 127.00(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow 8.107(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 8.107(CFS) Normal flow depth in pipe= 12.98(In.) Flow top width inside pipe= 16.14(In.) Critical Depth= 13.23(In.) Pipe flow velocity= 5.94(Ft/s) Travel time through pipe= 0.36 min. Time of concentration (TC) = 7.27 min. 12 JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 7.27 min. Rainfall intensity 5.069(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff l.680(CFS) for 0.390(Ac.) Total runoff= 9.787(CFS) Total area= 2.14(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 2.140(Ac.) Runoff from this stream 9.787(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 7.27 min. 5.069(In/Hr) Stream No. Flow rate TC (CFS) (min) Rainfall Intensity (In/Hr) 1 Qrnax(l) 9.787 7.27 1. 000 * 1. 000 * Total of 1 streams to confluence: 5.069 9.787) + Flow rates before confluence point: 9.787 Maximum flow rates at confluence using above data: 9.787 Area of streams before confluence: 2.140 Results of confluence: Total flow rate= 9.787(CFS) Time of concentration 7.274 min. 9.787 Effective stream area after confluence 2.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 24.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance 57.170(Ft.) Highest elevation= 708.880(Ft.) Lowest elevation= 707.740(Ft.) Elevation difference= l.140(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 2.70 min. TC= [1.8*(1.l-C)*distance(Ft.)".5)/(% slope"(l/3)] TC= [l.8*(1.1-0.8500)*( 57.170".5)/( 1.994"(1/3)]= 2.70 Setting time of concentration to 5 minutes Rainfall intensity I= 7.44P6*TC"-0.645): I= 7.44(5.000) ( 2.450)"-0.645: Intensity 6.455(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C 0.850 13 Subarea runoff= 0.549(CFS) Total initial stream area= 0 .100 (Ac.) JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 24.000 to Point/Station 25.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 706.24(Ft.) Downstream point/station elevation 705.50(Ft.) Pipe length 148.77(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 0.549(CFS) Given pipe size= 8.00(In.) Calculated individual pipe flow 0.549(CFS) Normal flow depth in pipe= 4.66(In.) Flow top width inside pipe= 7.89(In.) Critical Depth= 4.17(In.) Pipe flow velocity= 2.59(Ft/s) Travel time through pipe= 0.96 min. Time of concentration (TC) = 5.96 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 705.50(Ft.) Downstream point/station elevation 704.09(Ft.) Pipe length 112.12(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 0.549(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 0.549(CFS) Normal flow depth in pipe= 3.0l(In.) Flow top width inside pipe= 10.40(In.) Critical Depth = 3. 68 (In. ) Pipe flow velocity= 3.57(Ft/s) Travel time through pipe= 0.52 min. Time of concentration (TC) = 6.48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 25.000 to Point/Station 26.000 **** SUBAREA FLOW ADDITION**** 6.48 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 5.46l(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 3.ll0(CFS) for 0.670(Ac.) Total runoff= 3.659(CFS) Total area= 0. 77 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 22.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 704.09(Ft.) Downstream point/station elevation 700.31(Ft.) Pipe length 138.32(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 3.659(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow 3.659(CFS) Normal flow depth in pipe= 6.84(In.) 14 Flow top width inside pipe ll.88(In.) Critical Depth= 9.79(In.) Pipe flow velocity= 7.90(Ft/s) Travel time through pipe= 0.29 min. Time of concentration (TC) = 6.77 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 26.000 to Point/Station 22.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.770(Ac.) Runoff from this stream 3.659(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 6.77 min. 5.308(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 9.787 7.27 5.069 2 3.659 6.77 5.308 Qrnax(l) 1. 000 * 1. 000 * 9.787) + 0.955 * 1. 000 * 3. 659) + 13. 281 Qrnax(2) 1. 000 * 0.931 * 9.787) + 1. 000 * 1. 000 * 3. 659) + 12.771 Total of 2 streams to confluence: Flow rates before confluence point: 9.787 3.659 Maximum flow rates at confluence using above data: 13.281 12.771 Area of streams before confluence: 2.140 0.770 Results of confluence: Total flow rate= 13.28l(CFS) Time of concentration 7.274 min. Effective stream area after confluence 2.910(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 30.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 700.3l(Ft.) Downstream point/station elevation 698.52(Ft.) Pipe length 118.67(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 13.281(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 13.28l(CFS) Normal flow depth in pipe= 18.00(In.) Flow top width inside pipe= 0.00(In.) Critical Depth= 16.33(In.) Pipe flow velocity= 7.30(Ft/s) Travel time through pipe= 0.27 min. Time of concentration (TC) = 7.54 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 15 Process from Point/Station 22.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: l in normal stream number l Stream flow area= 2.910(Ac.} Runoff from this stream 13.28l(CFS} Time of concentration= Rainfall intensity= Summary of stream data: 7.54 min. 4.95l(In/Hr} Stream Flow rate TC No. (CFS} (min} Rainfall Intensity (In/Hr) 1 13.281 7.54 4.951 Qmax(l} 1.000 * 1.000 * 13.281) + Total of 1 streams to confluence: Flow rates before confluence point: 13.281 13.281 Maximum flow rates at confluence using above data: 13.281 Area of streams before confluence: 2.910 Results of confluence: Total flow rate= 13.28l(CFS} Time of concentration 7.544 min. Effective stream area after confluence 2.910(Ac.} JN 18-062 Proposed Condition 50 Yr 30.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 28.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance 218.000(Ft.} Highest elevation= 708.390(Ft.} Lowest elevation= 705.670(Ft.} Elevation difference= 2.720(Ft.} Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 6.17 min. TC= [l.8*(1.l-C}*distance(Ft.}A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 218.000A.5}/( l.248A(l/3}]= 6.17 Rainfall intensity I= 7.44P6*TCA-0.645}: I= 7.44(6.172) ( 2.450}A-0.645: Intensity= 5.635(In/Hr} for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA} is C 0.850 Subarea runoff= l.58l(CFS} Total initial stream area= 0.330(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 29.000 **** PIPEFLOW TRAVEL TIME (User specified size} **** Upstream point/station elevation= 701.67(Ft.) Downstream point/station elevation 699.63(Ft.} Pipe length 49.00(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow l.SBl(CFS} Given pipe size= 8.00(In.} Calculated individual pipe flow l.58l(CFS} Normal flow depth in pipe= 4.66(In.} 16 Flow top width inside pipe 7.89(In.) Critical Depth= 7.0l(In.) Pipe flow velocity= 7.50(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 6.28 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 28.000 to Point/Station 29.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 6.28 min. Rainfall intensity 5.572(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff 0.663(CFS) for 0.140(Ac.) Total runoff= 2.244(CFS) Total area= 0.47(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 30.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 699.63(Ft.) Downstream point/station elevation 698.52(Ft.) Pipe length 21.50(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.244(CFS) Given pipe size= 8.00(In.) Calculated individual pipe flow 2.244(CFS) Normal flow depth in pipe= 5.50(In.) Flow top width inside pipe= 7.42(In.) Critical depth could not be calculated. Pipe flow velocity= 8.77(Ft/s) Travel time through pipe 0.04 min. Time of concentration (TC) = 6.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 29.000 to Point/Station 30.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.470(Ac.) Runoff from this stream 2.244(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 6.32 min. 5.549(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 13.281 7.54 4.951 2 2.244 6.32 5.549 Qmax(l) 1. 000 * 1. 000 * 13.281) + 0.892 * 1. 000 * 2.244) + 15.283 Qmax (2) 1. 000 * 0.838 * 13.281) + 1. 000 * 1. 000 * 2.244) + 13.372 Total of 2 streams to confluence: Flow rates before confluence point: 17 13.281 2.244 Maximum flow rates at confluence using above data: 15.283 13.372 Area of streams before confluence: 2.910 0.470 Results of confluence: Total flow rate= 15.283(CFS) Time of concentration 7.544 min. Effective stream area after confluence 3.380(Ac.) JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 698.52(Ft.) Downstream point/station elevation 697.00(Ft.) Pipe length 82.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 15.283(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow 15.283(CFS) Normal flow depth in pipe= ll.95(In.) Flow top width inside pipe= 24.00(In.) Critical Depth= 16.91(In.) Pipe flow velocity= 9.79(Ft/s) Travel time through pipe= 0.14 min. Time of concentration (TC) = 7.68 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION**** 7.68 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.892(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 1.663(CFS) for 0.400(Ac.) Total runoff= 16. 947 (CFS) Total area = 3. 78 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 7.68 min. Rainfall intensity 4.892(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff 1.081(CFS) for 0.260(Ac.) Total runoff= 18.028(CFS) Total area= 4.04(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION**** 7.68 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.892(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.125(CFS) for 0.030(Ac.) Total runoff= 18 .153 (CFS) Total area = 4. 07 (Ac.) 18 0.850 JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** SUBAREA FLOW ADDITION**** 7.68 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 4.892(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C l.539(CFS) for 0.370(Ac.) Total runoff= 19.69l(CFS) Total area= 4. 4 4 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 4.440(Ac.) Runoff from this stream 19.69l(CFS) Time of concentration= Rainfall intensity= Swnmary of stream data: 7.68 min. 4.892(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) l Qmax(l) 19.691 7. 68 1. 000 * 4.892 19.691) + Total bf 1 main streams to confluence: Flow rates before confluence point: 19.691 19.691 Maximum flow rates at confluence using above data: 19.691 Area of streams before confluence: 4.440 Results of confluence: Total flow rate= 19.69l(CFS) Time of concentration 7.684 min. Effective stream area after confluence 4. 4 4 0 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 27.000 to Point/Station 32.000 **** INITIAL AREA EVALUATION**** [COMMERCIAL area type Initial subarea flow distance 210.000(Ft.) Highest elevation= 708.390(Ft.) Lowest elevation= 704.830(Ft.) Elevation difference= 3.560(Ft.) Time of concentration calculated by Page 12 Section 3-400 developed areas with overland flow= 5.47 min. TC= [l.8*(1.l-C)*distance(Ft.)A.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 210.000A.5)/( l.695A(l/3)]= 5.47 Rainfall intensity I= 7.44P6*TCA-0.645): 19 I= 7.44(5.469)( 2.450)"-0.645: Intensity= 6.092(In/Hr) for a 50.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C Subarea runoff= l.812(CFS) Total initial stream area= 0.350(Ac.) 0.850 JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 701.02(Ft.) Downstream point/station elevation 698.14(Ft.) Pipe length 38.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow l.812(CFS) Given pipe size= 12.00(In.) Calculated individual pipe flow l.812(CFS) Normal flow depth in pipe= 3.49(In.) Flow top width inside pipe= 10.90(In.) Critical Depth= 6.87(In.) Pipe flow velocity= 9.53(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC) = 5.54 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** SUBAREA FLOW ADDITION**** 5.54 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.045(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C 0.617(CFS) for 0.120(Ac.) Total runoff= 2.429(CFS) Total area= 0. 4 7 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** SUBAREA FLOW ADDITION**** 5.54 min. [COMMERCIAL area type Time of concentration Rainfall intensity Runoff coefficient Subarea runoff 6.045(In/Hr) for a 50.0 year storm used for sub-area, Rational method,Q=KCIA, C l.953(CFS) for 0.380(Ac.) Total runoff= 4. 382 (CFS) Total area = 0. 85 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 698.14(Ft.) Downstream point/station elevation 697.18(Ft.) Pipe length 76.30(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 4.382(CFS) Given pipe size= 15.00(In.) Calculated individual pipe flow 4.382(CFS) Normal flow depth in pipe= 8.4l(In.) Flow top width inside pipe= 14.89(In.) Critical Depth= 10.18(In.) Pipe flow velocity= 6.18(Ft/s) 20 Travel time through pipe Time of concentration (TC) 0.21 min. 5.74 min. JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 34.000 **** SUBAREA FLOW ADDITION**** [COMMERCIAL area type Time of concentration 5.74 min. Rainfall intensity 5.904(In/Hr) for a 50.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C 0.850 Subarea runoff l.405(CFS) for 0.280(Ac.) Total runoff= 5.787(CFS) Total area= l.13(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 697.18(Ft.) Downstream point/station elevation 697.00(Ft.) Pipe length 14.92(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 5.787(CFS) Given pipe size= 15.00(In.) Calculated individual pipe flow 5.787(CFS) Normal flow depth in pipe= 10.29(In.) Flow top width inside pipe= 13.92(In.) Critical Depth= ll.68(In.) Pipe flow velocity= 6.44(Ft/s) Travel time through pipe= 0.04 min. Time of concentration (TC)= 5.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 31.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= l.130(Ac.) Runoff from this stream 5.787(CFS) Time of concentration= Rainfall intensity= Summary of stream data: 5.78 min. 5.879(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 19.691 7.68 4. 892 2 5.787 5.78 5.879 Qrnax(l) 1.000 * 1. 000 * 19.691) + 0.832 * 1. 000 * 5.787) + 24.507 Qmax(2) 1. 000 * 0.752 * 19.691) + 1. 000 * 1. 000 * 5.787) + 20.598 Total of 2 main streams to confluence: Flow rates before confluence point: 19.691 5.787 Maximum flow rates at confluence using above data: 21 24.507 20.598 Area of streams before confluence: 4.440 1.130 Results of confluence: Total flow rate= 24.507(CFS) Time of concentration 7.684 min. Effective stream area after confluence 5. 570 (Ac.) JN 18-062 Proposed Condition 50 Yr ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 692.97(Ft.) Downstream point/station elevation 689.12(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes= l Required pipe flow 24.507(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 24.507(CFS) Normal flow depth in pipe= 14.67(In.) Flow top width inside pipe= 13.98(In.) Critical depth could not be calculated. Pipe flow velocity= 15.89(Ft/s) Travel time through pipe 0.07 min. Time of concentration (TC) = 7.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 36.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 698.12(Ft.) Downstream point/station elevation 685.40(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 24.507(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow 24.507(CFS) Normal flow depth in pipe= 9.07(In.) Flow top width inside pipe= 18.00(In.) Critical depth could not be calculated. Pipe flow velocity= 27.46(Ft/s) Travel time through pipe 0.04 min. Time of concentration (TC) 7.79 min. End of computations, total study area= 10.340 (Ac.) 22 HYDROLOGY STU DY 7.2 HYDROGRAPH CALCULATIONS ~ATIONAL METHOD HYDROGRAPH PROGRAM :OPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY ~UN DATE 3/25/2019 -IYDROGRAPH FILE NAME Text1 flME OF CONCENTRATION 8 MIN. 3 HOUR RAINFALL 2.45 INCHES 3ASIN AREA 5.57 ACRES ~UNOFF COEFFICIENT 0.85 =>EAK DISCHARGE 24.5 CFS rlME (MIN)= 0 rlME (MIN)= 8 rlME (MIN)= 16 rlME (MIN)= 24 rlME (MIN)= 32 ~IME (MIN)= 40 "IME (MIN) = 48 -IME (MIN) = 56 -IME (MIN)= 64 -IME (MIN)= 72 -IME (MIN)= 80 "IME (MIN)= 88 "IME (MIN)= 96 "IME (MIN)= 104 "IME(MIN)= 112 "IME (MIN)= 120 "IME (MIN)= 128 "IME (MIN)= 136 "IME (MIN)= 144 "IME (MIN)= 152 "IME (MIN)= 160 "IME (MIN)= 168 "IME (MIN)= 176 ·IME (MIN)= 184 "IME (MIN)= 192 ·IME (MIN)= 200 "IME (MIN)= 208 ·IME (MIN)= 216 ·IME (MIN)= 224 IME (MIN)= 232 IME (MIN)= 240 IME (MIN)= 248 IME (MIN)= 256 IME (MIN)= 264 IME (MIN)= 272 IME (MIN) = 280 IME (MIN)= 288 IME (MIN)= 296 IME (MIN)= 304 IME (MIN)= 312 IME (MIN)= 320 IME (MIN)= 328 IME (MIN)= 336 IME (MIN)= 344 IME (MIN)= 352 IME (MIN)= 360 IME (MIN)= 368 DISCHARGE (CFS)= 0 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS)= 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS)= 0.9 DISCHARGE (CFS) = 1 DISCHARGE (CFS)= 1 DISCHARGE (CFS) = 1 DISCHARGE (CFS)= 1.1 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1 .2 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS) = 1.3 DISCHARGE (CFS)= 1.4 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS) = 1.7 DISCHARGE (CFS) = 1.8 DISCHARGE (CFS) = 2 DISCHARGE (CFS) = 2.2 DISCHARGE (CFS)= 2.7 DISCHARGE (CFS)= 3 DISCHARGE (CFS)= 4.5 DISCHARGE (CFS) = 4.4 DISCHARGE (CFS) = 24.5 DISCHARGE (CFS) = 3.6 DISCHARGE (CFS) = 2.4 DISCHARGE (CFS)= 1.9 DISCHARGE (CFS)= 1.6 DISCHARGE (CFS)= 1.4 DISCHARGE (CFS)= 1.2 DISCHARGE (CFS) = 1.1 DISCHARGE (CFS) = 1 DISCHARGE (CFS)= 0.9 DISCHARGE (CFS)= 0.9 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS) = 0 V'' .. ,,v ~ I Hydrograph Report Hydraflow Hydrographs by lntelisolve v9.23 Hyd. No. 1 INFLOW HYDROGRAPH 1 Hydrograph type Storm frequency Time i nterval = Manual = 50 yrs = 8 min Peak discharge Time to peak Hyd. volume INFLOW HYDROGRAPH 1 Monday, Mar 25, 2019 = 24.50 cfs = 248 min = 41 ,856 cuft Q (cfs) Hyd . No . 1 --50 Year Q (cfs) 28 .00 --.--------r--------r-------.---------,-------,-------,--28.00 24.00 -+-------------------+----•-+------+-----!--24.00 20.00 -+-------+------------+---------ll-1-4-------+-----f--20.00 16.00 -;----------;------------+------f--1'-+------+-----1--16.00 12.00 -+-------------------+------f'--1+----------l-----f--12.00 ,__ _____ __,_ __________ ,__ ___ -·t--------,1------+ 8.00 -;---------t------------+-------t+----------+-8 .00 ,--------,----------➔------•-~---------- ,-4.00 -+-------+------+------+---/_, __ --1,-----------lf--------+ 4.00 ----------◄-~-....... _----t------1 ........___ 0.00 _,_,,.__ ___ ____, _____ .,___ ____ -'-------'---------'-----''----0.00 0.0 1.1 2.1 3.2 4.3 5.3 6 .4 -HydNo.1 Time (hrs) ~ATIONAL METHOD HYDROGRAPH PROGRAM ::OPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY ~UN DATE 3/25/2019 ·iYDROGRAPH FILE NAME Text1 1IME OF CONCENTRATION 8 MIN. 5 HOUR RAINFALL 2.45 INCHES 3ASIN AREA 4.77 ACRES WNOFF COEFFICIENT 0.85 )EAK DISCHARGE 17.63 CFS -IME (MIN)= 0 -IME (MIN)= 8 -IME (MIN) = 16 -IME (MIN)= 24 -IME (MIN)= 32 -IME (MIN)= 40 "IME (MIN)= 48 ·IME (MIN)= 56 "IME (MIN)= 64 "IME (MIN)= 72 "IME (MIN)= 80 "IME (MIN)= 88 "IME (MIN)= 96 "IME (MIN)= 104 "IME (MIN)= 112 "IME (MIN)= 120 "IME (MIN)= 128 ·IME (MIN)= 136 ·IME (MIN)= 144 ·IME (MIN)= 152 "IME (MIN)= 160 IME (MIN)= 168 IME (MIN)= 176 IME (MIN)= 184 IME (MIN)= 192 IME (MIN)= 200 IME (MIN) = 208 IME (MIN)= 216 IME (MIN)= 224 IME (MIN)= 232 IME (MIN)= 240 IME (MIN)= 248 IME (MIN) = 256 IME (MIN) = 264 IME (MIN)= 272 IME (MIN) = 280 IME (MIN)= 288 IME (MIN)= 296 IME (MIN)= 304 IME (MIN)= 312 IME (MIN)= 320 IME (MIN)= 328 IME (MIN)= 336 IME (MIN)= 344 IME (MIN)= 352 IME (MIN)= 360 IME (MIN)= 368 DISCHARGE (CFS)= 0 DISCHARGE (CFS)= 0.6 DISCHARGE (CFS)= 0.6 DISCHARGE (CFS)= 0.6 DISCHARGE (CFS)= 0.6 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS)= 0.8 DISCHARGE (CFS)= 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS)= 0.9 DISCHARGE (CFS) = 1 DISCHARGE (CFS) = 1 DISCHARGE (CFS)= 1.1 DISCHARGE (CFS)= 1.1 DISCHARGE (CFS)= 1.2 DISCHARGE (CFS)= 1.3 DISCHARGE (CFS) = 1.4 DISCHARGE (CFS) = 1.5 DISCHARGE (CFS)= 1.7 DISCHARGE (CFS) = 1.9 DISCHARGE (CFS)= 2.3 DISCHARGE (CFS)= 2.6 DISCHARGE (CFS)= 3.8 DISCHARGE (CFS)= 7.1 DISCHARGE (CFS)= 17.63 DISCHARGE (CFS)= 3.1 DISCHARGE (CFS)= 2.1 DISCHARGE (CFS)= 1.6 DISCHARGE (CFS)= 1.3 DISCHARGE (CFS)= 1.2 DISCHARGE (CFS) = 1 DISCHARGE (CFS)= 0.9 DISCHARGE (CFS) = 0.9 DISCHARGE (CFS)= 0.8 DISCHARGE (CFS) = 0.8 DISCHARGE (CFS)= 0.7 DISCHARGE (CFS) = 0.7 DISCHARGE (CFS)= 0.6 DISCHARGE (CFS) = 0.6 DISCHARGE (CFS) = 0 Hydrograph Report Hydraflow Hydrographs by lntelisolve v9.23 Hyd. No. 1 BMP2 Hydrograph type Storm frequency Time interval Q (cfs) 18.00 15.00 12.00 9.00 6.00 3 .00 0 .00 / 0 .0 = Manual = 50 yrs = 8 min 1 .1 -HydNo.1 ---- ·--~ 2.1 BMP2 Hyd. No. 1 --50 Year ·---- ' I I I ·•- Peak discharge Time to peak Hyd. volume - - -~-~ ---·--· 3.2 4.3 5.3 Monday, Mar 25, 2019 = 17.63 cfs = 248 min = 35,774 cuft " Q {cfs) 18.00 15.00 12.00 9.00 6.00 3.00 0.00 6.4 Time (hrs) HYDROLOGY STUDY 7.3 DETENTION BASIN CALCULATIONS Watershed Model Schematic 2 -OUTFLOW HYDROGRAPH 1 Project: 18-062 BMP1 .gpw 1 -INFLOW HYDROGRAPH 1 ~ ~ ::~?7J/ v 1 Hydraflow Hydrographs by lntelisolve v9.23 l Monday, Mar 25, 2019 2 Hydrograph Return Period Recap Hydraflow Hydrographs by lntelisolve v9.23 Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph No. type Hyd(s) description (origin) 1-Yr 2-Yr 3-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1 Manual --------------------------------24.50 ----INFLOW HYDROGRAPH 1 2 Reservoir 1 -------------------------------10.72 -----OUTFLOW HYDROGRAPH 1 Proj. file: 18-062 BMP1 .gpw Monday, Mar 25, 2019 3 Hydrograph Summary Report Hydraflow Hydrographs by lntelisolve v9.23 . Hyd. Hydro graph Peak Time Time to Hyd. Inflow Maximum Total Hydrograph No. type flow interval peak volume hyd(s) elevation strge used description (origin) (cfs) (min) (min) (cuft) (ft) (cuft) 1 Manual 24.50 8 248 41,856 --------INFLOW HYDROGRAPH 1 2 Reservoir 10.72 8 256 41,135 1 699.86 30,194 OUTFLOW HYDROGRAPH 1 18-062 BMP1 .gpw Return Period: 50 Year Monday, Mar 25, 2019 Hydrograph Report Hydraflow Hydrographs by lntelisolve v9.23 Hyd. No. 1 INFLOW HYDROGRAPH 1 Hydrograph type Storm frequency Time interval = Manual = 50 yrs = 8 min Hydrograph Discharge Table Time --Outflow (min cfs) 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248 256 264 272 280 288 296 304 312 320 328 336 0.700 0.700 0.700 0.700 0.800 0.800 0.800 0.800 0.800 0.900 0.900 0.900 1.000 1.000 1.000 1.100 1.100 1.200 1.300 1.300 1.400 1.500 1.700 1.800 2.000 2.200 2.700 3.000 4.500 4.400 24.50 << 3.600 2.400 1.900 1.600 1.400 1.200 1.100 1.000 0.900 0.900 0.800 Time --Outflow (min cfs) 344 0.800 352 0.700 360 0.700 ... End Peak discharge Time to peak Hyd. volume 4 Monday, Mar 25, 2019 = 24.50 cfs = 248 min = 41,856 cuft ( Printed values >= 1.00% of Qp.J Hydrograph Report 5 Hydraflow Hydrographs by lntelisolve v9.23 Monday, Mar 25, 2019 Hyd. No. 2 OUTFLOW HYDROGRAPH 1 Hydrograph type . = Reservoir Peak discharge = 10.72cfs Storm frequency = 50 yrs Time to peak = 256 min Time interval = 8 min Hyd. volume = 41,135 cuft Inflow hyd. No. = 1 -INFLOW HYDROGRAPH 1 Reservoir name = BMP1 Max. Elevation = 699.86 ft Max. Storage = 30,194 cuft Storage Indication method used. Hydrograph Discharge Table ( Printed values >= 1.00% of Op.) Time Inflow Elevation ClvA Clv B ClvC PfRsr WrA WrB WrC WrD Exfil Outflow (min) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 248 24.50 << 699.09 1.215 0.069 0.624 0.693 256 3.600 699.63 << 10.65 0.071 10.65 10.72 << 264 2.400 699.34 4.245 0.070 4.232 4.302 272 1.900 699.25 2.654 0.069 2.646 2.715 280 1.600 699.20 2.230 0.069 2.066 2.136 288 1.400 699.18 1.952 0.069 1.685 1.754 296 1.200 699.16 1.753 0.069 1.412 1.481 304 1.100 699.14 1.607 0.069 1.213 1.282 312 1.000 699.13 1.506 0.069 1.074 1.143 320 0.900 699.12 1.421 0.069 0.958 1.027 328 0.900 699.12 1.365 0.069 0.882 0.951 336 0.800 699.11 1.321 0.069 0.822 0.890 344 0.800 699.11 1.281 0.069 0.767 0.836 352 0.700 699.10 1.244 0.069 0.716 0.784 360 0.700 699.10 1.215 0.069 0.672 0.741 368 0.000 699.08 1.215 0.068 0.573 0.641 376 · 0.000 699.04 1.215 0.068 0.410 0.478 384 0.000 699.01 1.215 0.068 0.289 0.357 392 0.000 698.99 1.215 0.068 0.198 0.266 400 0.000 698.98 1.215 0.068 0.131 0.199 408 0.000 698.97 1.215 0.068 0.080 0.148 416 0.000 698.96 1.215 0.068 0.043 0.110 ... End Hydrograph Report 4 Hydraflow Hydrographs by lnte\isolve v9.23 Monday, Mar 25, 2019 Hyd. No. 1 INFLOW HYDROGRAPH 1 Hydrograph type Storm frequency Time interval :::: Manual == 50 yrs == 8 min Peak discharge Time to peak Hyd. volume INFLOW HYDROGRAPH 1 :::: 24.50 cfs :::: 248 min :::: 41 ,856 cuft Q (cfs) Hyd. No. 1 --50 Year Q (cfs) 28.00 --.------~---------~--------------~ 28 .00 --1-------< -------- -------1 -------; ----------1 --------------·I---------1------ 24.00 -+------+------------+-----t---------,1----------+-24.00 , ___ --------------·~---i-----------------!------< --------1------------------------,__ ___ __, _____ _ -------------11--t------ 20.00 -+------+-------+-------+-------,l-l-+--------,1----------+-20.00 ____ ____,,_ ______ +-------<>-----------------1------ ----+---------------,-------------, 16.00 -+--------+-------+-------+-------l-l-+--------,1------------1-16.00 ,------~-------i------+------f-+---------1---------l 12.00 -+------+-------+-------+------l·--l-t-----1----------+-12.00 1-------+--------+-------+------f --l~--------------· - 1-------------------1 -------·-------------1 8.00 -+------+------+------------•-----------+-8.00 1-------i----------+------·-+-----· -------1-------l 1---------1---------~~--------1-------1-------1 4.00 -+--------+--------+--------+----1,..--------1----------1-4.00 -------_-----------=~--~----~="-==----b;;;;;;;;;;;;;.--4------+-~~--______ ,,_ --~---1---..;;;;;;;;;;;;;.----J 0.00 ~"'-------L-------'------.....__ ____ _.__ ____ __._ ___ '-,___,_ 0.00 ---- 0 64 128 192 256 320 384 -HydNo.1 Time (min) Hydrograph Report 5 Hydraflow Hydrographs by lntelisolve v9.23 Monday, Mar 25, 2019 Hyd. No. 2 OUTFLOW HYDROGRAPH 1 = Reservoi r = 50 yrs Peak discharge Time to peak = 10.72 cfs = 256 min Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name = 8 min Hyd. volume = 41,135 cuft Max. Elevation = 699.86 ft = 1 -INFLOW HYDROGRAPH 1 = BMP 1 Max. Storage = 30,194 cuft Storage Indication method used. Q (cfs) OUTFLOW HYDROGRAPH 1 Hyd. No. 2 --50 Year Q (cfs) 28.00 -,-------.----~------,,--------,---r-----.----------.---------.-28.00 -------------1-------~ ----··------------------+----- 24.00 -+--------+-----+-------,1--------i-4------1--------+-------4-24.00 1-----+-----------;-------------+-----!---·- >----------------------------+------•------ 20.00 -t-------t-----+--------,1-------tlt-+-----t--------+--------+-20.00 16.00 -t-------t-----+-------,1-------fi-f.--t-----t--------+--------+-16.00 1-------1--------,1--------1-----J+t-----·--I--- 12.00 _______________ ,__ ___ ..,. ________________ _ 12.00 ------;-----+--------,1-----1 -1 •-----·------------- 8.0Q -+-------t-----+-----l-----f..;H <H.-----+-------1--------+-8.00 --------------------- ------------,1-----------. l 4.00 -t-------t-----+-----1----,fl-1-ff-,l--\.\-----t-----+------t-4.00 ---------·------------1 ---..;;-~ ----. ~ ,------------------ ------1 l ,_ -. ~ J1,;a::j,1EE1f:I11 !1:t1j -J1r::·c 1I:1Il11 l1J1:tC1E1-r1 !111j11±tf-t1t,t±:tj~t t==~:±:::~::~ .... ::t;;;:::==i 0.00 0.00 0 64 128 192 256 320 384 448 -HydNo.2 -HydNo.1 ! 11 111 I II Total storage used = 30,194 cuft Time (min) Watershed Model Schematic 2 -OUTFLOW HYDROGRAPH 2 Legend Hyd. Origin Description Manual BMP 2 2 Reservoir OUTFLOW HYDROGRAPH 2 Project: 18-062 BMP2.gpw 1 Hydraflow Hydrographs by lntelisolve v9.23 1 -BMP 2 :ff! . ·' J Monday, Mar 25, 2019 2 Hydrograph Return Period Recap Hydraflow Hydrographs by lntelisolve v9.23 Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph No. type Hyd(s) description (origin) 1-Yr 2-Yr 3-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1 Manual ------------------------------------17.63 -------BMP2 2 Reservoir 1 ---------------------------------7.834 -----OUTFLOW HYDROGRAPH 2 Proj. file: 18-062 BMP2.gpw Monday, Mar 25, 2019 3 Hydrograph Summary Report Hydraflow Hydrographs by lntelisolve v9.23 Hyd. Hydrograph Peak Time Time to Hyd. Inflow Maximum Total Hydrograph No. type flow interval peak volume hyd(s) elevation strge used description (origin) (cfs) (min) (min) (cuft) (ft) (cuft) 1 Manual 17.63 8 248 35,774 ----------BMP2 2 Reservoir 7.834 8 256 35,742 1 698.54 26,037 OUTFLOW HYDROGRAPH 2 18-062 BMP2.gpw Return Period: 50 Year Monday, Mar 25, 2019 Hydrograph Report Hydraflow Hydrographs by lntelisolve v9.23 Hyd. No. 1 BMP2 Hydrograph type Storm frequency · Time interval = Manual = 50 yrs = 8 min Hydrograph Discharge Table Time --Outflow (hrs cfs) 0.13 0.27 0.40 0.53 0.67 0.80 0.93 1.07 1.20 1.33 1.47 1.60 1.73 1.87 2.00 2.13 2.27 2.40 2.53 2.67 2.80 2.93 3.07 3.20 3.33 3.47 3.60 3.73 3.87 4.00 4.13 4.27 4.40 4.53 4.67 4.80 4.93 5.07 5.20 5.33 5.47 5.60 0.600 0.600 0.600 0.600 0.700 0.700 0.700 0.700 0.700 0.700 0.800 0.800 0.800 0.800 0.900 0.900 1.000 1.000 1.100 1.100 1.200 1.300 1.400 1.500 1.700 1.900 2.300 2.600 3.800 7.100 17.63 « 3.100 2.100 1.600 1.300 1.200 1.000 0.900 0.900 0.800 0.800 0.700 Time --Outflow (hrs cfs) 5.73 0.700 5.87 0.600 6.00 0.600 ... End Peak discharge Time to peak Hyd. volume 4 Monday, Mar 25, 2019 = 17.63 cfs = 4.13 hrs = 35,774 cuft ( Printed values>= 1.00% of Op.) Hydrograph Report 5 Hydraflow Hydrographs by lntelisolve v9.23 Monday, Mar 25, 2019 Hyd. No. 2 OUTFLOW HYDROGRAPH 2 Hydrograph type = Reservoir Peak discharge = 7.834 cfs Storm frequency = 50 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 35,742 cuft Inflow hyd. No. = 1 -BMP 2 Reservoir name = BMP2 Max. Elevation = 698.54 ft Max. Storage = 26,037 cuft Storage Indication method used. Outflow includes exfiltration. Hydrograph Discharge Table ( Printed values>= 1.00% of Op.) Time Inflow Elevation ClvA ClvB ClvC PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 3.73 2.600 696.02 9.660 0.057 0.023 0.080 3.87 3.800 696.34 9.660 0.059 0.023 0.082 4.00 7.100 696.88 9.660 0.062 0.023 0.085 4.13 17.63<< 697.98 9.660 0.068 0.023 0.091 4.27 3.100 698.39 << 9.660 0.070 7.741 0.023 7.834 « 4.40 2.100 698.21 9.660 0.069 3.008 0.023 3.101 4.53 1.600 698.15 9.660 0.069 2.167 0.023 2.259 4.67 1.300 698.12 9.660 0.069 1.665 0.023 1.756 4.80 1.200 698.10 9.660 0.068 1.349 0.023 1.441 4.93 1.000 698.08 9.660 0.068 1.137 0.023 1.229 5.07 0.900 698.07 9.660 0.068 0.964 0.023 1.055 5.20 0.900 698.06 9.660 0.068 0.867 0.023 0.959 5.33 0.800 698.06 9.660 0.068 0.800 0.023 0.891 5.47 0.800 698.05 9.660 0.068 0.743 0.023 0.834 5.60 0.700 698.05 9.660 0.068 0.691 0.023 0.782 5.73 0.700 698.05 9.660 0.068 0.640 0.023 0.731 5.87 0.600 698.04 9.660 0.068 0.589 0.023 0.681 6.00 0.600 698.04 9.660 0.068 0.539 0.023 0.630 6.13 0.000 698.02 9.660 0.068 0.334 0.023 0.425 6.27 0.000 698.00 9.660 0.068 0.069 0.023 0.161 6.40 0.000 698.00 9.660 0.068 0.023 0.091 6.53 0.000 697.99 9.660 0.068 0.023 0.091 6.67 0.000 697.98 9.660 0.068 0.023 0.091 6.80 0.000 697.97 9.660 0.068 0.023 0.091 6.93 0.000 697.97 9.660 0.068 0.023 0.091 7.07 0.000 697.96 9.660 0.068 . 0.023 0.091 7.20 0.000 697.95 9.660 0.068 0.023 0.091 7.33 0.000 697.95 9.660 0.068 0.023 0.091 7.47 0.000 697.94 9.660 0.068 0.023 0.091 7.60 0.000 697.93 9.660 0.068 0.023 0.091 7.73 0.000 697.93 9.660 0.068 0.023 0.091 7.87 0.000 697.92 9.660 0.068 0.023 0.091 8.00 0.000 697.91 9.660 0.068 0.023 0.091 8.13 0.000 697.90 9.660 0.068 0.023 0.091 8.27 0.000 697.90 9.660 0.067 0.023 0.090 8.40 0.000 697.89 9.660 0.067 0.023 0.090 8.53 0.000 697.88 9.660 0.067 0.023 0.090 8.67 0.000 697.88 9.660 0.067 0.023 0.090 8.80 0.000 697.87 9.660 0.067 0.023 0.090 8.93 0.000 697.86 9.660 0.067 0.023 0.090 Continues on next page ... 6 OUTFLOW HYDROGRAPH 2 Hydrograph Discharge Table Time Inflow Elevation ClvA Clv B Clv C PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 9.07 0.000 697.86 9.660 0.067 0.023 0.090 9.20 0.000 697.85 9.660 0.067 0.023 0.090 9.33 0.000 697.84 9.660 0.067 0.023 0.090 9.47 0.000 697.83 9.660 0.067 0.023 0.090 9.60 0.000 697.83 9.660 0.067 0.023 0.090 9.73 0.000 697.82 9.660 0.067 0.023 0.090 9.87 0.000 697.81 9.660 0.067 0.023 0.090 10.00 0.000 697.81 9.660 0.067 0.023 0.090 10.13 0.000 697.80 9.660 0.067 0.023 0.090 10.27 0.000 697.79 9.660 0.067 0.023 0.090 10.40 0.000 697.79 9.660 0.067 0.023 0.090 10.53 0.000 697.78 9.660 0.067 0.023 0.090 10.67 0.000 697.77 9.660 0.067 0.023 0.090 10.80 0.000 697.76 9.660 0.067 0.023 0.090 10.93 0.000 697.76 9.660 0.067 0.023 0.090 11.07 0.000 697.75 9.660 0.067 0.023 0.090 11.20 0.000 697.74 9.660 0.067 0.023 0.090 11.33 0.000 697.74 9.660 0.067 0.023 0.090 11.47 0.000 697.73 9.660 0.067 0.023 0.090 11.60 0.000 697.72 9.660 0.067 0.023 0.090 11.73 0.000 697.72 9.660 0.067 0.023 0.090 11.87 0.000 697.71 9.660 0.067 0.023 0.090 12.00 0.000 697.70 9.660 0.066 0.023 0.089 12.13 0.000 697.69 9.660 0.066 0.023 0.089 12.27 0.000 697.69 9.660 0.066 0.023 0.089 12.40 0.000 697.68 9.660 0.066 0.023 0.089 12.53 0.000 697.67 9.660 0.066 0.023 0.089 12.67 0.000 697.67 9.660 0.066 0.023 0.089 12.80 0.000 697.66 9.660 0.066 0.023 0.089 12.93 0.000 697.65 9.660 0.066 0.023 0.089 13.07 0.000 697.65 9.660 0.066 0.023 0.089 13.20 0.000 697.64 9.660 0.066 0.023 0.089 13.33 0.000 697.63 9.660 0.066 0.023 0.089 13.47 0.000 697.63 9.660 0.066 0.023 0.089 13.60 0.000 697.62 9.660 0.066 0.023 0.089 13.73 0.000 697.61 9.660 0.066 0.023 0.089 13.87 0.000 697.60 9.660 0.066 0.023 0.089 14.00 0.000 697.60 9.660 0.066 0.023 0.089 14.13 0.000 697.59 9.660 0.066 0.023 0.089 14.27 0.000 697.58 9.660 0.066 0.023 0.089 14.40 0.000 697.58 9.660 0.066 0.023 0.089 14.53 0.000 697.57 9.660 0.066 0.023 0.089 14.67 0.000 697.56 9.660 0.066 0.023 0.089 14.80 0.000 697.56 9.660 0.066 0.023 0.089 14.93 0.000 697.55 9.660 0.066 0.023 0.089 15.07 0.000 697.54 9.660 0.066 0.023 0.089 15.20 0.000 697.54 9.660 0.066 0.023 0.089 15.33 0.000 697.53 9.660 0.066 0.023 0.089 15.47 0.000 697.52 9.660 0.066 0.023 0.089 15.60 0.000 697.51 9.660 0.066 0.023 0.089 15.73 0.000 697.51 9.660 0.065 0.023 0.088 15.87 0.000 697.50 9.660 0.065 0.023 0.088 16.00 0.000 697.49 9.660 0.065 0.023 0.088 Continues on next page ... 7 OUTFLOW HYDROGRAPH 2 Hydrograph Discharge Table Time Inflow Elevation ClvA Clv B Clv C PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 16.13 0.000 697.48 9.660 0.065 0.023 0.088 16.27 0.000 697.47 9.660 0.065 0.023 0.088 16.40 0.000 697.47 9.660 0.065 0.023 0.088 16.53 0.000 697.46 9.660 0.065 0.023 0.088 16.67 0.000 697.45 9.660 0.065 0.023 0.088 16.80 0.000 697.44 9.660 0.065 0.023 0.088 16.93 0.000 697.43 9.660 0.065 0.023 0.088 17.07 0.000 697.42 9.660 0.065 0.023 0.088 17.20 0.000 697.41 9.660 0.065 0.023 0.088 17.33 0.000 697.40 9.660 0.065 0.023 0.088 17.47 0.000 697.39 9.660 0.065 0.023 0.088 17.60 0.000 697.39 9.660 0.065 0.023 0.088 17.73 0.000 697.38 9.660 0.065 0.023 0.088 17.87 0.000 697.37 9.660 0.065 0.023 0.088 18.00 0.000 697.36 9.660 0.065 0.023 0.088 18.13 0.000 697.35 9.660 0.065 0.023 0.088 18.27 0.000 697.34 9.660 0.065 0.023 0.088 18.40 0.000 697.33 9.660 0.065 0.023 0.088 18.53 0.000 697.32 9.660 0.064 0.023 0.087 18.67 0.000 697.32 9.660 0.064 0.023 0.087 18.80 0.000 697.31 9.660 0.064 0.023 0.087 18.93 0.000 697.30 9.660 0.064 0.023 0.087 19.07 0.000 697.29 9.660 0.064 0.023 0.087 19.20 0.000 697.28 9.660 0.064 0.023 0.087 19.33 0.000 697.27 9.660 0.064 0.023 0.087 19.47 0.000 697.26 9.660 0.064 0.023 0.087 19.60 0.000 697.25 9.660 0.064 0.023 0.087 19.73 0.000 697.24 9.660 0.064 0.023 0.087 19.87 0.000 697.24 9.660 0.064 0.023 0.087 20.00 0.000 697.23 9.660 0.064 0.023 0.087 20.13 0.000 697.22 9.660 0.064 0.023 0.087 20.27 0.000 697.21 9.660 0.064 0.023 0.087 20.40 0.000 697.20 9.660 0.064 0.023 0.087 20.53 0.000 697.19 9.660 0.064 0.023 0.087 20.67 0.000 · 697.18 9.660 0.064 0.023 0.087 20.80 0.000 697.17 9.660 0.064 0.023 0.087 20.93 0.000 697.17 9.660 0.064 0.023 0.087 21.07 0.000 697.16 9.660 0.064 0.023 0.087 21.20 0.000 697.15 9.660 0.064 0.023 0.087 21.33 0.000 697.14 9.660 0.063 0.023 0.086 21.47 0.000 697.13 9.660 0.063 0.023 0.086 21.60 0.000 697.12 9.660 0.063 0.023 0.086 21.73 0.000 697.11 9.660 0.063 0.023 0.086 21.87 0.000 697.10 9.660 0.063 0.023 0.086 22.00 0.000 697.10 9.660 0.063 0.023 0.086 22.13 0.000 697.09 9.660 0.063 0.023 0.086 22.27 0.000 697.08 9.660 0.063 0.023 0.086 22.40 0.000 697.07 9.660 0.063 0.023 0.086 22.53 0.000 697.06 9.660 0.063 0.023 0.086 22.67 0.000 697.05 9.660 0.063 0.023 0.086 22.80 0.000 697.04 9.660 0.063 0.023 0.086 22.93 0.000 697.04 9.660 0.063 0.023 0.086 23.07 0.000 697.03 9.660 0.063 0.023 0.086 Continues on next page ... 8 OUTFLOW HYDROGRAPH 2 Hydrograph Discharge Table Time Inflow Elevation ClvA Clv B Clv C PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 23.20 0.000 697.02 9.660 0.063 0.023 0.086 23.33 0.000 697.01 9.660 0.063 0.023 0.086 23.47 0.000 697.00 9.660 0.063 0.023 0.086 23.60 0.000 696.99 9.660 0.063 0.023 0.086 23.73 0.000 696.98 9.660 0.063 0.023 0.086 23.87 0.000 696.97 9.660 0.063 0.023 0.086 24.00 0.000 696.97 9.660 0.063 0.023 0.086 24.13 0.000 696.96 9.660 0.063 0.023 0.086 24.27 0.000 696.95 9.660 0.062 0.023 0.085 24.40 0.000 696.94 9.660 0.062 0.023 0.085 24.53 0.000 696.93 9.660 0.062 0.023 0.085 24.67 0.000 696.92 9.660 0.062 0.023 0.085 24.80 0.000 696.91 9.660 0.062 0.023 0.085 24.93 0.000 696.91 9.660 0.062 0.023 0.085 25.07 0.000 696.90 9.660 0.062 0.023 0.085 25.20 0.000 696.89 9.660 0.062 0.023 0.085 25.33 0.000 696.88 9.660 0.062 0.023 0.085 25.47 0.000 696.87 9.660 0.062 0.023 0.085 25.60 0.000 696.86 9.660 0.062 0.023 0.085 25.73 0.000 696.85 9.660 0.062 0.023 0.085 25.87 0.000 696.85 9.660 0.062 0.023 0.085 26.00 0.000 696.84 9.660 0.062 0.023 0.085 26.13 0.000 696.83 9.660 0.062 0.023 0.085 26.27 0.000 696.82 9.660 0.062 0.023 0.085 26.40 0.000 696.81 9.660 0.062 0.023 0.085 26.53 0.000 696.80 9.660 0.062 0.023 0.085 26.67 0.000 696.79 9.660 0.062 0.023 0.085 26.80 0.000 696.79 9.660 0.062 0.023 0.085 26.93 0.000 696.78 9.660 0.061 0.023 0.085 27.07 0.000 696.77 9.660 0.061 0.023 0.084 27.20 0.000 696.76 9.660 0.061 0.023 0.084 27.33 0.000 696.75 9.660 0.061 0.023 0.084 27.47 0.000 696.74 9.660 0.061 0.023 0.084 27.60 0.000 696.73 9.660 0.061 0.023 0.084 27.73 0.000 696.73 9.660 0.061 0.023 0.084 27.87 0.000 696.72 9.660 0.061 0.023 0.084 28.00 0.000 696.71 9.660 0.061 0.023 0.084 28.13 0.000 696.70 9.660 0.061 0.023 0.084 28.27 0.000 696.69 9.660 0.061 0.023 0.084 28.40 0.000 696.68 9.660 0.061 0.023 0.084 28.53 0.000 696.68 9.660 0.061 0.023 0.084 28.67 0.000 696.67 9.660 0.061 0.023 0.084 28.80 0.000 696.66 9.660 0.061 0.023 0.084 28.93 0.000 696.65 9.660 0.061 0.023 0.084 29.07 0.000 696.64 9.660 0.061 0.023 0.084 29.20 0.000 696.63 9.660 0.061 0.023 0.084 29.33 0.000 696.62 9.660 0.061 0.023 0.084 29.47 0.000 696.62 9.660 0.061 0.023 0.084 29.60 0.000 696.61 9.660 0.061 0.023 0.084 29.73 0.000 696.60 9.660 0.060 0.023 0.083 29.87 0.000 696.59 9.660 0.060 0.023 0.083 30.00 0.000 696.58 9.660 0.060 0.023 0.083 30.13 0.000 696.57 9.660 0.060 0.023 0.083 Continues on next page ... 9 OUTFLOW HYDROGRAPH 2 Hydrograph Discharge Table Time Inflow Elevation ClvA ClvB Clv C PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 30.27 0.000 696.57 9.660 0.060 0.023 0.083 30.40 0.000 696.56 9.660 0.060 0.023 0.083 30.53 0.000 696.55 9.660 0.060 0.023 0.083 30.67 0.000 696.54 9.660 0.060 0.023 0.083 30.80 0.000 696.53 9.660 0.060 0.023 0.083 30.93 0.000 696.52 9.660 0.060 0.023 0.083 31.07 0.000 696.52 9.660 0.060 0.023 0.083 31.20 0.000 696.51 9.660 0.060 0.023 0.083 31.33 0.000 696.50 9.660 0.060 0.023 0.083 31.47 0.000 696.49 9.660 0.060 0.023 0.083 31.60 0.000 696.48 9.660 0.060 0.023 0.083 31.73 0.000 696.47 9.660 0.060 0.023 0.083 31.87 0.000 696.47 9.660 0.060 0.023 0.083 32.00 0.000 696.46 9.660 0.060 0.023 0.083 32.13 0.000 696.45 9.660 0.060 0.023 0.083 32.27 0.000 696.44 9.660 0.060 0.023 0.083 32.40 0.000 696.43 9.660 0.060 0.023 0.083 32.53 0.000 696.42 9.660 0.059 0.023 0.082 32.67 0.000 696.42 9.660 0.059 0.023 0.082 32.80 0.000 696.41 9.660 0.059 0.023 0.082 32.93 0.000 696.40 9.660 0.059 0.023 0.082 33.07 0.000 696.39 9.660 0.059 0.023 0.082 33.20 0.000 696.38 9.660 0.059 0.023 0.082 33.33 0.000 696.37 9.660 0.059 0.023 0.082 33.47 0.000 696.37 9.660 0.059 0.023 0.082 33.60 0.000 696.36 9.660 0.059 0.023 0.082 33.73 0.000 696.35 9.660 0.059 0.023 0.082 33.87 0.000 696.34 9.660 0.059 0.023 0.082 34.00 0.000 696.33 9.660 0.059 0.023 0.082 34.13 0.000 696.32 9.660 0.059 0.023 0.082 34.27 0.000 696.32 9.660 0.059 0.023 0.082 34.40 0.000 696.31 9.660 0.059 0.023 0.082 34.53 0.000 696.30 9.660 0.059 0.023 0.082 34.67 0.000 696.29 9.660 0.059 0.023 0.082 34.80 0.000 696.28 9.660 0.059 0.023 0.082 34.93 0.000 696.27 9.660 0.059 0.023 0.082 35.07 0.000 696.27 9.660 0.059 0.023 0.082 35.20 0.000 696.26 9.660 0.059 0.023 0.082 35.33 0.000 696.25 9.660 0.058 0.023 0.081 35.47 0.000 696.24 9.660 0.058 0.023 0.081 35.60 0.000 696.23 9.660 0.058 0.023 0.081 35.73 0.000 696.23 9.660 0.058 0.023 0.081 35.87 0.000 696.22 9.660 0.058 0.023 0.081 36.00 0.000 696.21 9.660 0.058 0.023 0.081 36.13 0.000 696.20 9.660 0.058 0.023 0.081 36.27 0.000 696.19 9.660 0.058 0.023 0.081 36.40 0.000 696.18 9.660 0.058 0.023 0.081 36.53 0.000 696.18 9.660 0.058 0.023 0.081 36.67 0.000 696.17 9.660 0.058 0.023 0.081 36.80 0.000 696.16 9.660 0.058 0.023 0.081 36.93 0.000 696.15 9.660 0.058 0.023 0.081 37.07 0.000 696.14 9.660 0.058 0.023 0.081 37.20 0.000 696.14 9.660 0.058 0.023 0.081 Continues on next page ... 10 OUTFLOW HYDROGRAPH 2 Hydrograph Discharge Table Time Inflow Elevation ClvA Clv B Clv C PfRsr WrA WrB WrC WrD Exfil Outflow (hrs) cfs ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 37.33 0.000 696.13 9.660 0.058 0.023 0.081 37.47 0.000 696.12 9.660 0.058 0.023 0.081 37.60 0.000 696.11 9.660 0.058 0.023 0.081 37.73 0.000 696.10 9.660 0.058 0.023 0.081 37.87 0.000 696.09 9.660 0.058 0.023 0.081 38.00 0.000 696.09 9.660 0.057 0.023 0.080 38.13 0.000 696.08 9.660 0.057 0.023 0.080 38.27 0.000 696.07 9.660 0.057 0.023 0.080 38.40 0.000 696.06 9.660 0.057 0.023 0.080 38.53 0.000 696.05 9.660 0.057 0.023 0.080 38.67 0.000 696.05 9.660 0.057 0.023 0.080 38.80 0.000 696.04 9.660 0.057 0.023 0.080 38.93 0.000 696.03 9.660 0.057 0.023 0.080 39.07 0.000 696.02 9.660 0.057 0.023 0.080 39.20 0.000 696.01 9.660 0.057 0.023 0.080 39.33 0.000 696.01 9.660 0.057 0.023 0.080 39.47 0.000 696.00 9.660 0.057 0.023 0.080 39.60 0.000 695.99 9.660 0.057 0.023 0.080 39.73 0.000 695.98 9.660 0.057 -----0.023 0.080 39.87 0.000 695.97 9.660 0.057 0.023 0.080 40.00 0.000 695.96 9.660 0.057 0.023 0.080 40.13 0.000 695.94 9.660 0.057 0.023 0.080 40.27 0.000 695.93 9.660 0.057 0.023 0.080 40.40 0.000 695.92 9.660 0.057 0.023 0.080 40.53 0.000 695.91 9.660 0.056 0.023 0.079 40.67 0.000 695.90 9.660 0.056 0.023 0.079 40.80 0.000 695.89 9.660 0.056 0.023 0.079 40.93 0.000 695.88 9.660 0.056 0.023 0.079 41.07 0.000 695.87 9.660 0.056 0.023 0.079 41.20 0.000 695.86 9.660 0.056 0.023 0.079 41.33 0.000 695.85 9.660 0.056 0.023 0.079 41.47 0.000 695.84 9.660 0.056 0.023 0.079 41.60 0.000 695.83 9.660 0.056 0.023 0.079 41.73 0.000 695.82 9.660 0.056 0.023 0.079 41.87 0.000 695.81 9.660 0.056 0.023 0.079 42.00 0.000 695.80 9.660 0.056 0.023 0.079 42.13 0.000 695.79 9.660 0.056 0.023 0.079 42.27 0.000 695.78 9.660 0.056 0.023 0.079 42.40 0.000 695.77 9.660 0.056 0.023 0.079 42.53 0.000 695.76 9.660 0.056 0.023 0.079 42.67 0.000 695.75 9.660 0.055 0.023 0.078 42.80 0.000 695.74 9.660 0.055 0.023 0.078 ... End Pond Report Hydraflow Hydrographs by lntelisolve v9.23 Pond No. 1 -BMP 2 Pond Data Trapezoid -Bottom L x W = 184.0 x 20.0 ft, Side slope= 0.00:1, Bottom elev. = 689.50 ft, Depth = 5.00 ft, Voids= 40.00% Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 696.00 ft Stage I Storage Table Stage (ft) Elevation (ft) Contour area (sqft) Iner. Storage (cuft) Total storage (cuft) 0.00 689.50 3,680 0 0 0.50 690.00 3,680 736 736 1.00 690.50 3,680 736 1,472 1.50 691.00 3,680 736 2,208 2.00 691.50 3,680 736 2,944 2.50 692.00 3,680 736 3,680 3.00 692.50 3,680 736 4,416 3.50 693.00 3,680 736 5,152 4.00 693.50 3,680 736 5,888 4.50 694.00 3,680 736 6,624 5.00 694.50 3,680 736 7,360 6.50 696.00 3,688 5,525 12,885 8.00 697.50 5,918 7,138 20,024 8.50 698.00 6,431 3,086 23,110 10.50 700.00 8,541 14,921 38,030 Culvert/ Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] Rise (in) = 18.00 1.00 0.00 0.00 Crest Len (ft) = 9.42 0.00 0.00 Span (in) = 18.00 1.00 0.00 0.00 Crest El. (ft) = 698.00 0.00 0.00 No. Barrels = 1 0 0 Weir Coeff. = 3.33 3.33 3.33 Invert El. (ft) :;: 687.42 691.25 0.00 0.00 Weir Type = Riser Length (ft) = 10.00 0.00 0.00 0.00 Multi-Stage = Yes No No Slope(%) = 2.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.270 (by Contour) Multi-Stage = n/a No No No TW Elev. (ft) = 0.00 11 Monday, Mar 25, 2019 [D] 0.00 0.00 3.33 No Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage I Discharge Table Stage Storage Elevation ClvA Clv B Clv C PrfRsr WrA WrB WrC WrD Exfil User Total ft cuft ft cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs cfs 0.00 0 689.50 0.00 0.00 0.00 0.000 0.000 0.50 736 690.00 9.66 oc 0.00 0.00 0.023 0.023 1.00 1,472 690.50 9.66 oc 0.00 0.00 0.023 0.023 1.50 2,208 691.00 9.66 oc 0.00 0.00 0.023 0.023 2.00 2,944 691.50 9.66 oc 0.01 ic 0.00 0.023 0.035 2.50 3,680 692.00 9.66 oc 0.02 ic 0.00 0.023 0.045 3.00 4,416 692.50 9.66 oc 0.03 ic 0.00 0.023 0.052 3.50 5,152 693.00 9.66 oc 0.03 ic 0.00 0.023 0.057 4.00 5,888 693.50 9.66 oc 0.04 ic 0.00 0.023 0.062 4.50 6,624 694.00 9.66 oc 0.04ic 0.00 0.023 0.066 5.00 7,360 694.50 9.66 oc 0.05 ic 0.00 0.023 0.070 6.50 12,885 696.00 9.66 oc 0.06 ic 0.00 0.023 0.080 8.00 20,024 697.50 9.66 oc 0.07 ic 0.00 0.023 0.088 8.50 23,110 698.00 9.66 oc 0.07 ic 0.00 0.023 0.091 10.50 38,030 700.00 29.17 ic 0.08 ic 29.16 s 0.023 29.26 Hyd rograph Report 4 Hydraflow Hydrogr aphs by lntelisolve v9.23 Monday, Mar 25, 2019 Hyd . No. 1 BMP2 Hydrograph type Storm frequency Time interval = Manual = 50 yrs = 8 min BMP2 Peak discharge T ime t o peak Hyd . volume = 17.63 cfs = 4.13 hrs = 35,774 cuft Q (cfs) Hyd. No . 1 --50 Year Q (cfs) 18.00 ~----~----~----~----~----~~---~ 18.00 --------·--i·---------4------l 15.00 --f--------+-------+---------1------iH -+------if---------4-15.00 -----------+-------------·- 12.00 -+------+------+-------1------f,-++------f------+ 12.00 ------il------t-------1------- 9 .00 -+------+------+-------+----1--l+------f,--------+ 9.00 6 .00 +------_-_-_-_-_-__ -_-+-_-:_-::::::~::::~~~~.--·-+ -----f-_---~~-~~~~~~~~~~~~-~----------~--! 6.00 3 .00 +--;=-;:~;:~;;;;;,.-:=;·~=;;;;-~=--:=:~=:~~-----=:~~~~:--_ ..... v--~--1-~---_--' ___ lk_-. -----~~::~~:~~~~~-=~====~::: 3.00 V ' 0.00 -1'--------'---------'--------'--------'-----L---------1-0 .00 0.0 1.1 2 .1 3.2 4.3 5 .3 6 .4 -Hyd No.1 Time (hrs) Hydrograph Report 5 Hydraflow Hydrographs by lntelisolve v9.2 3 Monday, Mar 25, 2019 Hyd. No. 2 OUTFLOW HYDROGRAPH 2 Hydrograph type = Reservoir Peak discharge = 7.834 cfs Storm frequency = 50 yrs Time to peak = 4.27 hrs Time interval = 8 min Hyd. volume = 35,742 cuft Inflow hyd. No. = 1 -BMP 2 Max. Elevation = 698.54 ft Reservoi r name = BMP2 Max. Storage = 26,037 cuft Storage Indication method used. Outflow includes exfiltration. OUTFLOW HYDROGRAPH 2 Q (cfs) Hyd. No. 2 --50 Year Q (cfs) 18. 00 -.------.---.-----.---.-----.--,---,--,------,,-----.-------,,----,--,------,--,------,--,----,--,----,-~ 1 8 . 00 ---a----t---1----1---t---1----+----t---f---1 --,---t---1 ---t----f---t---l----j ----------+----+--1-----1--+---l --f--·+--+-------➔--+-➔---1--➔-- 15.00 -+--+---+--+------t--+-----i--+---if----+---if----+--t---+--t---+--+----+--+----+--15.00 -------·--1--1--.i--t-----➔ -----r--1 --1----+---+---t--+-----l-- --1--------j --+---1·--1--+--+---+----+------·----1--t--i ---f----j--t----+----t 12. 00 -+----+-½-----+----+-----t--+---if----+-----<f----+-----<f----+--t---+--t----+--+----+--+---+--12. 00 9 .00 -+----+----+----+-----+--+-----<f----+-~-------t----+--+----+--+---+--+---+--9.00 >----+----<111--+--<---1--1 ----1 -•--+---+--+----t---1---------l---t--1--1 6.00 -+---+-----,1■---+---+----+--+----+--+---+--t---+----t--------------6 .00 ____, _ _,_____,,_ -+---11 -----·---·-➔-----+---------•--+---I 3.00 -t----t-,l&---t--+---l--t---,l---+--1---+--t---+--t--t---t--t--+--t--+--t--t-3.00 0.00 0 2 ·-------------------1------,------------ -+---1-----------11---➔--t---➔ !l. " ____________________ ._ ___ ._ ____________________ ~ 0.00 4 6 9 11 13 15 17 19 21 23 26 28 30 32 34 36 38 41 43 45 -Hyd No.2 -HydNo.1 i 111111 II Total storage used = 26,037 cuft Time (hrs) HYDROLOGY STUDY APPENDIX A -TABLES AND CHARTS ., { Table 7-J ~ .0 . T Emezi F. Braler ,nd _ Hor1ce Vt'Ulitms fnn(! Vnhws of ft'' for Circular < 'hnnnl'ls in Ow Formuln-1 . K' 0 = -· d~'Js 1 ·: ti D ,..., depth or W&t<'t' d = J.i:i 1111•tc'1 of cha.on cl .09 ' .00007· .00031 .000?4 .00138•.00222 .Q0328 .OO-t5b .OOftO"( · .0077 5 . i .009(,7 .01 18 .014:! .Olfi7 .0195 .0225 .02 .5 7 .02Ul .03:?7 .03(if, .2 .\)4.0fi .04-18 .0 -Hl:? .O.S37 .058:i . 0<'13-l .0080 .0738 .0 7 H3 .0 8 ~9 .3 .0907 .09fifi .1027 . l08V • J 153 1218 .128-i .1352 .14, 20 .!,rn0 .4 .1 56 I .1033 .1705 .l 77U .185-t .192!) .2005 .2082 .2100 .2238 .5 .232 .239 .i~, .2sr, .2C.3 .271 .279 .28? ?95 .30l I .a .3 l l .3nl .32i r335 .3-t3 .350 .358 .3o<i .3?3 .380 .7 .388 .~95 .·602 AOH .-U6 A22 .{29 .435 .Nl A~1' .Ii ..csi .<58 .463 j..tG8 A73 .<. 71 .<Bl J85 .-!88 .~Sl l .9 .tS-l ,.(.9-6 .(g? ..tY8 ..t!JB ·"98 .{96·•·· AY-t .48'J .{83 ,~~~-L-~-----~--~-----J SUBDIVISION MANUAL SECTION 3: GENERAL DESIGN CRITERIA Section 3-200 Page 5 Revised 03-13-2012 3-203 Hydrology Developers draining to a river or stream will be required to use the latest adopted County Hydrology Manual to determine the flows expected at a given frequency (Q10, Q50 0100, etc,) Infill developments will use the following Hydrology requirements. The City Engineer will determine which projects may be considered "infill" projects. 3-203.1 Previously Approved Reports Runoff quantities; as set forth or derived from the report prepared by Lawrence, Fogg, Florer and Smith titled "A Special Study of Storm Drain Facilities" on file in the office of the City Engineer may be used in the design of drainage facilities in Chula Vista. A hydrologic study prepared and approved at General Development Plan (GOP) or Specific Planning Area (SPA) plan may be used as determined by the City Engineer. 3-203.2 For local drainage basins, storm discharge flow may be estimated based on the Rational Method or the Modified Rational Method. For all lateral and major drainage basins the SCS method, U.S. Army Corps of Engineers HEC-1 computer method or other tabular or computer method may be used upon City Engineer approval. 3-203.3 Rational and Modified Rational Methods (1) The rational method equation relates storm rainfall intensity (I), a selected runoff coefficient (C) and drainage area (A) to the peak runoff rate (Q): where: Q = CIA (Empirical Units) Q = Peak runoff in cubic feet per second C = Runoff coefficient I = lnten.sity, inches per hours A = Drainage basin area in acres Or where: Q=0.278CIA (Metric Units) Q = Peak runoff in cubic meters per second C = Runoff coefficient I = Intensity in millimeters per second A = Drainage area in square kilometers (2) Coefficient of Runoff: Consider probable development. Use highest number of the following values: a) b) c) Paved Surface Commercial Area Dense Residential (R2, R3) 0.90 0.85 0.75 NOTES: SUBDIVISION MANUAL SECTION 3: GENERAL DESIGN CRITERIA Section 3-200 Page 6 Revised 03-13-2012 Steep= Hilly= Rolling= Flat= Composite= d) e) f) g) h) i) j) k) I) m) n) o) Normal Residential (R1) Suburban Property (RE) Barren Slopes Steep Barren Slopes Hilly " 11 Rolling " " Flat Vegetated Slopes Steep II " Hilly " " Rolling 11 11 Flat Farm Land Parks, Golf Courses 0.65 0.55 0.80 0.75 0.70 0.65 0.60 0.55 0.50 0.45 0.35 0.30 Steep, rugged terrain with average slopes generally above 30%. Hilly terrain with average slopes of 10% to 30%. Rolling terrain with average slopes of 5% to 10%. Relatively flat land, with average slopes of 0% to 5%. Where drainage areas are composed of parts having different runoff characteristics, a weighted coefficient for the total . drainage area may be used. The runoff coefficient for a basin should be a composite coefficient made of the many different runoff coefficients for the sub-areas of the basin per equation: CAT = C1A1+CzA2+ ... CnAn n (3) Time of Concentration (tc = minutes) is the time required for runoff to flow from the most remote part of the watershed to the outlet point under consideration. With exceptions for limited natural watersheds, the time of concentration shall be calculated as follows: a) where: ti= Initial time or overland flow time of concentration, the time required for runoff to flow to the first inlet or to the street gutter tr = Travel time of concentration, the time required for runoff to flow within street gutters to inlets, with channels or within storm drain pipes. b) ti may be calculated using the following natural watershed flow fom,ula: L = Length of water shed (miles) H = Difference in elevation from furthermost point to the design point (feet). SUBDIVISION MANUAL SECTION 3: GENERAL DESIGN CRITERIA Section 3-200 Page 9 Revised 03-13-2012 calculations. The following guidelines shall be used for work in the City of Chula Vista. (1) The following Manning "n" factors are to be used: a) b) Pipe CMP, fully bituminous coated CMP, fully asphalt paved CMP, invert asphalt paved RCP,AII Cast in place PVC & HOPE, ALL Channel P.C.C., formed, no finish P.C.C., trowel finish P.C.C., float finish Gunite, no finish Gunite, trowel finish n 0.024 (Not allowed in City maintained system) 0.018 (Not allowed in City maintained system) 0.023 (Not allowed in City maintained system) 0.013 0.014 0.012 JJ 0.015 0.013 0.014 0.019 0.015 c) "n" factors for other materials or type of construction shall be as approved by the City Engineer. (2) Public storm drain pipes shall be reinforced concrete pipe (RCP) unless otherwise stated below or approved by the City Engineer. Corrugated metal pipe (CMP) shall not be used unless specifically approved by the City Engineer. (3) Minimum pipe diameter shall be 18" (46cm), minimum 11 D11 load rating for RCP within the right of way shall be 1500. (4) Storm drainage must be enclosed within a closed conduit for design runoff within a street right of way or City easement that can be carried in a 42" (107cm) diameter pipe or less. (5) Minimum grade of storm drains and culverts shall be 0.5%. (6) Maximum grade for RCP storm drains shall be 40%. PVC pipe may be used for grades greater than 40%. (7) Type A storm drain cleanouts shall have a minimum 6" clearance between the outside wall of pipe and inside of cleanout structure.-Also, the maximum allowable skew shall not exceed 20 degrees and limit the size of pipe to 39" without an engineering detail. Any pipes that are 39" or larger shall have an engineering detail. :evised:~ 0.f rj,n;. l ~< ~ 0ov:al _ date : _01-29-o~ CITY OF CH. LJ LA VI ST A M.P.M 2-0 . R~-dra~ By: M.P.M Date: 01-211-02 PUBLIC WO ,R_KS _ Df:PAf.sTMENT i---------1· ~-c _ ~~ 50 YEAR, 6 HOUR PRECIPITATION cvo- Df~04 • T1 ---t7, ~-=: -_-: ~ ----:--..:_ -~i--=-.~ -=--,-:-J : ~ ~-Li i ~-:-= = ~ -=-~: : _:__: _ _:__: ~ ----ri i , -,---l~--· · -, -----· · --·, '. ·, · ~r:mper.ial.Counf.y ___ _r,, ___ .,___~ .......,_ ~-i---l ,- --------,~---·-----~ ' : ' ~ i----------r-;;;· -~-'--------,.. -('1--1 t . -, -. • -~_:_ ~~lf;•---·••,.-1• • 1 I ~ +-~:J r~1~~~ :t;t-r, --:=:::::;;,'"----:---. -.;.....~...,~,,-·+--,-,-...-; ff i~:?: '.t---.-,-.--t ~: ~~_..-;,;..:.:•.. • I _,,-....._ ---r-.- -. .---:·-=-="-: l--:- .j I -r ~;": -= ..1~-• + ---: •" :1 :~~i~i::: ~1 ~--, ' ---=;·;?:~_J,. • ,! 1 • ,-,zr-; ·-•- ~~~:_:_ i-i~-: ~;~-->. r::::~~9 H ..:.___j_...L.L~.....;,4~:.:..:.,-~=4lb!~-.,..:.;-+...,..~...:YL~-j-~'fc:--'--',.....::..;,;,;-:;l;-;;l'--1---tt:rH~;>!'-~~=.::j[-'--,--.--'t-t-t--r-::t::l!_l-il ~-- ~+- ----7·. ~ -;r:, .==f ~-i ~· =.oo.i,.~ . 1-f~;-:5E~~Si1it23:±:f-~~ir,;.~f f!ir:~i~t~~~~~ti~i~t ~~~~ij~~t t=i::i ~ -r-r ;-::=;:.'FF~~~ ::±i::,"'=:-r \'r "~1J.;M!~:.:ct-ii:,~~~;;--t-1, I h --_:-__ ; .,,...,~F1~,!;!,d ti":fl~~~.;... ~-:;.":,Kr/~.:,o;i--,1r1~t.J!~--,..""·~--fll~.] -=:--;.1 =r I t~ .....,...,..~ ·cf:'r'~~'t'(-'.! ~1-li:.'tw-~,~~~·9~ ~ .. ~~+::-i ,...; :: . . --.-. ~~~ ~-':'l',"'l=r-, Q:: ~~--"'r'+-rl i -. --~ 'ffl'J:,,,,J/~ I ____ __j • -I • , .~H..l ] - ::-:::=~-:-:;--~_:-.-!.-' -l-...---. ·- -~· ' ,..._~ -' ·-,,_ _ ____ , ·-• -7 ••••• l J.-~-i --r-_: ~-:=-:+4--~~ r., ff ;iJ.¥ o-c~~~'. ~, ---~~1:. ·-rOC.LH ---!+--,....;;~±)..l--~..:.,....-'---1-.......,--------~-t------,--,---...J.....;....'--'---t----,--...J....c....,,...,.-+-'--+ -I IL j ----1 ~ --~ .. l _:. ·------. LJ J j _ . :. _ _!_1-J L -· -'-r-·-;::_:__~ --·-· . . . . __ _: ,_ J 1 I· ;-_: T": ~----.:._:::~ ~ 1 .. --.. ~~), ---,l·11..;_J - -:=-----.• -i-1 ' ...L.8 --, ---r --r-l--1 1•~1---l, :-~--. ··• ,-~::-:· HYDROLOGY STUDY APPENDIX B -DRAINAGE EXHIBIT DRAINAGE LEGEND PRIVATE CONTRACT LAVISTA mill:ci:nr.trkrCi:iJrt.WlOO Sai[k,p,CJ..921!'A3 (Gli) 235-S55 F;i:; (519) 2'],5-00- DRAINAGE LEGEND CXIJJIODllfJCTrl' '"'"""" BASftlecucDMl' --------- IIAltBASNEICUONt'I' ----- l;.-t.-t;_.J ~, GAAPHIC SC,tJ..E: 1~ • 30' IF PLA.~ SIZE IS LESS THA.N )6"x:45", THIS IS A REDUCED COPY. SCALE PL.AH ACCO~OIN3lY. PRIVATE CONTRACT HYDROLOGY PLAN ACADIA HEALTHCARE CHULA VISTA CHULA VISTA BEHAVIORAL HOSPITAL PROPOSED CONDrTION CITY OF CHULA VISTA. CALIFORNIA ~~ts.--nc.,~t S-E"Fr 2 o=< 2 5-E:TS Page intentionally left blank for double-sided printing 6 ATTACHMENT 6 Copy of Project's Geotechnical and Groundwater Investigation Report Attach project's geotechnical and groundwater investigation report. Refer to Appendix C.4 to determine the reporting requirements. Page intentionally left blank for double-sided printing Proposed Acadia San Diego Medical Facility 830 Showroom Place Chula Vista, California Acadia Health Care 6100 Tower Circle, Suite 1000 I Franklin, Tennessee 37067 March 6, 2019 I Project No. 108727001 Geotechnical & Environmental Sciences Consultants Geotechnical Evaluation Proposed Acadia San Diego Medical Facility 830 Showroom Place Chula Vista, California Mr. Andy Hanner Acadia Health Care 6100 Tower Circle, Suite 1000 I Franklin, Tennessee 37067 March 6, 2019 I Project No. 108727001 ~~ Nissa M. Morton, PG, CEG Project Geologist Kenneth H. Mansir, Jr., PE, G Principal Engineer NMM/WRM/KHM/gg Distribution: (1) Addressee (via William R. Morrison, PE, GE Senior Engineer 5710 Ruffin Road! San Diego, California 92123 Ip. 858.576.1000 I www.ninyoandrnoore.com 1 INTRODUCTION 1 2 SCOPE OF SERVICES 1 3 SITE DESCRIPTION 1 4 PROPOSED CONSTRUCTION 2 5 SUBSURFACE EVALUATION AND LABORATORY TESTING 2 6 INFILTRATION TESTING 3 7 GEOLOGY AND SUBSURFACE CONDITIONS 4 7.1 Regional Geologic Setting 4 7.2 Site Geology 5 7.2.1 Fill 5 7.2.2 Otay Formation 5 7.3 Groundwater 6 8 GEOLOGIC HAZARDS 6 8.1 Faulting and Seismicity 6 8.2 Surface Fault Rupture 7 8.3 Ground Motion 7 8.4 Liquefaction and Seismically Induced Settlement 8 8.5 Landslides 8 8.5.2 Surficial Slope Stability Analysis 10 8.6 Flood and Dam Inundation Hazards 10 8.7 Tsunamis and Seiches 10 9 CONCLUSIONS 11 10 RECOMMENDATIONS 12 10.1 Earthwork 12 10.1.1 Construction Plan Review and Pre-Construction Conference 12 10.1.2 Site Preparation 13 10.1.3 Excavation Characteristics 13 10.1.4 Remedial Grading and Treatment of Near-Surface Soils 13 10.1.5 Temporary Excavations 14 10.1.6 Temporary Shoring 15 Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 1 1 10.4 10.5 10.6 10.7 10.8 10.1.7 10.1.8 10.1.9 Materials for Fill and Trench Backfill Fill Placement and Compaction Pipe Bedding 10.1.10 Lateral Pressures for Thrust Blocks 10.1.11 Modulus of Soil Reaction Seismic Design Considerations Site-Specific Ground Response Foundations 10.4.1 Spread Footings 10.4.2 Lateral Resistance 10.4.3 Static Settlement Slabs-On-Grade Retaining Walls Exterior Flatwork Corrosion 10.9 Concrete is 10.1 0 Preliminary Pavement Recommendations 10.11 Drainage 11 CONSTRUCTION OBSERVATION 12 LIMITATIONS 13 REFERENCES TABLES 1 -Infiltration Test Results Summary 2 -Principal Active Faults 3 -Historical Earthquakes that Affected the Site 4 -Strength Parameters Used in Stability Evaluation 5 -Summary of Remedial Grading Recommendations 6 -Fill Material Criteria 7 -2016 California Building Code Seismic Design Criteria 8 -Preliminary Pavement Recommendations Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 16 17 18 19 19 19 19 21 21 21 22 22 22 23 23 24 25 26 27 29 4 7 7 9 14 17 19 25 ii 1 -Site Location 2 -Exploration Locations -Aerial Plan 3 -Exploration Locations -Site Plan 4 -Fault Locations 5 -Regional Geology 6A-6C -Geologic Cross Sections A-A' through C-C' 7 -Lateral Earth Pressures for Temporary Cantilevered Shoring 8 -Thrust Block Lateral Earth Pressure Diagram 9 -Acceleration Response Spectra 10 -Lateral Earth Pressures for Yielding Retaining Walls 11 -Retaining Wall Drainage Detail APPENDIC A-Boring and Test Pit Logs B -Geotechnical Laboratory Testing C -Infiltration Testing Results D -Geotechnical Map (Geotechnics, 2003) E -Slope Stability Analyses F -Derivation of Pseudostatic Coefficient Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 iii 1 INTRODUCTION In accordance with your request and authorization, we have performed a geotechnical evaluation for the proposed Acadia San Diego Medical Facility located at 830 Showroom Place in Chula Vista, California (Figure 1). The purpose of our study was to evaluate the soil and geologic conditions at the site and to develop geotechnical recommendations regarding the design and construction of the proposed improvements. This report presents our findings, conclusions, and recommendations for the project based on our background review, site reconnaissance, subsurface evaluation, laboratory testing, and geotechnical analyses. 2 SCOPE OF SERVICES Our scope of services included the following: • Review of readily available background materials, including a previous geotechnical report for the site (Ninyo & Moore, 2006), published geologic maps, fault and seismic hazards maps, groundwater data, topographic maps, and stereoscopic aerial photographs. • Coordination and mobilization for subsurface exploration, including a geotechnical reconnaissance of the site to observe the existing site conditions, coordinate with site personnel, and mark the proposed boring locations for utility clearance. • Acquisition of a boring permit with the County of San Diego Department of Environmental Health for our subsurface exploration. • Subsurface exploration consisting of drilling, logging, and sampling 16 small-diameter, hollow-stem auger borings and the excavation, logging, and sampling of 14 test pits. The borings and test pits were logged by a representative from our firm and soil samples were collected at selected intervals for laboratory testing. • Field infiltration testing in general accordance with the City of Chula Vista BMP Design Manual (2017) • Laboratory testing of selected soil samples, including tests to evaluate in-situ moisture and dry density, gradation analysis, Atterberg limits, consolidation, expansion index, direct shear strength, Proctor density, R-value, and corrosivity. • Data compilation and engineering analysis of the information obtained from our background review, field reconnaissance, subsurface evaluation, and laboratory testing. • Preparation of this geotechnical report presenting our findings, conclusions, and recommendations for the design and construction of the proposed improvements at the site. 3 SITE DESCRIPTION The project site includes two contiguous, previously graded properties located at the northern terminus of Showroom Place in the Eastlake area of Chula Vista, California (Figures 1 and 2). The two properties are designated as Assessor's Parcel Numbers 595-710-11 and 595-710-12 and were graded in 2002 and 2003 as part of the Eastlake Business Center II development Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 1 (Geotechnics, 2003). Current access to the site is afforded by Showroom Place, which abuts the southerly property line. The project site is currently vacant and is generally covered with sparse vegetation. An approximately 10-to 15-foot high stockpile of soil is situated within the east- central portion of the site, and two retention basins are located in the southern portion of the property that are up to approximately 10 feet in depth. Graded slopes up to approximately 90 feet in height descend from the northern and eastern property lines to residential developments which bound the property to the north and east. An approximately 25-foot high graded slope descends from the western property line to a commercial development. A boat and RV storage lot and a retail development bound the site to the south. The existing ground surface in the area where the proposed medical facility is to be constructed is relatively level with a gentle gradient down to the south. Ground surface elevations in the vicinity of the proposed facility building range from approximately 705 feet above mean sea level (MSL) to approximately 715 MSL. The global project site coordinates are approximately 32.6554°N latitude and 116.9553°W longitude 4 PROPOSED CONSTRUCTION We understand that the proposed Acadia San Diego Medical Facility will consist of an approximately 89,500 square-foot, single-story structure (SWA, 2018). The facility is anticipated to accommodate various administration and medical offices, nurse stations, patient rooms, treatment rooms, and a gymnasium. Additional site improvements will include a parking area south of the proposed building, an access road surrounding the perimeter of the proposed building, underground utilities, and landscaping. Four stormwater basins are also planned -one in the northeast corner of the site, one in the northwest corner, and two in the southern portion of the site. Site excavations are anticipated for subgrade preparation associated with shallow foundations for the new building, hardscape and pavement construction, and excavations for underground utility installation. 5 SUBSURFACE EVALUATION AND LABORATORY TESTING Our subsurface exploration was conducted January 28 through January 30, 2019 and consisted of drilling of sixteen small-diameter, hollow-stem auger borings (B-1 through B-8, and IT-1 through IT-8) and the excavation of 14 test pits (TP-1 through TP-14). The borings were drilled to depths of up to 46 feet using a truck-mounted drill rig equipped with hollow-stem augers. The test pits were excavated to depths of up to 8 feet using a rubber-tired backhoe. A representative from Ninyo & Moore logged the borings and test pits and obtained bulk and relatively Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 2 undisturbed soil samples at selected depths for laboratory testing. The exploration locations are shown on Figures 2 and 3. The logs of the borings and test pits are presented in Appendix A Geotechnical laboratory testing was performed on representative samples to evaluate the in-situ moisture and dry density, gradation analysis, Atterberg limits, consolidation, direct shear strength, expansion index, Proctor density, corrosivity, and R-value. In-situ moisture content and dry density test results are presented on the boring logs in Appendix A The remaining laboratory test results are presented in Appendix B. 6 INFILTRATION TESTING Field infiltration testing was performed on January 29 and January 30, 2019 within the areas of the proposed infiltration basins. Eight infiltration test holes (IT-1 through IT-8) were excavated with a truck-mounted drill rig to depths of approximately 5 feet at the locations shown on Figures 2 and 3. Following the excavation of borings IT-1 through IT-8 on January 29, 2019, the locations were prepared for infiltration testing by placing approximately 2 inches of gravel on the bottom of each boring, installing a 2-inch diameter, perforated PVC pipe in the hole, and backfilling the annulus with pea gravel. As part of the test procedure, presoaking of each hole was performed to represent adverse conditions for infiltration. The presoak consisted of maintaining approximately 1 to 2 feet of water in each boring for approximately 4 hours. The water levels were then allowed to drop overnight. Infiltration testing was then performed on January 30, 2019 in general accordance with the City of Chula Vista BMP Design Manual (2017). The infiltration test holes were filled with approximately 1 to 2½ feet of water and the water depth was measured in 30-minute intervals during the duration of the tests. As necessary, the borings were refilled to maintain the water level until the infiltration rate stabilized. Infiltration rates were calculated from the field measurements using the Porchet method. Infiltration test measurements and calculations are included in Appendix C. The Suitability Assessment Safety Factor (SA) presented in Table 1 was calculated based on the guidelines presented in Appendix D of the City of Chula Vista BMP Design Manual (2017). Appendix C of this report also includes copies of the Categorization of Infiltration Feasibility worksheet (Worksheet C.4-1) and Factor of Safety and Design Infiltration Rate worksheet (Worksheet D.5-1) including responses to the suitability assessment questions. The rates presented in Table 1 are to be used for preliminary design purposes. The design safety factor shall be determined by the design engineer. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 3 IT-1 5 Silty Sandstone 0.21 2.25 TBD 0.09 (Otay Formation) IT-2 5 Silty Sandstone 0.29 2.25 TBD 0.13 (Otay Formation) IT-3 5 Silty Sandstone 0.04 2.25 TBD 0.02 (Otay Formation) IT-4 5 Silty Sandstone 0.04 2.25 TBD 0.02 (Otay Formation) IT-5 5 Sandy Silt 0.02 2.25 TBD 0.01 (Fill) IT-6 5 Sandy Silt 0.04 2.25 TBD 0.02 (Fill) IT-7 5 Silty Sandstone 0.47 2.25 TBD 0.21 (Otay Formation) IT-8 5 Silty Sandstone 0.27 2.25 TBD 0.12 (Otay Formation) Notes: in/hr = inches per hour TBD = to be determined 1 Calculated in accordance with Appendix D of the City of Chula Vista BMP Design Manual (2017) 2 Design safety factor to be determined by the design engineer in accordance with Appendix D of the City of Chula Vista BMP Design Manual (2017) 3 Factored infiltration rate shall be divided by the design safety factor to obtain the design infiltration rate Other areas of the site not specifically tested may or may not accommodate partial infiltration of storm water. Additional infiltration testing would be needed in these other areas to evaluate whether infiltration in these areas/depths are feasible. 7 GEOLOGY AND SUBSURFACE CONDITIONS 7.1 Regional Geologic Setting The project area is situated in the western portion of the Peninsular Ranges Geomorphic Province. This geomorphic province encompasses an area that extends approximately 900 miles from the Transverse Ranges and the Los Angeles Basin south to the southern tip of Baja California (Norris and Webb, 1990; Harden, 2004). The province varies in width from approximately 30 to 100 miles and generally consists of rugged mountains underlain by Jurassic metavolcanic and metasedimentary rocks, and Cretaceous igneous rocks of the southern California batholith. The portion of the province in western San Diego County that includes the project area consists generally of uplifted and dissected coastal plain underlain by Upper Cretaceous-, Tertiary-, and Quaternary-age sedimentary rocks. Ninyo & Moore J 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 4 The Peninsular Ranges Province is traversed by a group of sub-parallel faults and fault zones trending roughly northwest. Several of these faults are considered to be active. The active fault systems located in the vicinity of the project area include the Rose Canyon, Elsinore, San Jacinto, San Andreas, Coronado Bank, San Diego Trough, and San Clemente faults. The location of the site relative to these regional faults is shown on Figure 4. Major tectonic activity associated with these and other faults within this regional tectonic framework consists primarily of right-lateral, strike-slip movement. The Rose Canyon Fault Zone, the nearest active fault system, has been mapped approximately 12 miles west of the project site. 7.2 Site Geology Geologic units encountered during our field reconnaissance and subsurface exploration included fill and materials of the Otay Formation. Generalized descriptions of the earth units encountered during our subsurface exploration are provided below. The geology of the site vicinity is shown on Figure 5. Additional descriptions are provided on the boring and test pit logs in Appendix A. Geologic cross sections were prepared at the locations shown on Figure 3 and are shown on Figures 6A through 6C. 7.2.1 Fill Fill materials were encountered at the ground surface in each of our borings and test pits. The depth of fill materials encountered in our borings ranged from approximately 1 foot to approximately 43 feet. Fill depths up to approximately 65 feet are anticipated in the northeastern comer of the site, near the top of the slope that descends to the adjacent residential development. As encountered, the fill materials generally consisted of various shades of brown and gray, moist, stiff to hard, sandy silt, clayey silt, elastic silt, lean clay, and sandy clay, along with medium dense to very dense silty sand and clayey sand. With the exception of the stockpile in the in the east-central portion of the site, these fill materials were placed under the observation and testing of Geotechnics, Inc. (2003) and. are considered to be engineered fill. A copy of the Geotechnical Map prepared by Geotechnics is included in Appendix D. 7.2.2 Otay Formation Materials comprising the Otay Formation (Todd, 2004), were encountered in each of our exploratory borings and test pits with the exception of IT-5 and IT-6. The Otay Formation was encountered underlying the fill and extending to the total depths explored. As encountered, the Otay Formation generally consisted of various shades of brown, light gray, and gray, Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 5 moist, moderately to strongly cemented, silty sandstone, and moderately to strongly indurated clayey siltstone and silty claystone. Scattered bentonite lenses were observed within the upper portions of the Otay Formation. Bentonite typically possesses a high expansion potential and poor strength characteristics when wetted or exposed to moisture. 7.3 Groundwater Groundwater was not encountered in our exploratory borings or test pits. Based on our review of available data, we estimate that the groundwater table is situated at depths greater than 60 feet below the site. Perched water and/or seepage due to the presence of clayey material and/or near the contact between the fill and the Otay Formation may be encountered during construction excavations. Fluctuations in the level of groundwater may occur due to variations in ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and other factors which may not have been evident at the time of our field evaluation. 8 GEOLOGIC HAZARDS In general, hazards associated with seismic activity include strong ground motion, ground surface rupture, and liquefaction. These considerations and other geologic hazards, such as landsliding and flooding, are discussed in the following sections. 8.1 Faulting and Seismicity Based on our review of the referenced geologic maps and stereoscopic aerial photographs, as well as on our geologic field mapping, the subject site is not underlain by known active or potentially active faults (i.e., faults that exhibit evidence of ground displacement in the last 11,000 years and 2,000,000 years, respectively). The site is not located within a State of California Earthquake Fault Zone (Hart and Bryant, 1997). However, like the majority of southern California, the site is located in a seismically active area and the potential for strong ground motion is considered significant during the design life of the proposed structures. The nearest known active fault is the Rose Canyon fault, located approximately 12 miles west of the site. Table 2 lists selected principal known active faults that may affect the subject site, including the approximate fault-to-site distances, and the maximum moment magnitudes (Mmax) as published by the USGS (2019). Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 6 Rose Canyon 12 (19) 6.9 Coronado Bank 21 (34) 7.4 Elsinore (Julian Segment) 37 (60) 7.4 Earthquake Valley 41 (66) 6.8 Elsinore (Coyote Mountain Segment) 42 (68) 6.9 Newport-Inglewood (Offshore) 44 (71) 7.0 Elsinore (Temecula) 47 (76) 7.1 San Jacinto (Coyote Creek) 57 (92) 7.0 San Jacinto (Borrego) 58 (93) 6.8 Principal seismic hazards evaluated at the subject site are surface ground rupture, ground shaking, seismically induced liquefaction, and various manifestations of liquefaction related hazards (e.g., dynamic settlement). A brief description of these and other hazards and the potential for their occurrences at the site are discussed below. 2 Surface Fault Rupture Surface fault rupture is the offset or rupturing of the ground surface by relative displacement across a fault during an earthquake. Based on our review of referenced geologic and fault hazard data, the project site is not transected by known active or potentially active faults. Therefore, the probability of damage from surface fault rupture is considered to be low. However, lurching or cracking of the ground surface as a result of nearby seismic events is possible. 8.3 Ground Motion Based on our review of background information, data pertaining to the historical seismicity of the San Diego area are summarized in Table 3. This table presents historic earthquake data within a radius of approximately 62 miles of the site with a magnitude of 6.0 or greater, as obtained from the CGS Earthquake History and Catalogs website (CGS, 2018) and in-house proprietary data. May 27, 1862 November 22, 1800 May 28, 1892 April 9, 1968 ;~J 6.2 6.3 6.5 6.6 14 (22) 52 (84) 58 (93) 61 (97) Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 7 The 2016 California Building Code (CBC) specifies that the Risk-Targeted, Maximum Considered Earthquake (MCER) ground motion response accelerations be used to evaluate seismic loads for design of buildings and other structures. The MCER ground motion response accelerations are based on the spectral response accelerations for 5 percent damping in the direction of maximum horizontal response and incorporate a target risk for structural collapse equivalent to 1 percent in 50 years with deterministic limits for near-source effects. The horizontal peak ground acceleration (PGA) that corresponds to the MCER for the site was calculated as 0.385g using a web- based seismic design tool (SEAOC/OSHPD, 2019). Spectral response acceleration parameters, consistent with the 2016 CBC, are also provided in the Recommendations section of this report for the evaluation of seismic loads on buildings and other structures. The 2016 CBC specifies that the potential for liquefaction and soil strength loss be evaluated, where applicable, for the Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration with adjustment for site class effects in accordance with the American Society of Civil Engineers (ASCE) 7-10 Standard. The MCEG peak ground acceleration is based on the geometric mean peak ground acceleration with a 2 percent probability of exceedance in 50 years. The MCEG peak ground acceleration with adjustment for site class effects (PGAM) was calculated as 0.374g using a web-based seismic design tool (SEAOC/OSHPD, 2019) that yielded a mapped MCEG peak ground acceleration of 0.316g for the site and a site coefficient (FPGA) of 1.171 for Site Class D. 8.4 Liquefaction and Seismically Induced Settlement Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes. Research and historical data indicate that loose granular soils and non-plastic silts that are saturated by a relatively shallow groundwater table are susceptible to liquefaction. Based on the relatively dense nature of the underlying formational materials and the anticipated depth of groundwater, it is our opinion that the potential for liquefaction and seismically induced settlement to occur at the site is not a design consideration. 8.5 Landslides Our review of referenced geologic maps, literature, topographic maps, and stereoscopic aerial photographs, no landslides or indications of deep-seated landsliding underlie the subject site (Todd, 2004; Tan, 1992). In addition, no indications of landsliding were observed during our site reconnaissance or subsurface exploration. As such, the potential for significant large-scale slope Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 8 instability at the site is not a design consideration. The slopes that descend from the project site were evaluated with regards to deep-seated and surficial slope stability, as discussed below. 8.5.1 Deep-Seated Slope Stability Analysis To evaluate the deep-seated stability of the slopes that descend from the east and west property lines, slope stability calculations were performed on geologic cross sections A-P.: and 8-8' developed at the locations shown on Figure 3. Our slope stability calculations focused on the stability fill that exists on the west property line and the large graded slope that descends from the northeast and east portions of the site. The cross sections were created using topographic survey data provided by K&S Engineering, Inc. (2019), as-graded geotechnical information reported by Geotechnics (2003), and the findings and results from our subsurface evaluation. A two-dimensional stability analysis program, Geostase (Gregory, 2019), was used for our slope stability calculations. Our evaluation utilized search routines that incorporate Spencer Method of Slices to define the most critical failure surface within potential block failures and potential rotational failures. Spencer's Method of Slices was utilized in our analyses in order to satisfy force equilibrium and moment equilibrium conditions. For our analysis, the soil and formational materials were assigned with homogeneous, isotropic properties. The shear strength parameters for the fill materials and materials comprising the Otay Formation were selected based on our laboratory direct shear testing and our experience with similar materials. In keeping with standard practice, our slope stability calculations incorporated ultimate shear strengths for the formational materials and fill materials under static conditions, while peak shear strengths were used for these materials under static/pseudo-static. The relevant shear strength parameters used in our stability calculations for the different material types are presented in Table 4. Otay Formation Artificial Fill 120 120 500 350 30 30 300 200 28 30 A factor of safety of at least 1.5 under static conditions is generally considered adequate as per the guidelines of Special Publication 117A (CGS, 2008a) and accepted engineering practices. Results of our slope stability analyses yielded factors of safety of 1.5 or more under static conditions for the existing slopes as shown on geologic cross sections A-P.: through 8-8' (Appendix E). Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 9 Our analyses of existing slopes also induded an evaluation of the slopes' stability when subjected to seismic loading. Our evaluation was performed utilizing a "screening analysis" to evaluate whether a more involved displacement analysis is warranted, as recommended by CGS Special Publication 117 A (CGS, 2008). This procedure also incorporates a pseudo-static analysis that is based on site-specific ground motion parameters (Bray, et. al, 1998; Blake, et. al, 2002; Stewart, et. al, 2003). Calculations showing the derivation of the pseudo-static coefficient used in the screening analysis are presented in Appendix F. Results of our "screening analysis," which incorporates a pseudo-static coefficient of 0.20, yielded pseudo-static factors of safety of 1.0 or more for each of the evaluated slopes (Appendix E), which CGS (2008a) considers to be adequate for seismic conditions. 8.5.2 Surficial Slope Stability Analysis We evaluated the shallow stability of the proposed cut and fill slopes at the site. Our evaluation was based on a slope inclination of 2: 1 and assumed a 4-foot thick zone of seepage parallel to the slope face. Using the above shear strength parameters for the onsite materials, our analyses indicate a factor of safety of at least 1.50 with respect to shallow slope stability for the proposed slopes (Appendix E). 8.6 Flood and Dam Inundation Hazards Based on review of the Federal Emergency Management Agency Flood Insurance Rate Map ([FIRM], FEMA, 2012), the site and immediate surrounding areas are mapped as lying outside of 100-and 500-year flood zones. Accordingly, the potential for flooding of the site is considered low. We have also a reviewed dam inundation map of the area (Chula Vista, 2005). Based on the review, the site is mapped as lying outside of dam failure inundation zones. 8.7 Tsunamis and Seiches Tsunamis are long wavelength seismic sea waves (long compared to the ocean depth) generated by sudden movements of the ocean bottom during submarine earthquakes, landslides, or volcanic activity. Seiches are similar oscillating waves on inland or enclosed bodies of water. Based on the inland location and elevation of the site, and the relative distance to nearby lakes or reservoirs, the potential for a tsunami or seiche to affect the site is not a design consideration. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 10 9 CONCLUSIONS Based on our geotechnical evaluation, it is our opinion that the proposed project is feasible from a geotechnical standpoint provided that the following recommendations are incorporated into the design and construction of the project. In general, the following conclusions were made: • Based on our recent subsurface exploration, the site is underlain by fill soils and materials of the Otay Formation. The upper portions of the fill soils are considered to be potentially compressible and are not suitable for the proposed improvements in their present condition. Recommendations for remedial grading are presented in the following sections • A significant cut-fill transition between the fill soils and the Otay Formation exists below the proposed building pad area. Recommendations to mitigate differential settlement across this cut-fill transition are provided in the following sections of this report. • The existing fill soils and materials of the Otay Formation encountered on the site should be generally excavatable with heavy-duty earth moving equipment in good working condition. However, portions of the Otay Formation can be expected to contain moderately to strongly cemented zones. Because of this, additional efforts including heavy ripping should be anticipated. Disposal, crushing, pulverizing, or special processing of the resulting oversize material generated from excavations should be anticipated. • Groundwater was not encountered during our subsurface evaluation. Depth to groundwater may vary due ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and other factors which may not have been evident at the time of our field evaluation. • Results of our laboratory testing indicate that the onsite fill and materials of the Otay Formation are expansive. • Results of our slope stability analyses (Appendix E) indicate that the existing slopes that descend from the eastern, northeastern, and western portion of the site possess adequate factors of safety with respect to static and seismic conditions. • In general, on-site excavations are anticipated to generate soils with a high expansion potential. These materials are not considered suitable for reuse beneath the proposed building or the upper 2 feet of subgrade soils beneath flatwork. Therefore, we anticipate that imported material will be needed for use as fill. • Excavations performed within the on-site materials are anticipated to generate oversized materials that are not suitable for reuse within the engineered fill soils. Cemented materials and cobbles should be crushed, screened and processed prior to their reuse as fill. The contractor should anticipate disposing of the oversized materials generated during excavation. • The subject site is not located within a State of California Earthquake Fault Zone. The probability of surface fault rupture at the site is considered to be low. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 11 • Although potential infiltration rates of the onsite soils may be suitable for partial infiltration, we do not recommend infiltration for this site from a geotechnical standpoint. Based on our geotechnical laboratory testing, the onsite fill materials and materials derived from the Otay Formation are clayey in nature and possess a high potential for expansion. In addition, infiltration within 50 feet of the top of a slope is anticipated to induce seepage on the slope face and increase the risk of slope failures in these areas. • Our limited laboratory corrosion testing indicates that the onsite soils are corrosive based on California Department of Transportation (Caltrans, 2018) corrosion guidelines. As such, we recommend that a corrosion engineer be consulted for further evaluation of these soils. 10 RECOMMENDATIONS The recommendations presented in the following sections provide general geotechnical criteria regarding the design and construction of the proposed Acadia San Diego Medical Facility and associated improvements. The recommendations are based on the results of our subsurface evaluation, laboratory testing, review of referenced geologic materials, experience in the general vicinity of the project area, and geotechnical analyses. The proposed work should be performed in conformance with the recommendations presented in this report, project specifications, and appropriate agency standards. 10.1 Earthwo Earthwork at the site is anticipated to include foundation excavations, trenching and backfilling for new utilities, pavement construction, and finish grading for establishment of site drainage. Earthwork should be performed in accordance with the requirements of applicable governing agencies and the recommendations presented in the following sections. 10.1.1 Construction Plan Review and Pre-Construction Conference We recommend that the grading and foundation plans, and project specifications, be submitted to Ninyo & Moore for review to evaluate for conformance to the recommendations provided in this report. We further recommend that a pre-construction conference be held. The owner and/or their representative, the governing agencies' representatives, the civil engineer, the geotechnical engineer, and the contractor should be in attendance to discuss the work plan and project schedule. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 12 10.1.2 Site Preparation Prior to commencing earthwork operations, the project areas for the new improvements should be cleared of existing structures and improvements, vegetation, utility lines, asphalt, concrete, and other deleterious debris from areas to be graded. The existing stockpile of soil within the east-central portion of the site should be removed to accommodate construction of the proposed improvements. Tree stumps and roots should be removed to such a depth that organic material is generally not present. Clearing and grubbing should extend to the outside of the proposed excavation and fill areas. The debris and unsuitable material generated during clearing and grubbing should be removed from areas to be graded and disposed of at a legal dumpsite away from the project area. 10.1.3 Excavation Characteristics The results of our field exploration program indicate that the project site, as presently proposed, is underlain by fill soils and materials comprising the Otay Formation. These soils should be generally excavatable with heavy-duty earth working equipment. Moderately-to strongly-cemented formational materials may be encountered and additional efforts including heavy ripping should be anticipated. 10.1.4 Remedial Grading and Treatment of Near-Surface Soils As noted, based on the results of our subsurface and laboratory evaluation, the existing fill and upper portions of the Otay Formation are considered to be potentially compressible, expansive, and corrosive. As such, we do not consider these upper soils to be suitable for structural support of buildings and improvements in their present condition. In addition, a significant cut-fill transition between the fill soils and Otay Formation is present beneath the proposed building pad, which could result in considerable differential settlements across the building. Consequently, we recommend that the existing fill and upper portions of the Otay Formation be removed to a depth of 8 feet below the bottoms of the proposed foundations within planned building pads. For the purposes of this report, the building pad is defined as the structural footprint plus a horizontal distance of 5 feet or the depth of the excavation below pad grade, whichever is greater. Depths of these recommended removals will vary, but should extend to a sufficient depth in order to provide 10 feet or more of fill soils, with the upper 5 feet or more possessing a very low to low expansion potential beneath the . building pad. The extent and depths of removals should be evaluated by Ninyo & Moore's representative in the field based on the materials exposed. Based on our field representative's observations, deeper removals in some areas may be recommended. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 13 Near-horizontal benching of the removal surface should be performed where the surface gradient exceeds 3:1 (horizontal:vertical). The existing fills may be reused as compacted fill materials provided they meet with the criteria for fill materials. Where flatwork, concrete pavement, or segmental concrete pavers are proposed, the upper 1 foot of subgrade materials should be removed and replaced with compacted fill material exhibiting a very low to low expansion potential. Remedial grading for site pavements and should consist of scarifying and moisture conditioning the upper 1 foot of subgrade materials. Our recommendations for removals and placement of structural backfill are summarized on Table 5. Table S-Summary d RMm!l'dml Grading ~mDn-datlons ~ ----------~-------~--------------~ ---~ ------------- '13uildlng lrnprovernerits Retaining Walls Flatwork, :$ "f!t'!E.!'~ b,t'!!~iW b{ii;l;{im~ ~tf foundations 3 feet below bottom of footing .S,elli;t,r;~ Fi !in upp,t'!r;, ,; On-site Material beneath 3 ft 4 Select Filf~ Concrete Pavement and Pavers Notes: Asphalt Concrete Pavement 1 foot below subgrade Scarify and moisture condition the upper 1 foot of subgrade Select Fill3 On-site Materials 1 Actual depth to be evaluated during grading by the geotechnical representative. 2 Lateral extent of remedial grading removals equal to 5 feet or the depth of the excavation below pad grade, whichever is ~realer. Select Fill is granular and exhibits a very low expansion potential and properties as defined in Fill Materials. 4 Below bottom of foundation Existing underground utilities may be present within the project site that that could impact the recommended remedial grading. The presence of underground utilities located under or adjacent to the proposed building pads, which cannot be relocated, may hinder the performance of the recommended remedial grading operations. Ninyo & Moore should be contacted for additional recommendations regarding such conflicts on a case-by-case basis. 10.1.5 Temporary Excavations For temporary excavations, we recommend that the following Occupational Safety and Health Administration (OSHA) soil classifications be used: Fill Otay Formation Type C TypeB Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 14 Upon making the excavations, the soil classifications and excavation performance should be evaluated in the field by the geotechnical consultant in accordance with the OSHA regulations. Temporary excavations should be constructed in accordance with OSHA recommendations. For trenches or other excavations, OSHA requirements regarding personnel safety should be met using appropriate shoring (including trench boxes) or by laying back the slopes to no steeper than 1.5: 1 (horizontal to vertical) in fill and 1: 1 for Otay Formation materials. Temporary excavations that encounter seepage may be shored or stabilized by placing sandbags or gravel along the base of the seepage zone. Excavations encountering seepage should be evaluated on a case-by-case basis. On-site safety of personnel is the responsibility of the contractor. 10.1.6 Temporary Shoring Based on our understanding of the proposed construction, the proposed structure will not include a subterranean level. If deep excavations are planned where temporary sloping of the walls of the excavation is not feasible, it may be necessary to install a temporary shoring system. The shoring plans should clearly depict the site constraints and the shoring system. The shoring plans should be signed and stamped by a professional engineer registered in the State of California experienced in the design the shoring systems. Ninyo & Moore should be given the opportunity to review the project plans to check its compliance with design and construction recommendations presented herein. A cantilever shoring system consisting of soldier piles and lagging can be utilized to facilitate construction staging (Figure 7). The soldier piles may be comprised of structural concrete below the bottom of the excavation and lean concrete slurry backfill above the bottom. H-piles inserted in the drilled shafts, during the placement of concrete, are to act as reinforcement below the bottom of the excavation. Lagging spans the distance between the H-piles, transferring the soil lateral pressure to the H-piles. Lateral earth pressures exerted on cantilever shoring are indicated on Figure 7. These lateral earth pressures should be evaluated by a structural engineer for the design of the temporary shoring system. These design earth pressures assume that spoils from the excavations, or other surcharge loads, will not be placed above the excavations within a 1 :1 plane extending up and back from the base of the excavation. For shoring subjected to surcharge loads, such as soil stockpiles or construction materials/equipment, an additional horizontal uniform pressure of 0.5q may be applied to the full height of the excavation, where "q" is the vertical surcharge pressure. Street traffic or construction traffic may be Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 15 assumed to induce a surcharge pressure "q" of 240 pounds per square foot (psf). If a braced shoring system is planned for the site, we would be pleased to provide recommendations for their design and construction upon request. 10.1.7 Materials for Fill and Trench Backfill Material for fill may be obtained from on-site excavations, may be processed from on-site excavations, or may be import materials. On-site soils (other than plastic clays) with an organic content of less than approximately 3 percent by volume (or 1 percent by weight) are suitable for reuse as general fill material in building areas (at depths of more than 3 feet below foundations), in non-structural areas, and in areas where asphalt concrete pavements are proposed. Fill material should not contain rocks or lumps over approximately 3 inches in diameter, and not more than approximately 30 percent larger than ¾ inch. Oversize materials, if encountered, should be crushed, screened, processed, or separated from material to be used for compacted fill and removed from the site. Moisture conditioning (including drying) of existing on-site materials is anticipated if reused as fill. As recommended in Section 10.1.4, the upper soils (within 3 feet of the bottom of proposed foundations) in the proposed building area, and in areas to receive retaining walls, flatwork, concrete pavement, and pavers, should be overexcavated, exported, and backfilled with imported select fill. Select fill and imported fill materials should generally be granular soils with very low to low expansion potential (i.e., an expansion index of 50 or less as evaluated by ASTM International [ASTM] Test Method D 4829). Select fill and imported fill material should also be tested for corrosive potential and exhibit a minimum resistivity value greater than 1,100 ohm-centimeters, chloride content of less than 500 parts per million (ppm), a sulfate content of less than 1,000 ppm and pH greater than 5.5. The contractor should be responsible for the uniformity of import material brought to the site. We recommend that materials proposed for use as select fill be evaluated from a contractor's stockpile rather than in place materials. Once an evaluation of a stockpile is requested, three days should be anticipated for results of the material evaluation. Utility trench backfill material should not contain rocks or lumps over approximately 3 inches in general. In general, soils classified as silts or clays should not be used for backfill in the pipe zone. Larger chunks, if generated during excavation, may be broken into acceptably sized pieces or disposed of offsite. A summary of the recommended fill material criteria is presented in Table 6. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 16 General Site Fill Select Fill Trench Backfill <3inches <30 ercent retained on ¾ inch sieve <3inches <30 percent retained on ¾ inch sieve Expansion Index ~50, considered non-corrosive <3inches ~30 ercent retained on ¾ inch sieve Additionally, concrete and AC materials generated from the demolition of the existing improvements may be crushed and reused within the fill materials. These materials are considered suitable, provided they are processed and mixed with onsite soils to meet the gradation recommendations provided above. However, AC materials may not be reused within the engineered fills placed beneath a building pad. Retaining wall backfill material should also consist of select fill soils as defined in Table 6. To reduce the potential of importing contaminated materials to the site, prior to delivery, soil materials obtained from off-site sources shall be sampled and tested in compliance with California EPA Department of Toxic Substances Control "Information Advisory, Clean Imported Fill Material", dated October 2001. Do not import soils that exhibit a known risk to human health, the environment, or both. 10.1.8 Fill Placement and Compaction Prior to placement of compacted fill, the contractor should request an evaluation of the exposed ground surface by Ninyo & Moore. Unless otherwise recommended, the exposed ground surface should then be scarified to a depth of approximately 8 inches and watered or dried, as needed, to achieve moisture contents generally above the optimum moisture content. The scarified materials should then be compacted to a relative compaction of 90 percent as evaluated in accordance with ASTM D 1557. The evaluation of compaction by the geotechnical consultant should not be considered to preclude any requirements for observation or approval by governing agencies. It is the contractor's responsibility to notify this office and the appropriate governing agency when project areas are ready for observation, and to provide reasonable time for that review. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 17 Fill materials should be moisture conditioned to generally above the laboratory optimum moisture content prior to placement. The optimum moisture content will vary with material type and other factors. Moisture conditioning of fill soils should be generally consistent within the soil mass. Prior to placement of additional compacted fill material following a delay in the grading operations, the exposed surface of previously compacted fill should be prepared to receive fill. Preparation may include scarification, moisture conditioning, and recompaction. Compacted fill should be placed in horizontal lifts of approximately 8 inches in loose thickness. Prior to compaction, each lift should be watered or dried as needed to achieve a moisture content generally above the laboratory optimum, mixed, and then compacted by mechanical methods, to a relative compaction of 90 percent as evaluated by ASTM D 1557. Successive lifts should be treated in a like manner until the desired finished grades are achieved. The upper 12 inches of the subgrade and aggregate base materials underneath the pavements should be compacted to a relative compaction of 95 percent relative density as evaluated by the current version of ASTM D 1557. 10.1.9 Pipe Bedding Pipe bedding should be constructed in general accordance with the "Greenbook" Standard Specifications. We recommend that utility lines be supported 6 inches or more of granular bedding material such as sand with a sand equivalent value of 30 or more in accordance with ASTM D 2419. Bedding material should be placed and compacted around the pipe, and 12 inches or more above the top of the pipe. We do not recommend the use of crushed rock for bedding material. It has been our experience that the voids within a crushed rock material are sufficiently large enough to allow fines to migrate into the voids, thereby creating the potential for sinkholes and depressions to develop at the ground surface. Special care should be taken not to allow voids beneath and around the pipe. Bedding material and compaction requirements should be in accordance with the recommendations of this report, the project specifications, and applicable requirements of the appropriate agencies. Compaction of the bedding material and backfill should proceed evenly up both sides of the pipe and be compacted to 90 percent or more relative compaction as evaluated by ASTM D 1557. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 18 10.1.10 Lateral Pressures for Thrust Blocks Thrust restraint for buried pipelines may be achieved by transferring the thrust force to the soil outside the pipe through a thrust block. Thrust blocks may be designed using the magnitude and distribution of passive lateral earth pressures presented on Figure 8. Thrust blocks should be backfilled with granular backfill material and compacted following the recommendations presented in this report. 10.1.11 Modulus of Soil Reaction The modulus of soil reaction is used to characterize the stiffness of soil backfill placed at the sides of buried pipelines for the purpose of evaluating deflection caused by the weight of the backfill above the pipe. A soil reaction modulus of 1,000 pounds per square inch (psi) may be used for excavation depths up to 5 feet and 1,400 psi may be used for excavation depths more than 5 feet and backfilled with granular soil and compacted to 90 percent based on ASTM D 1557. 10.2 Seismic Design Considerations Design of the proposed improvements should be performed in accordance with the requirements of governing jurisdictions and applicable building codes. Table 7 presents the seismic design parameters for the sites in accordance with CBC (2016) guidelines and adjusted MCER spectral response acceleration parameters (SEAOC/OSHPD, 2019). Site Class Site Coefficient, Fa Site Coefficient, Fv Mapped Spectral Response Acceleration at 0.2-second Period, S5 Mapped Spectral Response Acceleration at 1.0-second Period, S1 Spectral Response Acceleration at 0.2-second Period Adjusted for Site Class, SMs Spectral Response Acceleration at 1.0-second Period Adjusted for Site Class, SM 1 Design Spectral Response Acceleration at 0.2-second Period, S 05 Design Spectral Response Acceleration at 1.0-second Period, So1 10.3 Site-Specific Ground Response Analysis D 1.171 1.762 0.822g 0.319g 0.963g 0.562g 0.642g 0.375g We have performed a site-specific ground response analysis in accordance with Section 1616A.1.3 of the California Building Code (CBC, 2016) and Section 21 of American Society of Civil Engineers (ASCE) Standard 7-1 O (ASCE, 2010). The analysis consisted of a review of available seismologic information for nearby faults and performance of probabilistic and deterministic seismic hazard analyses to provide an acceleration response spectrum (ARS) to model building response to seismic ground shaking for design of the proposed structure. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 19 We conducted a probabilistic seismic hazard analysis to evaluate the horizontal ground motion with a recurrence interval of approximately 2,500 years or a 2 percent probability of exceedance in 50 years, also known as the ground motion associated with the Maximum Considered Earthquake (MCE). We conducted our analysis using the hazard spectrum calculator program OpenSHA (Field, et al., 2003) and the online database of fault locations, rupture areas, and recurrence intervals (Cao, et al., 2003). We considered several attenuation relationships in our analysis to model spectral response acceleration at the site and selected the relationships by Chiou & Young (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) in evaluating the probabilistic MCE ARS. We conducted a deterministic seismic hazard analysis to evaluate ground shaking wherein we computed the 5 percent damped, median ARS for characteristic earthquakes acting individually on known active faults within the region. In our analysis, we used the National Seismic Hazard Maps -Fault Parameters tool (USGS, 2019) to evaluate the fault to site distance for the database of fault locations and magnitude published by the USGS/CGS (Cao et al., 2003). We found that the ARS at the site for a moment magnitude 6.8 earthquake event on the Rose Canyon fault (approximately 17.5 kilometers southwest of the site) exceeds the ARS at the site due to seismic events on other regional faults using published estimates of earthquake magnitude (Cao et al., 2003). We considered several attenuation relationships and modeled the MCE ground motion for a magnitude 6.8 event on the Rose Canyon fault. In accordance with Section 21.2.2 of ASCE 7-10, we constructed the deterministic MCE ground motion from the largest scaled median spectral response acceleration at each period evaluated and the lower limit specified in Section 21.2.2. The site-specific design ARS is presented on Figure 9. In accordance with Section 21.2.3 of ASCE 7-10, the site-specific design ARS is the lesser of the probabilistic and deterministic MCE ARS at each period evaluated reduced by a factor of one-third. The design ARS for a Site Class D computed in accordance with Section 1613A of the CBC and Section 11.4.5 of ASCE 7-10 is presented on Figure 9 for comparison. The site-specific design ARS presented on Figure 9 meets or exceeds 80 percent of the design ARS for a Site Class D in accordance with Section 21.3 of ASCE 7-10. The spectral ordinates for the site-specific design ARS are tabulated on Figure 9. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 20 1 Foundations Based on our understanding that the proposed Acadia San Diego Medical Facility building will be a single-story structure of slab-on-grade construction, we are providing the following preliminary foundation recommendations. The proposed building may be supported on shallow, spread, or continuous footings bearing on compacted fill prepared, observed, and tested in accordance with the recommendations presented in this report. Foundations should be designed in accordance with structural considerations and the following recommendations. In addition, requirements of the appropriate governing jurisdictions and applicable building codes should be considered in the design of the structures. 10.4.1 Spread Footings Shallow, spread, or continuous footings, bearing on 3 feet of compacted select fill materials may be designed using an allowable bearing capacity of 2,500 pounds per square foot (psf). The allowable bearing capacity may be increased by one-third when considering loads of short duration such as wind or seismic forces. The allowable bearing capacity is based on a factor of safety of roughly three. Spread footings should be founded 24 inches below the lowest adjacent grade. Continuous footings should have a width of 15 inches and isolated footings should be 24 inches in width. The allowable bearing capacity recommended above can also be increased by 450 psf for each additional foot of embedment and 150 psf for each additional foot of width to a value of up to 3,500 psf for footings bearing within compacted fill. The spread footings should be reinforced in accordance with the recommendations of the project structural engineer. 10.4.2 Lateral Resistance For resistance of footings to lateral loads, bearing on compacted fill, we recommend an allowable passive pressure of 300 psf of depth be used with a value of up to 3,000 psf. This value assumes that the ground is horizontal for a distance of 10 feet, or three times the height generating the passive pressure, whichever is greater. We recommend that the upper 1 foot of soil not protected by pavement or a concrete slab be neglected when cal- . culating passive resistance. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 21 For frictional resistance to lateral loads, we recommend a coefficient of friction of 0.35 be used between soil and concrete. The allowable lateral resistance can be taken as the sum of the frictional resistance and passive resistance provided the passive resistance does not exceed one-half of the total allowable resistance. The passive resistance values may be increased by one-third when considering loads of short duration such as wind or seismic forces. 10.4.3 Static Settlement We estimate that the proposed structures, designed and constructed as recommended herein, and founded in compacted fill will undergo total settlement on the order of 1 inch. Differential settlement on the order of½ inch over a horizontal span of 40 feet should be expected. 10.5 Slabs-On-Grade We recommend that conventional, slab-on-grade floors, underlain by 5 feet or more of compacted fill materials of very low to low expansion potential, be 5 inches in thickness and be reinforced with No. 4 reinforcing bars spaced 18 inches on center each way. The reinforcing bars should be placed near the middle of the slab. As a means to help reduce shrinkage cracks, we recommend that the slabs be provided with control joints at intervals of approximately 12 feet each way. The slab reinforcement and expansion joint spacing should be designed by the project structural engineer. If moisture sensitive floor coverings are to be used, we recommend that slabs be underlain by a vapor retarder and capillary break system consisting of a 15-mil polyethylene (or equivalent) membrane (installed per the manufacturers recommendations) placed over 4 inches of medium to coarse, clean sand or pea gravel. The exposed subgrade should be moistened just prior to the placement of concrete. 10.6 Retaining Walls We understand that retaining walls may be constructed as part of the project. For the design of a yielding retaining wall that is not restrained against movement by rigid corners or structural connections, an active pressure represented by an equivalent fluid weight of 75 pounds per cubic foot (pcf) may be assumed for 2: 1 (horizontal to vertical) backfill and 45 pcf for level backfill as shown on Figure 10. Restrained walls (non-yielding) may be designed for at-rest pressure represented by an equivalent fluid weight of 95 pcf for 2: 1 (horizontal to vertical) backfill and 65 pcf for level backfill. Should dynamic earth pressures be considered in the design, a triangular pressure distribution with a magnitude of 17H pcf may be used. These Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 22 pressures do not include surcharge loads. The designer should evaluate the surcharge pressures from the buildings, traffic, and other structures. These pressures assume low- expansive, granular retaining wall backfill material as defined in the Materials for Fill section of this report. Wall backfill should be moisture conditioned and compacted to a relative compaction of 90 percent at a moisture content near the optimum as evaluated by ASTM D 1557. A drain should be provided behind the wall as shown on Figure 11. The drain should be connected to an appropriate outlet. 10. 7 Exterior Flatwork Exterior concrete flatwork should be 5 inches in thickness and should be reinforced with No. 3 reinforcing bars placed at 24 inches on-center both ways. Exterior slabs should be underlain by 4 inches of clean sand, which is in turn underlain by a 1-foot thickness of select fill (as discussed in Section 10.1.4). A vapor retarder is not needed for exterior flatwork. To reduce the potential manifestation of distress to exterior concrete flatwork due to movement of the underlying soil, we recommend that such flatwork be installed with crack-control joints at appropriate spacing as designed by the structural engineer. Before placement of concrete, the subgrade soils should be scarified to a depth of 8 inches, moisture conditioned to generally above the laboratory optimum moisture content, and compacted to a relative compaction of 90 percent as evaluated by ASTM D 1557. Positive drainage should be established and maintained adjacent to flatwork. 10.8 Corrosion The corrosion potential of the site soils was evaluated based on laboratory testing of a representative sample of the upper soils obtained from our exploratory boring B-6 and test pits TP-2 and TP-9. Laboratory testing was performed to evaluate pH, electrical resistivity, chloride, and sulfate content. The soil pH and minimum resistivity tests were performed in accordance with California Test Method (CT) 643. The test for chloride content of the soils was performed using CT 422. Sulfate testing was performed in general accordance with CT 417. The laboratory results are presented in Appendix B. The soil pH was measured to range from approximately 8.3 to 9.0 and the electrical resistivity ranged from approximately 700 to 1,000 ohm-cm. The chloride contents of the samples ranged from approximately 30 parts per million (ppm) to 1035 ppm. The sulfate contents of the tested samples ranged from approximately 0.001 to 0.004 (1 0 to 40 ppm). Based on the laboratory test results and Caltrans (2018) corrosion criteria, the onsite samples would be classified as Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 23 corrosive, which is defined as having earth materials with more than 500 ppm chlorides, more than 0.15 percent sulfates (i.e., 1,500 ppm), an electrical resistivity of 1,100 ohm-cm or less, or a pH of 5.5 or less. If corrosion susceptible improvements are planned on site, we recommend that a corrosion engineer be consulted for further evaluation and recommendations. 10.9 Concrete Concrete in contact with soil or water that contains high concentrations of soluble sulfates can be subject to chemical deterioration. Laboratory testing indicated the sulfate contents of the samples tested were approximately 0.001 to 0.004 percent. Based on ACI 318 criteria, the potential for sulfate attack is negligible for water-soluble sulfate contents in soils ranging from about 0.00 to 0.10 percent by weight. Therefore, the site soils may be considered to have a negligible potential for sulfate attack. However, due to the potential variability of site soils, consideration should be given to using Type IIN cement for normal weight concrete in contact with soil. In order to reduce the potential for shrinkage cracks in the concrete during curing, we recommend that the concrete for the proposed improvements be placed with a slump of 4 inches based on ASTM C 143. The slump should be checked periodically at the site prior to concrete placement. We further recommend that concrete cover over reinforcing steel for foundations be provided in accordance with CBC (2016). The structural engineer should be consulted for additional concrete specifications. 10.10 Preliminary Pavement Recommendations We understand that new pavements will be constructed on site. New pavement sections were evaluated based on the encountered subgrade soil conditions and our laboratory testing. Laboratory testing of representative soil samples were performed and indicated R-values ranging from approximately 35 and 39 for the on-site subgrade soils. For preliminary design purposes, an R-value of 30 was used for the evaluation of preliminary pavement structural sections. Actual pavement recommendations should be based on R value tests performed on bulk samples of the soils exposed at the finished subgrade elevations once grading operations have been performed. It is anticipated that traffic conditions will consist of relatively light passenger vehicles, maintenance/service vehicles, as well as occasional emergency vehicles. As such, our evaluation of pavement structural sections utilized assumed Traffic Indices (Tis) of 5, 6, and 7. Our pavement analysis was performed using the methodology outlined by the Highway Design Manual (Caltrans, 2017). The analysis assumes an approximate 20-year design life for new Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 24 pavements. Based on the design R value and assumed Tis, our calculated pavement structural section is provided in Table 7. T'3ibk!l' I -Preliminary P'awmiem Recommenidations --~----~----~----------------~ ---------- 5 6 7 30 30 30 3.0 3.5 4.0 6.0 7.5 9.5 As indicated, the above pavement structural sections assume traffic indices of 7.0 or less for site pavements. If traffic loads are different from those assumed, the pavement design should be re-evaluated. In addition, we recommend that the upper 12 inches of the subgrade and aggregate base materials be compacted to a relative compaction of 95 percent as evaluated by the current version of ASTM D 1557. We suggest that consideration be given to using Portland cement concrete pavements in areas where dumpsters will be stored and where refuse trucks will stop and load. Experience indicates that refuse truck traffic can significantly shorten the useful life of asphalt concrete sections. We recommend that in these areas, 6 inches of 600 psi flexural strength Portland cement concrete reinforced with No. 3 bars, 18 inches on center, be placed over 6 inches or more of Class 2 aggregate base compacted to a relative compaction of 95 percent (based on ASTM D 1557), placed over 1 or more feet of very low to low expansion potential fill materials compacted to the recommendations presented herein. The above section may also be used for fire lane PCC pavements. For light duty vehicle pavements, we recommend 5 inches of PCC over 4 inches of aggregate base. 10.11 Drainage Roof, pad, and slope drainage should be conveyed such that runoff water is diverted away from slopes and structures to suitable discharge areas by nonerodible devices (e.g., gutters, downspouts, concrete swales, etc.). Positive drainage adjacent to structures should be established and maintained. Positive drainage may be accomplished by providing drainage away from the foundations of the structure at a gradient of 2 percent or steeper for a distance of 5 feet or more outside building perimeters, and further maintained by a graded swale leading to an appropriate outlet, in accordance with the recommendations of the project civil engineer and/or landscape architect. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 25 Surface drainage on the site should be provided so that water is not permitted to pond. A gradient of 2 percent or steeper should be maintained over the pad area and drainage patterns should be established to divert and remove water from the site to appropriate outlets. Care should be taken by the contractor during grading to preserve any berms, drainage terraces, interceptor swales or other drainage devices of a permanent nature on or adjacent to the property. Drainage patterns established at the time of grading should be maintained for the life of the project. The property owner and the maintenance personnel should be made aware that altering drainage patterns might be detrimental to foundation performance. 11 CONSTRUCTION OBSERVATION The recommendations provided in this report are based on our understanding of the proposed project and our evaluation of the data collected based on subsurface conditions observed in our exploratory borings. It is imperative that the geotechnical consultant checks the subsurface conditions during construction. During construction, we recommend that the duties of the geotechnical consultant include, but not be limited to: • Observing clearing, grubbing, and removals. • Observing excavation bottoms and the placement and compaction of fill, including trench backfill. • Evaluating imported materials, if any, prior to their use as fill. • Performing field tests to evaluate fill compaction. • Observing foundation excavations for bearing materials and cleaning prior to placement of reinforcing steel or concrete. • Performing material testing services including concrete compressive strength and steel tensile strength tests and inspections. The recommendations provided in this report are based on the assumption that Ninyo & Moore will provide geotechnical observation and testing services during construction. In the event that the services of Ninyo & Moore are not utilized during construction, we request that the selected consultant provide the owner with a letter (with a copy to Ninyo & Moore) indicating that they fully understand Ninyo & Moore's recommendations, and that they are in full agreement with the design parameters and recommendations contained in this report. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 26 12 LIMITATIONS The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials. This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing. Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified, and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 27 This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 28 13 REFERENCES Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models, report prepared for Brookhaven National Laboratory, New York, NY, 144 p. American Concrete Institute (ACI), 2016, ACI Manual of Concrete Practice. American Society of Civil Engineers (ASCE), 2010, Minimum Design Loads for Building and other Structures, Standard ASCE/SEI 7-10. ASTM International (ASTM), 2016, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania. Atik, Linda L. and Sitar, N., 2010, Seismic Earth Pressures on Cantilever Retaining Structures, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1 O: dated October 1. Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., 2002, Recommended Procedures for Implementation of DMG Special Publication 117-Guidelines for Analyzing and Mitigating Landslide Hazards in California: Committee Organized Through the ASCE, Los Angeles Section Geotechnical Group, Document Published by the Southern California Earthquake Center, 101 p. Bowles, J.E., 1996, Foundation Analysis and Design, Fifth Edition, The McGraw-Hill Companies, Inc. Boore, D. M., Atkinson, G. M., 2008, Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra, Volume 24, Issue 1. Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified Seismic Design Procedure for Geosynthetic-Lined Solid Waste Landfills: Geosynthetics International, V.5, No. 1-2, pp. 203-235. Building News, 2018, "Greenbook," Standard Specifications for Public Works Construction: BNI Publications. Building Seismic Safety Council, 2009, National Earthquake Hazards Reduction Program (NEHRP) Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-750). California Building Standards Commission, 2016, California Building Code (CBC): California Code of Regulations. California Department of Transportation (Caltrans), 2017, Highway Design Manual, Chapter 630-Flexible Pavement: dated November 20. California Department of Transportation (Caltrans), 2018, Corrosion Guidelines (Version 3.0), Division of Engineering and Testing Services, Corrosion Technology Branch: dated March. California Geological Survey (CGS), 2008a, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CGS Special Publication 117A. California Geological Survey (CGS), 2008b (revised), Earthquake Shaking Potential for California: Map Sheet 48. Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 29 California Geological Survey (CGS), 2018, California Earthquake History and Catalogs - Downloadable California Earthquake Catalogs, http://www.conservation.ca.gov/cgs/rghm/quakes: accessed in March. Campbell, K.W., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo- Absolute Acceleration Response Spectra, Seismological Research Letters, Volume 68, Number 1, pp. 154-179. Campbell, K.W., and Bozorgnia, Y., 2008, NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s, Earthquake Spectra Volume 24, Issue 1, pp. 139-172: dated February. Cao, T., Bryant, W. A, Rowshandel, B., Branum, D., and Willis, C. J., 2003, The Revised 2002 California Probabilistic Seismic Hazards Maps: California Geological Survey: dated June. Chiou, B. S.-J., and Youngs, R.R., 2008, An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra Volume 24, Issue 1, pp. 173-216: dated February. City of Chula Vista, 2005, General Plan, Chapter 9 -Environmental Element: updated December 13. City of Chula Vista, 2017, BMP Design Manual, For Permanent Site Design, Storm Water Treatment and Hydromodification Management: updated May. Geotechnics Incorporated, 2003, As-Graded Geotechnical Report, Eastlake Business Center (Phase 2), Chula Vista Tract No. 00-02, Chula Vista, California: dated March 10. Google Earth, 2019, http://earth.google.com. Gregory, G.H., 2019, Geostase, Slope Stability Analyses Software, Version 2.7: dated January. Harden, D.R., 2004, California Geology, Second Edition: Prentice Hall, Inc. Hart, E.W., and Bryant, W.A., 1997, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California Department of Conservation, California Geological Survey, Special Publication 42, with Supplement 1 added in 2012, Supplement 2 added in 2014, Supplement 3 added in 2015, and Supplement 4 added in 2016. Historical Aerials, 2019, Website for Viewing Aerial Photographs, www.historicaerials.com. Ishihara, K. (1985). "Stability of natural deposits during earthquakes," Proceedings of the 11th Int. Conference of Soil Mechanics and Foundation Engineering, San Francisco, CA, Vol. 1, 321-376. Jennings, C.W., and Bryant, W.A., 2010, Fault Activity Map: California Geological Survey, California Geologic Data Map Series, Map No. 6, Scale 1 :750,000. Mononobe, N. and Matsuo, H., 1929, On the Determination of Earth Pressure during Earthquakes, Proceedings of the World Engineering Conference, No. 9. Ninyo & Moore, 2006, Geotechnical Evaluation, Eastlake Design Center II, Showroom Place and Fenton Street, Chula Vista, California, Project 105627001: dated February 24, revised August 28. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 30 Ninyo & Moore, 2018, Proposal for Geotechnical Evaluation, Proposed Acadia San Diego Medical Facility, 830 Showroom Place, Chula Vista, California: dated November 15. Norris, R.M., and Webb, R.W., 1990, Geology of California, Second Edition: John Wiley & Sons. Oka be, S., 1926, General Theory of Earth Pressures, Journal of Japan Society of Civil Engineering, Vol. 12, No. 1. SEAOC/OSHPD, 2019, Seismic Design Maps, https://seismicmaps.org/: accessed February. Stewart, J.P., Blake, T.F. and Hollingsworth, R.A., 2003, A Screen Analysis Procedure for Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp. 697-712. SWA Architects, 2018, Site Plan, Acadia San Diego, Chula Vista, California 91914, Sheet No. T.001: dated August 13. Tan, S.S., 1992, Landslide Hazards in the Jamul Mountains Quadrangle, San Diego County, California, California Geologic Survey Open File Report 92-12, Scale 1 :24,000. Todd, V.R., 2004, Preliminary Geologic Map of the El Cajon 30' X 60' Quadrangle, Southern California, Version 1.0, United States Geologic Survey, Open File Report 2004-1361. United States Department of Agriculture (USDA), Aerial Photographs, Date 4-14-53, Flight AXN-9M, Numbers 59 and 60, Scale 1 :20,000. United States Federal Emergency Management Agency (FEMA), 2012, Flood Insurance Rate Map (FIRM), No. 06073C1939G: dated May 16. United States Geological Survey (USGS), 2018, Jamul Mountains, California Quadrangle Map, 7.5-Minute Series: Scale 1 :24,000. United States Geological Survey (USGS), 2019, 2008 National Seismic Hazard Maps -Fault Parameters website, https://earthquake.usgs.gov/cfusion/hazfaults 2008 search/query main.cfm. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stakoe, K.H., II., 2001, Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering: American Society of Civil Engineering 124(10), pp. 817-833. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 31 Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 ,0 v g _j "', 0 0 "' N ,_ co 0 MAP INDEX San Diego County FEET 1,500 3,000 :, NOTE· DIRECTIONS. DIMENSIONS AND LO:::ATIONS AR=c APPROXIMATE. I SOURC=c. ESRI WORLD TOPO, 2017 Geotechnical & Environmental Sciences Consultants FIGURE~ .· SITE LOCATION PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1os727001 I 3/19 .::~.::~:::.:.:.~; ·i;·(~·l;·,,~:fll·f~~. (Jf,i~\)111!·iii s;t,if ... ! 11 'T' ,,.f]. 11 fii 1r 111t 11 ii'?. Ai H;~,~ 1111 . 11 t ~7;; i T)J,;;;;TCff.F!:t [1[f!'Tlf~ ilf~ f:lEET 1·-··-·1 liiiil:;;!iiiii;;;iiiiliill 1P ~ e~~; f;,;;J.;,~·1f: [j :f,i.i~:; I t1~J·i1i,,,ii~~ 1t=·(~El~/i"1P ~j tl·i SITE BOUNDARY □ ~8-8 BORING TD=15.4 TD=TOTAL DEPTH IN FEET IT-8 BORING TD=5,0 TD=TOTAL DEPTH IN FEET 4 BORING TD=3.D TD=TOTAL DEPTH IN FEET C C' GEOLOGIC CROSS SECTION I I FEET NOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE I REFERENCE: SWA ARCHITECTS, 2018 0 150 300 Geotechnical & Environmental Sciences Consultants FIGURE3 EXPLORATION LOCATIONS -SITE PLAN PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 v X C _, ~I 0 0 c- " :;:; 0 t ( )'!· /..- CALIFORNIA FAULT ACTIVITY HISTORICALLY ACTIVE HOLOCENE ACTIVE LATE QUATERNARY (POTENTIALLY ACTIVE) QUATERNARY (POTENTIALLY ACTIVE) STATE/COUNTY BOUNDARY :;:1 NOTE DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE Geotechnical & Environmental Sciences Consultants SOURCE: U.S. GEOLOGICAL SURVEY AND CALIFORNIA GEOLOGICAL SURVEY, 2006, QUATERNARY FAULT AND FOLD DATABASE FOR THE UNITED STATES. MILES 30 60 FAULT LOCATIONS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 311 e OJ $1 '" 0 £::! ;;, u § 0, 0 R N ~ 0 YOUNG ALLUVIUM TERRACE DEPOSITS FANGLOMERATE OTAY FORMATION ~ SANTIAGO PEAK VOLCANICS ....i.:_ STRIKE AND DIP OF BEDS -, NOTE DIRECTIONS, DIMENSIONS AND LO:::ATIONSAREAPPROXiMATE "'' Geotechnical & Environmental Sciences Consultants TODD, V,R,, 2004, PRELIMINARY GEOLOGIC MAP OF THE EL CAJON 30 X 60-MINUTE QUADRANGLE, SOUTHERN CALIFORNIA FEET 2,000 4,000 GEOLOGY PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1 osn?oo1 I 3/19 LEGEND ~RLL ~ OTAYFrnMATlON -?-GEOLCGJCCO."'lTACT, OJE.RIED WMERE UNCERTAIN A WEST 7$) PROPOSED r-Tl-a -----------T,-2 .r 6'-'LDiNG -----nr.i.LI ._-_-_-.,.-_-_-...... 1,,....,..._---, ________ ....!,___J A' \VEST 760 540 000 40 EO " ' FIGURE6A GEOLOGIC CROSS SECTION A·A' PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOf.4. PLACE. CHULA VISTA. CALIFORNIA 1087270011 3119 LEGEND B-7 s.:::A1'1;3 m,lw TD"'T;'.)TA!_D;:Pl"H1~FEET TP~12 TESTPIT Jo. TD=TOTALDEDTHL\IFEET (§[]RLL ~ OTAYFO"Hi.'ATI::::N -?-GE0..a';1CCO-NTACT, Q_ER!ED WM ERE UN:::ERTNN B WEST B' ,-.,ssr 76() eo FIGURE6B GEOLOGIC CROSS SECTION B-B' PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOv'JROOM PLACE, CHULA VISTA, CALIFORNIA 106727001 J ~19 C SOUTH 760 TP~12 TESTPIT n:Jtr T.J=TClTAL OS.PTrl !N FEET @!!JRLL ~ OTAYFCRVATlOJ -,;-GEO..CGIC CCNTACT, OJEHlED WrlERi= U'-K:ERTAIN 40 C' NORTH ,., 8() GEOLOGIC CROSS SECTION C·C' PROPOSED ACADIA SAN DIEGO MEDICAL FACILln' 830 SHOWROOM PLACE. CHULA VISTA, CALIFORNIA 10372700113/19 GROUND SURFACE SHORING + H 12 INCHES OR MORE 12 INCHES OR MORE T 1 D l f------pp --l NOT TO SCALE Geotechnical & Environmental Sciences Consultants NOTES: 1. ACTIVE LATERAL EARTH PRESSURE, Pa Pa= 45 H psi 2. CONSTRUCTION TRAFFIC INDUCED SURCHARGE PRESSURE, Ps Ps = 120 psi 3. PASSIVE LATERAL EARTH PRESSURE, PP Pp= 300 D psi 4. ASSUMES GROUNDWATER IS NOT PRESENT 5. HAND DARE IN FEET FIGURE7 LATERAL EARTH PRESSURES FOR TEMPORARY CANTILEVERED SHORING PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 GROUND SURFACE THRUST BLOCK Geotechnical & Environmental Sciences Consultants I\ I \ I \ d (VARIES) \ Pp; \ NOTES: 1. GROUNDWATER BELOW BLOCK PP= 150 (D2-d 2 ) lb/ft 2. GROUNDWATER ABOVE BLOCK PP= 1.3 ( D -d )[ 124.Bh + 57.6 ( D+·d )] lb/ft 3. ASSUMES BACKFILL IS GRANULAR MATERIAL D (VARIES) 4. ASSUMES THRUST BLOCK IS ADJACENT TO COMPETENT MATERIAL 5. D, d AND h ARE IN FEET 6. ---!-GROUNDWATER TABLE NOT TO SCALE FIGURES · THRUST BLOCK LATERAL EARTH PRESSURE DIAGRAM PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 SITE-SPECIFIC SITE-SPECIFIC PERIOD DESIGN RESPONSE PERIOD DESIGN RESPONSE (seconds) SPECTRUM (seconds) SPECTRUM Sa, (g) Sa, (g) 0.010 0.235 0.500 0.533 0.020 0.258 0.750 0.461 0.030 0.284 1.000 0.400 0.050 0.337 1.500 0.294 0.075 0.403 2.000 0.222 0.100 0.469 3.000 0.146 0.150 0.513 4.000 0.109 0.200 0.546 5.000 0.091 0.250 0.552 7.500 0.054 0.300 0.553 10.000 0.035 0.400 0.543 lsos = 0.546 S01= 0.445 PGAM = 0.321 I 1.0 --e-Mapped Design Response Spectrum --Site-Specific Design Response Spectrum § "' (/) ~ z 0 ~ 0:: UJ 0.5 -' ' UJ (.) (.) <( -' \ <( I 0:: I-I (.) UJ I a.. (/) ~ .... -,.~--- I - 0.0 0 1 2 3 4 5 6 7 8 9 10 PERIOD, T (seconds) NOTES: 1 Probabilistic Ground Motion is for Risk-targeted Maximum Considered Earthquake (MCER) with ground motion having 2% probability of exceedance In 50 years using Chiou & Youngs (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) attenuation relationships andthe risk coeff. 2 Deterministic ARS is 84th percentile of the median values from attenuation relationships by Chiou & Youngs (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) for deep soils considering a Mw 6.8 event on the Rose Canyon fault located 17.5 kilometers from the site. It conforms with the lower bound limit per ASCE 7-10 Section 21.2.2 as modified by 2009 N EH RP Recommended Seismic Provisions. 3 Site-Specific MCER is the lesser of spectral ordinates of deterministic and probabilistic ARS at each period per ASCE 7-10 Section 21.2.3. Site-Specific Design Response Spectrum conforms with lower bound limit per ASCE 7-10 Section 21.3. 4 Mapped Design Response Spectrum is computed from mapped spectral ordinates modified for Site Class D (stiff soil profile) per ASCE 7-10 Section 11.4. It is presented for comparison. J(ln90&1'\0o~e ACCELERATION RESPONSE SPECTRA FIGURE PROJECT NO. DATE Acadia San Diego Medical Facility 9 830 Showroom Place 108727001 3/19 Chula Vista, California Acadia 108727001_Site Specific Response ASCE 7-10 RETAINING WALL PASSIVE PRESSURE 1. NOTES: ASSUMES NO HYDROSTATIC PRESSURE BUILD-UP BEHIND THE RETAINING WALL 2. STRUCTURAL, GRANULAR BACKFILL MATERIALS AS SPECIFIED IN SECTION 10.1.7 SHOULD BE USED FOR RETAINING WALL BACKFILL 3. DRAINS AS RECOMMENDED IN THE RETAINING WALL DRAINAGE DETAIL SHOULD BE INSTALLED BEHIND THE RETAINING WALL 4. DYNAMIC LATERAL EARTH PRESSURE IS BASED ON A PEAK GROUND ACCELERATION OF 0.374g 5. PE IS CALCULATED IN ACCORDANCE WITH THE RECOMMENDATIONS OF MONONOBE AND MATSUO (1929), AND ATIK AND SITAR (2010). 6. SURCHARGE PRESSURES CAUSED BY VEHICLES OR NEARBY STRUCTURES ARE NOT INCLUDED 7. HAND DARE IN FEET 8. SETBACK SHOULD BE IN ACCORDANCE WITH FIGURE 1808.7.1 OF THE IBC (2015) + RESUL .NT ------, ACTIVE PRESSURE I H/3 1 DYNAMIC PRESSURE H/3 H RECOMMENDED GEOTECHNICAL DESIGN PARAMETERS Lateral Earth Pressure Equivalent Fluid Pressure (lb/ft 2/ft)1'1 Level Backfill 2H:1V Sloping Backfill PA with Granular Soilsl2i with Granular Soils 121 45 H 75 H PE 17 H Level Ground 2H:1V Descending Ground Pp 300 D 120 D NOT TO SCALE . , FIGURE 10 Geotechnical & Environmental Sciences Consultants LATERAL EARTH PRESSURES FOR YIELDING RETAINING WALLS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 RETAINING WALL FINISHED GRADE *BASED ON ASTM D1557 Geotechnical & Environmental Sciences Consultants SOIL BACKFILL COMPACTED TO 90% RELATIVE COMPACTION* 3/4-INCH OPEN-GRADED GRAVEL WRAPPED IN AN APPROVED GEOFABRIC. -+o11--1--GEOFABRIC J ii ... ::1 ·• 4-INCH-DIAMETER PERFORATED SCHEDULE 40 PVC PIPE OR EQUIVALENT INSTALLED WITH PERFORATIONS DOWN; 1 % GRADIENT OR MORE TO A SUITABLE OUTLET NOT TO SCALE FIGURE 11 RETAINING WALL DRAINAGE DETAIL PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 APPENDIX A BORING AND TEST PIT LOGS Field Procedure for the Collection of Disturbed Samples Disturbed soil samples were obtained in the field using the following methods. Bulk Samples Bulk samples of representative earth materials were obtained from the exploratory BORINGS AND TEST PITS. The samples were bagged and transported to the laboratory for testing. The Standard Penetration Test {SPT) Sampler Disturbed drive samples of earth materials were obtained by means of a Standard Penetration Test sampler. The sampler is composed of a split barrel with an external diameter of 2 inches and an unlined internal diameter of 1-3/8 inches. The sampler was driven into the ground 12 to 18 inches with a 140-pound hammer falling freely from a height of 30 inches in general accordance with ASTM D 1586. The blow counts were recorded for every 6 inches of penetration; the blow counts reported on the log are those for the last 12 inches of penetration. Soil samples were observed and removed from the sampler, bagged, sealed and transported to the laboratory for testing. Field Procedure for the Collection of Relatively Undisturbed Samples Relatively undisturbed soil samples were obtained in the field using the following method. The Modified Split-Barrel Drive Sampler The sampler, with an external diameter of 3 inches, was lined with 1-inch-long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 GP GW-GM GRAVEL GRAVEL with more than DUAL GP-GM 50%of CLASSIFICATIONS coarse 5% to 12% fines GW-GC fraction retained on GP-GC No. 4 sieve GRAVEL with GM COARSE-FINES GC GRAINED more than SOILS 12% fines GC-GM more than 50% retained SW on No. 200 SP sieve SW-SM SAND SAND with SP-SM 50% or more DUAL of coarse CLASSIFICATIONS SW-SC fraction 5% to 12% fines passes SP-SC No. 4 sieve SM more than SC 12% fines SC-SM CL SILT and INORGANIC ML CLAY CL-ML liquid limit FINE-less than 50% GRAINED ORGANIC SOILS 50% or CH more passes SILT and INORGANIC No. 200 sieve CLAY MH liquid limit 50% or more ORGANIC Very Loose .:;:4 .:;: 8 .:;: 3 Loose 5 -10 9-21 4-7 Medium Dense 11 -30 22 -63 8 -20 Dense 31 -50 64 -105 21 -33 Very Dense > 50 > 105 > 33 Geotechnical & Environmental Sciences Consultants poorly graded GRAVEL well-graded GRAVEL with silt poorly graded GRAVEL with silt well-graded GRAVEL with clay poorly graded GRAVEL with silty GRAVEL clayey GRAVEL silty, clayey GRAVEL well-graded SAND poorly graded SAND well-graded SAND with silt poorly graded SAND with silt well-graded SAND with clay poorly graded SAND with clay silty SAND clayey SAND silty, clayey SAND lean CLAY SILT silty CLAY organic CLAY organic SILT fat CLAY elastic SILT organic CLAY organic SILT .:;: 5 Very Soft 6 -14 Soft Firm 15 -42 Stiff 43-70 Very Stiff > 70 Hard Boulders > 12" > 12" Larger than basketball-sized Cobbles 3-12" 3 -12" Fist-sized to basketball-sized Coarse 3/4-3" 3/4 -3" Thumb-sized to fist-sized Gravel Fine #4-3/4" 0.19 -0.75" Pea-sized to thumb-sized Coarse #10 -#4 0.079 -0.19" Rock-salt-sized to pea-sized Sand Medium #40 -#10 0.017 -0.079" Sugar-sized to rock-salt-sized Fine #200 -#40 0.0029 -Flour-sized to 0.017" sugar-sized Fines Passing < 0.0029" Flour-sized and #200 smaller · Plasticity Chart ....:: a: >< w Cl z >-f-u ;::: Cl) c:( 70 ..J i-' a. i 4 Q / I/ / CL or OL ,, 1/1 % 0 /CL-ML ./ MLorOL - G 30 V V V CH or ~H /(r /"' / MHorOH 70 90 100 LIQUID LIMIT (LL),% <2 <3 < 1 <2 2-4 3-5 1 -3 2-3 5-8 6-10 4-5 4-6 9 -15 11 -20 6 -10 7 -13 16 -30 21 -39 11 -20 14-26 > 30 > 39 > 20 > 26 uses METHOD OF SOIL CLASSIFICATION (/) U::-UJ u _J I-~ Q:, Q) n. 0 0 ~ ::? 0 UJ >-_J <l'. u.. 0:: I-0 (/) u5 ci5 Ill I ::J ::? I-3:: I-z n. (/) UJ >-C 0 (/) UJ -" QJ _J 0 0 0 3 .?! Ill ::? >-Ill~ 0:: 0 0 £) 10 ¥ ~ 15 Geotechnical & Environmental Sciences Consultants z 0 j::: <l'. Cl) u . -U u.. . -(/) (/) . (/) ::J <l'. _J u SM CL BORING LOG EXPLANATION SHEET Bulk sample. Modified split-barrel drive sampler. No recovery with modified split-barrel drive sampler. Sample retained by others. Standard Penetration Test (SPT). No recovery with a SPT. Shelby tube sample. Distance pushed in inches/length of sample recovered in inches. No recovery with Shelby tube sampler. Continuous Push Sample. Seepage. Groundwater encountered during drilling. Groundwater measured after drilling. MA,JOR MATERIAi TYPE (SOIi ): Solid line denotes unit change. Dashed line denotes material change. Attitudes: Strike/Dip b: Bedding c: Contact j: Joint f: Fracture F: Fault cs: Clay Seam s: Shear bss: Basal Slide Surface sf: Shear Fracture sz: Shear Zone sbs: Shear Bedding Surface The total depth line is a solid line that is drawn at the bottom of the boring. BORING LOG Cf) w _J 0... U:::-~ ~ 0 z 'fil' <( I-e:, 0 Cf) 0 ~ i== ~ 0 w >-_J <( (/.) LL 0:: I-0 0 . I ~ ::J ci5 ID -0 ~ LL . I-I-z >--(/) 0... Cf) w Cf) • w _,,,_ C 0 0 0 Cf) (/) ::J 0 -~ _J <( 65 ·;:: ID ~ & _J 0 0 0 ML 50/5" 23.7 93.8 SM 10 50 19.6 77 22.3 91.7 ML 20 62 50/5" 22.0 93.1 30 53 64 MH Gootec.hnieal & Environmental Scienctt Consultants DATE ORI LLED 1/29/19 BORING NO. B-1 GROUND ELEVATION 710' ± (MSL) SHEET OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Light brown to gray, moist, stiff, sandy SILT; trace clay; scattered roots. Hard. ignfbrown to gray, very dense, silty nne to coarseSANIT. Scattered fragments of siltstone and sandstone. Light brown to gray, moist, hard, sandy SILT. Gray; cohesionless. Scattered clay nodules. rown to gray, moTst, very stiff to hard, elasucsrcT:- BORING LOG FIGURE A-1 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w _J 0... G:' ~ ~ u z 'fil' <( I-~ 0 Cf) 0 i= ~ 0 w >-_J <( Cf.) b!:: Cl:'. t:: 0 u . I ~ ::J Cf) [lJ -U ~ u. . I-I-z >--Cf) 0... Cf) w Cf) • w ~c 0 0 0 Cf) Cf) ::J 0 -g; _J <( &b= [lJ ~ ~ _J 0 u 0 40 25.1 MH 50/5" 50 60 70 Geoteehnbl & Err.ironmental Scioneu Ctlnaultants DATE DRILLED 1 /29/19 BORING NO. B-1 GROUND ELEVATION 710' ± (MSL) SHEET 2 OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: (Continued) Brown to gray, moist, hard, elastic SILT; strong organic/hydrocarbon odor; scattered fragments of siltstone and sandstone. OTAY FORMATION: Light gray, moist, strongly cemented, silty fine-grained SANDSTONE. Total Depth = 46 feet. (Refusal) Groundwater not encountered during drilling. Backfilled with approximately 16 cubic feet of bentonite cement grout shortly after drilling on 1/29/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-2 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w _J 0.. u:::-~ ~ u z :g-<( I-e:.. 0 Cf) 0 !:..... i= ~ 0 w >-_J <( (/) ~ 0:: t:: 0 u . I ~ ::J Cf) Cl) -U ~ LL . I-I-z >--Cf) 0.. Cf) w Cf) • w ..l<: C 0 0 0 Cf) Cf) ::J 0 -Q) _J ::5 cil ·E: Cl) ~ >- 0 0:: u 0 CL-ML 22.3 45 ML 10 99.0 20 50/5" 81 30 50/5" 50/4" GtootechfflQl & Environn11nlll Sdtneu Coniuttants DATE ORI LLED 1/29/19 BORING NO. B-2 GROUND ELEVATION 710' ± (MSL) SHEET OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Brown, moist, stiff, lean CLAY to SILT; scattered roots. Hard. rown, mrns(nara,STL T; scattereaclay pockets. Scattered fragments of siltstone and sandstone. Organic odor. Dark brown. OTAY FORMATION: Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; slight! micaceous. ota ept . eet. Groundwater not encountered during drilling. Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling on 1/29/19. BORING LOG FIGURE A-3 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 CJ) w _J 0... u:-~ ~ 0 z 'fil' ;% I-e:., 0 0 ~ _J i= ~ 0 w >-0 <( (/) LL 0:: t::. 0 . I ~ :::) CJ) en -0 ~ LL . I-I-z >--CJ) 0... CJ) w CJ) • w _,,,c 0 0 0 CJ) CJ) :::) 0 -Q) _J ::i ~ ·E: en ~ >-0 0:: 0 0 4 50 60 70 GeDteehnicll & Environmtntnl Scte'flC:ff Consultants DATE DRILLED 1/29/19 BORING NO. B-2 GROUND ELEVATION 710' ± (MSL) SHEET 2 OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. , , BORING L:OG FIGURE A-4 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (/) w _J 0... U:::-~ ~ 0 z :g-<( I-~ 0 (/) 0 ~ _J l= ~ 0 w >-0 <( cr.i LL Cl:'. t:: 0 . I ~ ::J (/) ID -0 ~ LL . I-I-z >--(/) 0... (/) w (/) . w .;,::c 0 0 0 (/) (/) ::J 0 -g! _J ::s cfi ·c ID ~ >-0 Cl:'. 0 0 ML 23.8 57 13.0 98.5 SM 10 40 97.7 CL 20 53 50/5" 20.8 93.7 30 64 50/4" Geotechnieal & Emir0Mm1tal Sclenou Consultants DATE DRILLED 1/30/19 BORING NO. B-3 GROUND ELEVATION 710' ± (MSL} SHEET OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Light brown, moist, medium dense, fine sandy SILT; scattered roots; trace clay. iglifEirown, moTst, mec11um dense, sflfynne SAI\JD. Dense; scattered fragments of siltstone and sandstone. Very dense; scattered clay nodules. Gray to brown, moist, hard, sandy CLAY. Organic odor; scattered fragments of siltstone and sandstone. OTAY FORMATION: Light gray, moist, moderately to strongly cemented; silty fine-grained SANDSTONE. ota ept = . eet. Groundwater not encountered during drilling. Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. , 'BORING LOG FIGURE A-5 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w _J 0... fL 2 u z ? <( I-~ ~ 0 QJ Cf) 0 i== ~ 0 w >-_J <( (/) b!:: IY !:::. 0 u . I ~ ::J Cf) en -U 2 LL . I-I-z >--Cf) 0... Cf) w Cf) • w ..>tt.c 0 0 0 Cf) Cf) ::J 0 -QJ _J <( di ·f: en 2 >-_J 0 IY u 0 4 50 60 70 Geottchniat & Environmrntal Sciences. Ccns.ultanb DATE DRILLED 1 /30/19 BORING NO. B-3 GROUND ELEVATION 710' ± (MSL) SHEET 2 OF 2 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-6 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w _J 0... U:: ~ ~ 0 z :g-<( I-e:, 0 Cf) 0 i= ~ 0 w >-_J <( (/) ~ Ct'. t:: 0 0 . I ~ ::J Cf) C!l -0 ~ u. . I-I-z >--Cf) 0... Cf) w Cf) • w -"" C: 0 0 0 Cf) Cf) ::J -Q) _J ::5 0 &l ·fE C!l ~ >- 0 Ct'. 0 0 SM 14.3 57 12.9 109.7 SC 10 37 50/6" 16.6 99.5 20 22 50/5" 30 Gooic-chmclt & EnvirOff!nlnl:aJ Sclen-eu Cons.ultDnh DATE DRILLED 1/30/19 BORING NO. B-4 GROUND ELEVATION 720' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Light brown, moist, medium dense, silty SAND; scattered roots. Scattered clay nodules. igfif6rown, mciTst, medium dense, clayey"S"Al\JCf Dense; scattered fragments of claystone and siltstone. Dense to ver dense. OTAY FORMATION: Light gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 25.4 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-7 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) UJ ....J 0.. i:L 2 ~ 0 z :g-<( I-e:, 0 Cf) 0 e.... i== ~ 0 UJ >-....J <( Cf.) LL Q:'. I-0 0 . I ~ :::) u5 co -0 2 LL . I-I-z >--Cf) 0.. Cf) UJ Cf) • UJ .:.:c 0 0 0 Cf) Cf) :::) 0 -Ql ....J ::i al ·E: co 2 >-0 Q:'. 0 0 SC 61 21.1 96.2 10 32 87/11" 15.1 104.9 20 42 50/4" 30 Geoftehrncat & En'tiroruntntal ScionC:11$ Consuitants. DATE DRILLED 1/30/19 BORING NO. B-5 GROUND ELEVATION 720' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRI PTION/1 NTERPRETA TION FILL: Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots. Scattered fragments of siltstone and sandstone. Dense. Scattered clay nodules. OTAY FORMATION: Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. Total Depth 25.3 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-8 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w _J 0... C2 ~ ~ u z -:;:::;-<( I-~ 0 QJ Cf) 0 ~ i= ~ 0 w f _J <( Cf) LL Cl:'. 0 u . I ~ ::J Cf) [IJ -U ~ LL . I-I-z >--Cf) 0... Cf) w Cf) • w :,,:.C 0 0 0 Cf) Cf) ::J 0 -QJ _J 5 iil ·E: [IJ ~ ~ 0 u 0 SC 40 10 59 15.4 110.1 49 20 50/5" 25.1 95.6 50/3" 30 Cioot.Khnical & Emironmenl!J Sdtncts Coni-ulblnts DATE DRILLED 1/30/19 BORING NO. B-6 GROUND ELEVATION 720' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots. Dense. Medium dense; scattered fragments of siltstone and sandstone. Dense. Scattered clay nodules. OTAY FORMATION: Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. Total Depth= 25.8 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-9 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (/J w _J Cl.. U::-~ ~ 0 z cg-<( I-e:, 0 (/J 0 ~ _J i= ~ 0 w >-0 <(uj LL Cl:'. t:: 0 . :r: ~ ::::> (/J m -0 ~ LL . I-I-z >--(/J Cl.. (/J w (/J • w -" C 0 0 0 (/J (/J ::::> 0 'S -~ _J <( m .._ m ~ >-_J 0 Cl:'. 0 0 SM 50/5" 12.2 99.0 10 50/5" 50/4" 20 30 Geotochnical & Envlrctnmm.taJ Scloncu Consultants DATE DRILLED 1/30/19 BORING NO. B-7 GROUND ELEVATION 710' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Gra ish brown, moist medium dense sil fine SAND· trace cla ; scattered roots. OTAY FORMATION: Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. @ 11 ': Slow drilling. Total Depth -15.8 feet. Groundwater not encountered during drilling. Backfilled with grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING l..:OG FIGURE A-10 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (/) UJ _J CL L2 ~ ~ 0 z :;:;-<( I-~ ~ 0 Q) (/) 0 e...-i== ~ 0 UJ >-_J <( Cl) 0 LL 0::: !::: m 0 . I ~ ::i (/) -0 ~ LL . I-I-z -(/) CL (/) UJ >-(/) . UJ -"'c 0 0 0 (/) (/) ::i -Q) _J <( 0 :::i.::: m ~ &'. _J m .... 0 0 0 SM 50/3" 11 .8 103.1 10 50/5" 50/5" 20 30 Geole-elinieal & Environmental Sclenc.is-Consultants DATE DRILLED 1/30/19 BORING NO. B-8 GROUND ELEVATION 710' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead) DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRI PTIO N/1 NTERPRETATION FILL: Li ht brown, moist medium dense sil fine SAND; trace cla ; scattered roots. OTAY FORMATION: Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. ota ept -1 . eet. Groundwater not encountered during drilling. Backfilled with grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING l:.OG FIGURE A-11 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) UJ DATE DRILLED BORING NO. ....J 1/29/19 IT-1 CL C2 ~ ~ 0 z 'fil' <( I-~ 0 GROUND ELEVATION 705' ± (MSL) SHEET OF Cf) 0 ~ i= ~ 0 UJ ~ ....J <( en LL 0:: 0 0 . I ~ =i ci5 C'.) -0 METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) ~ LL . I-I-z >--Cf) CL Cf) UJ Cf) • UJ ..><:c 0 0 0 Cf) Cf) =i -Q) ....J ::5 DRIVE WEIGHT N/A DROP N/A 0 ::i_;:: C'.) ~ >-C'.) ... 0 0:: 0 0 SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: 1---1--+---+u'M------+.Li ht brown moist medium dense, cla e SAND. 10 20 30 Geo:teehniul & EnvinnmcnW Sclenets Consultants OTAY FORMATION: Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-12 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (/) w _J 0.. u::-~ 0 'fil' <( I-~ e:. (/) 0 ~ ~ 0 w ~ lJ.. 0:: I ~ :) (/) I-I-z 0.. (/) w C 0 w ~ Q) 0 0 0 :i .<': _J en .... en ~ >-0 0:: 0 10 20 30 Gl,otechnical & En'iitonmmtaJ ScleneK-CoMurtants DATE DRILLED 1/29/19 BORING NO. IT-2 ---------z 0 _J 1= 0 <(uj 0 . en -0 ~ lJ.. . >--(/) (/) . (/) (/) :) ::5 GROUND ELEVATION _70_5_' _±~(M_S_L~) ____ _ METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT -------------N/A SHEET OF --- DROP --------N/A 0 SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM --------- DES CR IP TIO N /1 NT ERP RETA TIO N .. . . SC FILL: . . ------¼-Li ht brown moist, medium dense cla e SAND; scattered roots . II I OTAY FORMATION: Light brown to gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered pink bentonite lenses. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-13 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) UJ _J 0... u::-::2' (.) z ~ <( I-~ 0... 0 QJ Cf) 0 ,c.... i= ~ 0 UJ >-_J <( Cl) LL D::'. I-0 (.) . I --:) U) Cl) -(.) ~ ::2' LL . I-I-z >--Cf) 0... Cf) UJ Cf) • UJ -><c 0 0 0 Cf) Cf) :) 0 -QJ _J <( dl ·E: Cl) ::2' >-_J 0 D::'. (.) 0 SM 10 20 30 Gcotedtnic:.11 & Emironmtnlal Sdcnccs. Consultants DATE DRILLED 1/29/19 BORING NO. IT-3 GROUND ELEVATION 715' ± (MSL) SHEET OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION FILL: Light brown, moist, medium dense, silty fine SAND. OTAY FORMATION: Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1 /29/19. Backfilled after testing on 1 /30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-14 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 Cf) w DATE DRILLED _J 1/29/19 BORING NO. IT-4 0.. L2 ~ :;g-u z 'fil' <t: I-e:, 0 GROUND ELEVATION 715' ± (MSL) SHEET OF Cf) 0 ~ i= ~ 0 w >-_J <t: (/) --- LL a:: !::: 0 u . I ~ ::J Cf) []) -U METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) ~ LL . I-I-z -Cf) 0.. Cf) w >-Cf) • w ~ C: 0 0 0 Cf) Cf) ::) 0 -Q) _J ::5 DRIVE WEIGHT N/A DROP N/A cil ·E: []) ~ >-0 a:: u 0 SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM DESCRIPTION/INTERPRETATION SM FILL: Light brown, moist, medium dense, silty fine SAND. OTAY FORMATION: 1---1---t---+"-"~------t.Gra moist moderate! cemented sil fine-rained SANDSTONE. 10 20 30 Gtottehn/-eal & En'rirorunrntal Sciences Consultants ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING L;OG FIGURE A-15 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (/) w _J 0... C2 ~ ~ 0 z ~ <( I-e:, 0 (/) 0 ~ _J i= ~ 0 w >-0 <( cr.i LL 0::: !::: 0 . I ~ ::i (/) [Il -0 ~ LL . I-I-z -(/) 0... (/) w >-(/) . w .><:c 0 0 0 (/) (/) ::i 0 'S -~ _J <( [Il L. [Il ~ >-_J 0 0::: 0 0 ML 10 20 30 Geotedintc.al & EMiironmmtal Sctt"n«s Consultants DATE DRILLED 1/29/19 BORING NO. GROUND ELEVATION 710' ± (MSL} SHEET METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP SAMPLED BY GSW LOGGED BY GSW REVIEWED BY DESCRIPTIONIINTERPRETATION FILL: Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. IT-5 OF N/A NMM Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. . BORING 120G FIGURE A-16 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3119 CJ) UJ ....J CL U:::-~ ~ 0 z ~ <{ I-e:, 0 Q) CJ) 0 e..... i== g 0 UJ >-....J <{ (I) LL 0:: t:: 0 0 ' I ~ ::J CJ) CD -0 ~ LL . I-I-z >--CJ) CL CJ) UJ CJ) • UJ ~c 0 0 0 CJ) CJ) ::J 0 -Q) ....J <{ ::i.::: CD ~ >-....J CD .._ 0 0:: 0 0 ML 10 20 30 G-tottehnial a Enviromnental Seioneu Consultants DATE ORI LLED 1/29/19 BORING NO. GROUND ELEVATION 710' ± (MSL) SHEET METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP SAMPLED BY GSW LOGGED BY GSW REVIEWED BY DESCRIPTION/INTERPRETATION FILL: Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. IT-6 OF N/A NMM Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-17 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (f) w _J 0... U:-~ ~ (.) z ~ <( I-0... 0 QJ (f) 0 !c..... i== . ~ 0 w >-_J <( (f) LL 0:: I-0 (.) . I ~ ::J u5 Ill -(.) ~ LL . I-I-z >--(f) 0... (f) w (f) . w .><: C: 0 0 0 (f) (fJ ::J 0 -QJ _J <( cil ·f: Ill ~ >-_J 0 0:: (.) 0 ML 10 20 30 Geottehnieal & Enviromnenb\l Sdtr,us Consultants DATE ORI LLED 1129119 BORING NO. GROUND ELEVATION 705' ± (MSL) SHEET --- METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT NIA DROP SAMPLED BY GSW LOGGED BY GSW REVIEWED BY DESCRIPTION/INTERPRETATION FILL: Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. OTAY FORMATION: Gray, moist, moderately cemented, silty fine-grained SANDSTONE. ota ept = eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1129119. Backfilled after testing on 1130119. IT-7 OF NIA NMM Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG flGURE A-18 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 (f) w _J 0... u:::-~ ~ 0 z "+-" <( I-~ 0 (f) 0 ~ i= QJ >-_J ~ 0 w 0 <( uj b!:: 0:: t:: a:i 0 . :r: ~ ::J (f) -0 ~ u. . I-I-z >--(f) 0... (f) w (f) . w .:,,t.c 0 0 0 (f) (f) ::J 0 -QJ _J <( :::i.~ a:i ~ i:i _J a:i ,__ 0 0 0 ML 10 20 30 Geot-eehl't.al & Environmtnlat Sdcnets-Consultants DA TE ORI LLED 1 /29/19 BORING NO. GROUND ELEVATION 705' ± (MSL) SHEET METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP SAMPLED BY GSW LOGGED BY GSW REVIEWED BY DESC RI PTIO N/1 NTERPRETA TIO N FILL: Light brown, moist, stiff, sandy SILT; scattered roots; trace clay. OTAY FORMATION: Gray, moist, moderately cemented, silty fine-grained SANDSTONE. ota ept -eet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1 /29/19. Backfilled after testing on 1/30/19. IT-8 OF N/A NMM Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A-19 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 3/19 en ~ r m s· 0 ::r II "' iii' !!l. DATE EXCAVATED GROUND ELEVATION METHOD OF EXCAVATION TEST PIT DIAGRAM l(in90&}(\oore ~l~Sduen~ ;:::-w ~ i!: 0. w 0 0 1 2 3 4 5 6 7 8 9 10 11 ,0 en !:I 0. iio. :. <( w en "' --c:;-~ C en =~8 i5 li5 a -g :. ..;; ~ ----- • ,_ :1 '? ,_ X ¥- t-t-~ --- xx/xx t--\- --- --- --- Ii:' 0 z e,. 0 ~ en EXCAVATION LOG >->-Ou ;;; u:: . z en~ EXPLANATION SHEET ~ en ::, <( >-..J "' 0 DESCRIPTION 0 SM FILL Bulk sam pie. -----------ML Dashed line denotes material change. Drive sample . Sand cone performed. Seepage. Groundwater encountered during excavation. No recovery with drive sampler. Groundwater encountered after excavation. Sample retained by others. Shelby tube sample. Distance pushed in inches/length of sample recovered in inches. No recovery with Shelby tube sampler. SM ALLUVIUM: Solid line denotes unit change. Attitude: strike/Dip b: Bedding s: Shear c: Contact bss: Basal Slide Surface J: Joint sf: Shear Fracture f: Fracture sz: Shear Zore F:Fault sbs: Sheared Beddirg Surface cs: Clay Seam The total depth is a solid line that is drawn at the bottom of the excavation log. -: TEST PIT LOG EXPLANATION OF TEST PIT, CORE, TRENCH AND HAND AUGER LOG SYMBOLS l(in90 & /(lnnre (/) w _J U:-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-1 (L ~ :,a 0 z TEST PIT LOG UJ <( ~ e:.. 0 UJ (/) ;::: GROUND ELEVATION 715' ± (MSL) LOGGED BY GSW --w ~ ~j ~--D:'. PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY J: =, ui LJ... • <l) f-z -C/J METHOD OF EXCAVATION Backhoe f-c§ (/) w (/) . 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA CL 0 0 (/) =, UJ I&-~~ :,a >-::i PROJECT NO. DATE 0 O<= D:'. 0 LOCATION See Fi!ilure 2 "' 0 (/) DESCRIPTION 108727001 3119 -SC E!LL. \ Light brown to gravel, moist, medium dense, clayey SAND. \ -- ->- \ 2 -- \ 4 \i\. OTAY FORMATION: Light brown to gray, moist, moderately to strongly cemented, clayey fine- ' grained SANDSTONE. "" I ->- ~ I 6 -- " ->- r--,.....__ / 8 Total Depth = 8 feet. Groundwater not encountered. Backfilled on 1/28/19. ->-- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 10 ->--other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 1? II ~ /? ft II l(in90 &/,(lnore (fJ ~ U::-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-2 o_ i=-2 0 z TEST PIT LOG w <l'. :,?_ e::. 0 w (fJ ;::: GROUND ELEVATION 715' ± (MSL) LOGGED BY GSW ---w ~ <l'. ui l=, 0:: Q 0 PROPOSED ACADIA SAN DIEGO MEDICAL FACIUTY J: ::::, ui ~uj Ql I-z METHOD OF EXCAVATION Backhoe I- .!.::: ffi 5 (fJ w (fJ . 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA c.. 0 0 (fJ::::, ~·E:~ <l'. w 2 >-....J PROJECT NO. DATE 0 0 C: 0:: 0 LOCATION See Fi~ure 2 "' 0 (fJ DESCRIPTION 108727001 3/19 I MH .EJ.L.L. Light brown to gray, moist, stiff, clayey SILT. I ,--+--29.4 \ \ 2 ~- \ OTAY FORMAIION: Light brown to gray, moist, moderately to strongly indurated, clayey \. SILTSTONE; scattered rootlets and pinkish mottling. \ 4 ~- J --~ I 6 --"'-............... / Total Depth = 7 feet. Groundwater not encountered. Backfilled on 1/28/19. 8 ---Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 10 ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 1? II SCALE = 1 in./2 ft. II }(in90 & fl(t.nore (fJ UJ DATE EXCAVATED TEST PIT NO. _, U::-1/28/19 TP-3 (l_ i=' ::;; l () z TEST PIT LOG UJ <( e:, 0 UJ (fJ i== GROUND ELEVATION 715'± (MSL) LOGGED BY GSW ---UJ >-c5 uj l::, 0:: I- ::J u.i -() PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I Q) t;; z ~c.ri METHOD OF EXCAVATION Backhoe I-C: UJ (fJ . 830 SHOWROOM PLACE, CHULA VISTA, CALI FORNI A a.. C: 0 6 0 (fJ ::J !-~~ <( UJ ::;; >-d PROJECT NO. DATE 0 0 C: 0:: LOCATION See Fi~ure 2 tU 0 (fJ DESCRIPTION 108727001 3/19 SC ElLL Brown to light brown, moist, medium dense. clayey SAND. \ \ OTAY FORMATION: Light brown to gray, moist, moderately to strongly indurated, clayey j SILTSTONE; scattered rootlets. \ I 2 -- \ f-1-18.4 ~ I ~ 4 -- I'--... J Total Depth = 5 feet. Groundwater not encountered. Backfilled on 1/28/19. 6 t-1-t- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal vanaltons in precipitation and several ~--other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 8 t-1-t-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 10 -f-- ->-- 1? SCALE= 1 in./2 ft. II }(in90&}(\.nnTe "' w -' U:-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-~ p o._ 2 l 0 z TEST PIT LOG w <%'. e:, 0 w "' i= GROUND ELEVATION 715' ± (MSL) LOGGED BY GSW ~ ---w >-<%'. u:i 0:: 1--Qd PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I ::::, u5 ~0 Q) t,.; z METHOD OF EXCAVATION Backhoe I-c§ w 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA D.. 0 0 "'::::, w j.~~ 2 >-:'S PROJECT NO. DATE 0 oc 0:: 0 LOCATION See Fi1iure 2 (0 0 "' DESCRIPTION 108727001 3/19 V SC ElLL. \ I Brown to gray, moist, medium dense, clayey fine SAND; scattered roots. \ { I-- \ l OTAY FORMATION: 2 --Gray, moist, moderately to strongly indurated, clayey SILTSTONE. \ J ' -- "" I ' 4 --....... "' I ~ / Total Depth = 5 feet. Groundwater not encountered. Backfilled on 1/28/19. 6 --I- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 8 --I-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 10 -1--1-- -1--1-- 1? C::-1 ;n /~ ft II JVin90&1(\nnre. Cf) UJ ....J U::-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-5 I=' a.. z ::;; 0 TEST PIT LOG UJ c,:: e:, ~ 0 UJ Cf) ;::: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW l:S. ---UJ >-c,:: uj D:'. I-Q 0 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I :::, ci5 ~ Cf) QJ I-z METHOD OF EXCAVATION Backhoe 1--.::.:: ~ § Cf) UJ Cf) • 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA CL 0 0 (fJ:::, UJ ~.~~ c,:: ::;; >-....J PROJECT NO. DATE 0 0 C: D:'. 0 LOCATION See Fi1iure 2 ro 0 Cf) DESCRIPTION 108727001 3/19 ( V SC .ElLL \ Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots. \ ) OTAY FORMATION: Brown to gray, moist, moderately to cemented, silty SANDSTONE; scattered claystone lenses at approximately 2 to 3 feet; pinkish mottling and \ 2 --dark brown laminations at approximately 5 to 6 feet. j --I\ I 21.4 \ I 4 -- ' --" I '-_/ 6 Total Depth = 6 feet. Groundwater not encountered. Backfilled on 1/28/19. --- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 8 ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 --- --- 1? -1 in./2 ft. II }(in90&1(\oare Cf) w TEST PIT NO. --' ;:;::-DATE EXCAVATED 1/28/19 TP-6 "-i:=-:::,; l 0 z TEST PIT LOG w <( e::. 0 w Cf) ;::: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW lb---w >-gj D:'. I- PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I a, ::::, ui !:!::: uj I-z METHOD OF EXCAVATION Backhoe I-C Cf) w Cf) . 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA a_ CO 0 0 Cf)::::, w s.~~ :::,; >-:5 PROJECT NO. DATE 0 CD Q c: D:'. 0 LOCATION See Fi!ajure 2 ro 0 Cf) 108727001 3/19 DESCRIPTION \ SC EILL. Light brown to gray, moist, medium dense, clayey fine SAND. \ OTAY FORMATION: Light brown to gray, moist, moderately to strongly indurated, clayey ' SILTSTONE; scattered pockets of pink bentonite from approximately 4 to \ ' 2 --5.5 feet. I\ --'\ 26.1 "'~ 4 -- --"' i"-... ,) 6 Total Depth = 6 feet. Groundwater not encountered. Backfilled on 1/28/19. --- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 8 --1-other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the -1-1-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 --- -1-- 1? II }{in90&1(\0ore (/) w TEST PIT NO. _J U::-DATE EXCAVATED 1/28/19 TP-7 (l_ i=-::;; ~ 0 z TEST PIT LOG UJ c,: e:, 0 UJ (/) ;::: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW --w >-s:ij ~-0:: I- PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I ::::, ui !:±:: (/) ~ I-z METHOD OF EXCAVATION Backhoe I-(/) w (/) . 830 SHOWROOM PLACE. CHULA VISTA, CALIFORNIA [L C: 0 0 0 (/)::::, ,;,;; a, 0 :'.:5 UJ ::, > 'O ::;; >-0 en·.::: 0:: 0 LOCATION See Filjure 2 PROJECT NO. DATE 0 C: ro 0 (/) DESCRIPTION 108727001 3/19 -I SM E1LL. \ Light brown to gray, moist, medium dense. silty fine SAND. \ I OTAY FORMATION: Gray, moist. moderately to strongly indurated, clayey SILTSTONE. \ 2 -- f-1--\ 25.9 f\ \ 4 -- f-1-- I"" I i-..... 6 Total Depth = 6 feet. Groundwater not encountered. Backfilled on 1 /28/19. ---Note: Groundwater, though not encountered at the time of excavation. may rise to a higher level due to seasonal variations in precipitation and several 8 >-1--1--other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 -1--1-- -r-1-- 1? II SCALE -1 in./2 ft II }(in90&/y\nnre (J) UJ TEST PIT NO. --' U:-DATE EXCAVATED 1/28/19 TP-8 CL i=--:::;; u z TEST PIT LOG w <( ,R e:, 0 w (J) !'!..., ;::: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW !!::, I-~-UJ ~ <( ui 0:: Q(j PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I ::, ui ~ uj Q) f-z METHOD OF EXCAVATION Backhoe I-~ a3 5 (J) UJ (J) . 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA c.. 0 0 (J)::, w ~ ·E: ~ :::;; >-:s PROJECT NO. DATE 0 0 C: 0:: u LOCATION See FilaJure 2 rn 0 (J) 108727001 3/19 DESCRIPTION SC El.L.L Light brown, moist, medium dense, clayey SAND. OTAY FORMATION: Gray and reddish to yellowish brown, moist, moderately to strongly ' cemented, silty fine-grained SANDSTONE; scattered claystone lenses from \ 2 1--approximately 4 to 5 feel J --\ I 4 -1- \ I ~ --"'---I 6 Total Depth= 6 feet. Groundwater not encountered. Backfilled on 1/28/19. --- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 8 --1-other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the -1-1-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 --- -1-1- 1? SCALE -1 in./2 ft. II l(in90 &JYlnnre (fJ UJ _, U::-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-9 i:=--CL ::e; "ij (.) z TEST PIT LOG UJ <l'. e:.. 0 UJ (fJ ;::: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW --UJ ~ c3 0 lS-D:'. :::J u5 _(.) PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I Q) I-z V5 0 METHOD OF EXCAVATION Backhoe 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA I-C: § (fJ UJ (fJ :::J a.. 0 0 UJ ~.~~ ::e; >--::5 PROJECT NO. DATE 0 roo C: D:'. (.) LOCATION See Fi£1ure 2 ro 0 (fJ DESCRIPTION 108727001 3/19 V SC .El.LL. \ Light brown to gray, moist, medium dense, clayey fine SAND. \ OTAY FORMATION: Gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered rootlets; slightly micaceous. \ 2 -- I~ 1--19.7 4 --~~ I --Total Depth = 5 feet. Groundwater not encountered. Backfilled on 1/28/19. 6 I--I- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal vanat1ons in precipitation and several ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 8 --1-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 10 --1- --1- II SCALE = 1 in./2 ft. II JVin90 &/,(\on-re Cf) w TEST PIT NO. _J u::-DATE EXCAVATED 1/28119 TP-10 o._ i:=-:a, l u z TEST PIT LOG w <( e:, 0 w Cf) ~ uj GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW t---w >-~ D:'. !::: Sc2 c..i PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I ::, Cf) ~ en Q) t;; z METHOD OF EXCAVATION Backhoe I-C: w ~::i 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA a. C: 0 0 0 w !-~~ :a, >-::i PROJECT NO. DATE □ 0 C: D:'. u LOCATION See Fi(lure 2 (0 0 Cf) DESCRIPTION 108727001 3/19 . -SC E.ll.l.;_ !\ J Light brown to gray, moist, medium dense, clayey fine SAND. \ OTAY FORMATION: I Gray and reddish brown to yellowish brown, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered claystone lenses \ 2 --approximately 4 to 5 feet. ' -- I\ 21.3 \ 4 -- t\. 1-1-~ V I',..._ ./ 6 Total Depth = 6 feet. Groundwater not encountered. Backfilled on 1128119. I-I-t- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 8 ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 t--- --- 1? /? ft II }(in90 & l(t.no"re (JJ w DATE EXCAVATED TEST PIT NO. --' Li:' 1/28/19 TP-11 CL ~ :::;; l u z TEST PIT LOG UJ <I'. !?=, 0 UJ (JJ e=: GROUND ELEVATION 710' ± (MSL) LOGGED BY GSW --~ w >-<I'. uj ~ 0:: I-!:20 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I ::, u.i rn 0 Q) tii z METHOD OF EXCAVATION Backhoe 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA I-C: 8 w (JJ::, [l_ .0,: Q) 0 0 UJ ;5 > ::i ro ·c i:::, :::;; >- PROJECT NO. DATE 0 0 C: 0:: u LOCATION See Fi!.lure 2 cu 0 (JJ DESCRIPTION 108727001 3119 SC ElLL Light brown, moist, medium dense, clayey fine SAND; scattered roots. \ \ I OTAY FORMATION: Light brown to gray, moist, moderately to strongly cemented, silty fine- ' grained SANDSTONE; scattered claystone lenses from approximately 3 to 4 \ 2 --feet ' r-t- f\ 4 --'\I\. J r-t- "' V "'-.. ./ 6 Total Depth= 6 feet Groundwater not encountered. Backfilled on 1/28/19. r-1-t- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 8 ---other factors as discussed in the report The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the ---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. 10 --t- --- iO nit. II JVin90.sz}(\oore Cf) w TEST PIT NO. _J U::-DATE EXCAVATED 1/28/19 TP-12 [L .=-::,; u z TEST PIT LOG UJ <!'. ~ eo. 0 UJ Cf) ;::: GROUND ELEVATION 705' ± (MSL) LOGGED BY GSW ~ 1---w ~ <!'.<I) D:'. ~t.i PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY J: :::J u5 ~cr.i Q) I-z METHOD OF EXCAVATION Backhoe I-.:.::~§ Cf) w Cf) • 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA CL i5 D Cf) :::J UJ ~ .e; ~ <!'. ::,; >-_J PROJECT NO. DATE 0 D c: D:'. u LOCATION See Fi~ure 2 "' D Cf) DESCRIPTION 108727001 3/19 J -E1LL Light brown, moist, medium dense, clayey fine SAND; scattered roots. I OTAY FORMATION: Gray, moist, moderately to strongly indurated, silty CLAYSTONE; scattered lenses of pinkish gray bentonite. \ 2 ,_ ,_ --\ -36.1 ' 4 -@ 4' to 5': Trace sand. \ 1-1-\ I 6 --\ J/ ~ Total Depth = 7 feet Groundwater not encountered. Backfilled on 1/28/19. 8 --- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 1---other factors as discussed in the report The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 10 1---purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 10 nfl II l(in90 &}(\.nnTe (/) w DATE EXCAVATED TEST PIT NO. __J U::-1/28/19 TP-13 o._ i:=-::;;; 0 z TEST PIT LOG w <( C e:, 0 w (/) ~cri GROUND ELEVATION 705' ± (MSL) LOGGED BY GSW ~ ---w >- DC t:: Qo PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I Q) :::J (/) !± uj t, z METHOD OF EXCAVATION Backhoe I-~a;§ w (/) . 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA a.. 0 0 (/) :::J w ~ ·E: ~ ::;;; >-:s PROJECT NO. DATE D 0 C: DC 0 LOCATION See Figure 2 (tl 0 (/) DESCRIPTION 108727001 3/19 \ SC .E.I.L.L. Light brown, moist, medium dense, clayey fine SAND; scattered roots. '\. f-1- I""-.. OTAY FORMATION: 2 f-1-Gray, moist, moderately indurated, clayey SILTSTONE. ..... ~ ) Total Depth = 3 feet. Groundwater not encountered. Backfilled on 1 /28/19. 4 1-1-1- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several ---other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 6 1-1-1-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 8 1-1-1- -,-- 10 --- -f-- 1? SCALE -1 in./2 ft. II }(in90 &iV\nnTe (fJ w _J u:-DATE EXCAVATED 1/28/19 TEST PIT NO. TP-14 (L ~ ::a, l u z TEST PIT LOG w <( e:, 0 w (fJ ;::: GROUND ELEVATION 705' ± (MSL) LOGGED BY GSW lb---w >-<( ui 0:: I-~u PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY I Q) ::::J ui ~ uj I-z METHOD OF EXCAVATION Backhoe I- .!:a!: a5 § (fJ w ~:::j 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA a.. i5 D w ~-~~ <( ::a, >-_J PROJECT NO. DATE 0 D c: 0:: u LOCATION See Fi1iure 2 ro D (fJ 108727001 3/19 DESCRIPTION SM E1LL \ Light brown, moist, medium dense, silty fine SAND; scattered roots; trace clay. --\ \ QIE,Y FORMATION: 2 --Gray, moist, moderately cemented, silty fine-grained SANDSTONE. " J ""--Total Depth = 3 feet. Groundwater not encountered. Backfilled on 1/28/19. 4 --- Note: Groundwater, though not encountered at the time of excavation, may rise to a higher level due to seasonal variations in precipitation and several 1--1-other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the 6 1--1-purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. --- 8 1--1- --- 10 -1-- -1-- 1? II SCALE= 1 in./2 ft II Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 Classification APPENDIX B GEOTECHNICAL LABORATORY TESTING Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings and test pits in Appendix A Moisture Content The moisture content of samples obtained from the exploratory excavations was evaluated in accordance with ASTM D 2216. The test results are presented on the logs of the exploratory excavations in Appendix A. In-place Moisture and Density Tests The moisture content and dry density of relatively undisturbed samples obtained from the exploratory borings were evaluated in general accordance with ASTM D 2937. The test results are presented on the logs of the exploratory borings in Appendix A Gradation Analysis Gradation analysis tests were performed on selected representative soil samples in general accordance with ASTM D 422. The grain-size distribution curves are shown on Figures B-1 through B-9. These test results were utilized in evaluating the soil classifications in accordance with the uses. Atterberg Limits Tests were performed on selected representative fine-grained soil samples to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the Unified Soil Classification System (USCS). The test results and classifications are shown on Figure B-10. Consolidation Consolidation tests were performed on selected relatively undisturbed soil samples in general accordance with ASTM D 2435. The samples were inundated during testing to represent adverse field conditions. The percent of consolidation for each load cycle was recorded as a ratio of the amount of vertical compression to the original height of the sample. The results of the tests are summarized on Figures B-11 and B-12. Direct Shear Tests Direct shear testing was performed on relatively undisturbed and remolded samples in general accordance with ASTM D 3080 to evaluate its shear strength characteristics of the selected materials. The samples were inundated during shearing to represent adverse field conditions. The results are shown on Figures B-13 through B-18. Expansion Index Test The expansion indices of selected materials were evaluated in general accordance with ASTM D 4829. Specimens were molded under a specified compactive energy at approximately 50 percent saturation (plus or minus 2 percent). The prepared 1-inch thick by 4-inch diameter specimens were loaded with a surcharge of 144 pounds per square foot and was inundated with distilled water. Readings of volumetric swell were made for a period of 24 hours. The results of these tests are presented on Figure B-19. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 Proctor Density Tests The maximum dry density and optimum moisture content of a selected representative soil sample was evaluated using the Modified Proctor method in general accordance with ASTM D 1557. The results of these tests are summarized on Figure B-20. Soil Corrosivity Tests Soil pH and resistivity tests were performed on representative samples in general accordance with CT 643. The soluble sulfate and chloride contents of the selected samples were evaluated in general accordance with CT 417 and CT 422, respectively. The test results are presented on Figure B-21. R-Value The resistance value, or R-value, for site soils was evaluated in general accordance with California Test (CT) 301. Samples were prepared and evaluated for exudation pressure and expansion pressure. The equilibrium R-value is reported as the lesser or more conservative of the two calculated results. The test results are presented on Figure B-22. Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 2 GRAVEL SANO Coarse Fine Coars Medium U.S. STANDARD SIEVE NUMBERS FINES Fine SILT CLAY HYDROMETER 100.0 n'T'T"3T"" -r2-,' _1'..,.w_· -".,..'/4_,"-'-½"i".:¼tc' ,..." ,-,-,,..-,---,----,r--1"'6T'"'"T"T"T30--,--,.....,5c-0~~1 .... 00'---,c,-,-,2,"00i--T---,---,----,--~m--,-,--,----,----,---,,-,-.,..,...-,--,---,--.,..----, .. . .. . . .. . . "! =mi ,1, .. . . ~--+-l----'-------i-+----+------+-+--+--+-----++-i---+--+----90.0 ~ ~ I\ : 80. 0 H+l-+--1-+~-l--l!- "'r---._ i 7 ' : ~ 0.0 H-t,+-t-+-i--t-+-r--+t-t-H-r--l-+--t',~~-: +-+-++-+-+--,r--+---++++-t-+--+--+--+---++-H-+-ic-+-+---t--t+++++-t--t-+---i ~ :~ ~ 60.0 l+t;f--f-1-t;---t--,--t,----,......+tj+++++-+---ci-J--,:-+++'l'-<,--..c+'i-i".f--t~-++t++-11-l-+--t----l++++++--l-+----H-H-+++-l--+---1 ct:: 50. 0 H-t++++--l+--+-+--t+---+--t+t-H-,Hf-+-+--1-+--+-+-+++-+--+--+---'<--+---JH-H++-1-+--+-t---+t-1H-t-+-+-t-+---+t-++++-+-+--+-----l ~ i i i ~ 40. 0 1++,+++-1+--+--.-+--+---1+-1-HHi-+-+---+---i-+--+++-+-+---+--+--+-__,_;c++;+-+-+-+-+-+----H-,H-t--+-+-+---+---+t+++-+--+--+--+-----i 1-z w 0 ct:: w a. ~ 30. o H+'+++-1-'-+-+--1'---+--+'+-1-HH'-+-+-'--+--++-+++-+-+---+--+-+-:-+++'I :+-+-+-+-+-+----H-,H-t--+-+-+---+----+++++-+--+--+--+-----< 20.0 t++i+++-1+-t-;--ti--,--ti+-t-Hl-li--+-+-i-+---i-t--+++-+-+--+--+-+-;-++++I ;+-+-+-+-+-+----1+,H-+-+-+-+--+---+t+++-+-+--+--+-----i 10.0 1+++++--l+--+...;..._-l'--+--t+H-,l-++-+--+--+-+-+++-+-+--+---+--+---JH+++-1-+--+-t---+t-lH-t-+-+-t-+---+t-++++-+-+--+-----l 0.0 1-'-'-"--'--'-Ll...J-+--"---+--+'--'--'-'-"--'--'-'-'----+-LI---'--'-+--+---'-+-JJ-L"--'--'--'--'--'----J.L..>..WL.J...+-+---'---t-L.W...,_,_-L....,__,__--j 100 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Gl!atlilcknlcal & Environmental Sciences Consultants FIGURE B-1 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 108727001_SJEVE w No 8 B-1 @ 10.0-11.5.xlsx GRAVEL SAND Coarse Fine Coars Medium U.S. STANDARD SIEVE NUMBERS FINES Fine SILT CLAY HYDR0\11ETER 100.0 ~.;:.3',...' .;:.2'...,,...1½_,_,"__," _¾_" ...,c½~,".%"'"~_,,.4..,--.,.....8,---'1'-"6~,-3r-Or-r_5,...o_,.~1-'-'00c.....,.,.,.;;2,'-i00c..,--,-,--~--,,-r,-r,-,---,,--,--,n.,,-r,-,-------, ·t~~I I 90.0 I-WC+.-l--4--1-l--"--<'--__;_14-l--l-+--li-+-l-...c::i-.'i--,e.;t--!-l-l-l-H-!-1---l---'---i--1-l-!i+-1-l-+--l-----+---l+H-+-l-~'----+---+l-l-++-l-f--l-+-------I : ~t-: 80.0 I-W+l-l-l--l+--l-i--ll---+-l++-1-+-1--4-1---+--++--'-: ..J......l.-l-l-.J-.+:-...-""-l-f\-4:-l-l-l+l-l-l!-1--1--1---l+l-++++-l----+---H++-H-+-+-l------l I-70.0 H+++-+-t--+--ae----H+++-+-+--+-i-l--f-t-t-+-+-+-+--t..,,,'7\,---t++.HH-+-l--1---+t-H-t-t-+---'t--+---t-H....,_,.-+-t-t-+---, ~ :: V 1: ! so.o H+I :H--J1-+--1--+-......-,.-++-H-+-+-1-+---;-+--,-j +++++-+-+---+--;---Pl.+,., H-+-+-+--+---+H-++++--+--+---tt-++-H-+-t-1----1 ll:'. 50.0 : w z [[ 40.0 l-l-"++-+-t--+..;..-<l-----,-H+++--i;-+--+-i-1--:H-++-1-+--t-+--+-+--+++;+-,H-+-!---l---+t-H-t-+-+---'f--+---t-H++-+-t-t-+------i 1-z w (.) ll:'. w a. 30.0 <+,µ++-+-tL-L-'-J+--+-!4+++-+-+--+-'-4--+-f-t-+-+-f-+-+--+--+---+-++cH-f-t--+---+---++H-H-+--+---+---+-t++-+-+-+--+---+----i Ir 20.0 H+++-+-t--++--,+--+-m+++--ti-t--+-i-1---+-1-++-+-+-+-+--t--+----;H-1+H-1-+-+---+----++H-+-if-t--+--t----,.-t-H-t-t-+--+---+----< 10.0 l++a-++-+--+---+1------'1'1++++-+-l--i-l---'H-++-+-+-+--f---'----+H+H-H--+--l----f+t-l-HH--l---+--l-++t-t-t-+--t---+----< 0.0 µ..c"-L.L...1'-'--<-.J"---+-¥'-'--'-'--"-'--'---'-'--+-H-J...L...L....L--+--<--+--,U..W.'--'-'-'--"---+---f~~~-+---+---+~~-"--+---+----i 100 10 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS PERFORMED IN GENERAL ACCORDANCE VIIITH ASTM D 422 Geotlichnical & Envlrcmme11tal Science& Concultants FIGURE 8-2 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 10872700113/19 10B727001_SIEVE WNO B 6-1 @40.0-41.0.xlu I- I Cl iii s: >-C!l er w z u:: I-z w (.) er w [l_ GRAVEL SAND Coarse Fine Coars Medium U.S. STANDARD SIEVE NUMBERS FINES Fine SILT CLAY HYDROl\t1ETER 200 100.0 rTT~3," ;:2c...' r,-1-,½'_' ,_1",,¾;_;.•'_' ,:.t;.,'"1,i':¾,_",-,--i-r-r-l~lk;:c,...__..-.;.:~6T7['"T7" 130-,-:50 100 i 1! : ' -t-h 90.0 1++4-l---l-1-'-4-'-+--'-+l-++!-+-l-..l-:'-J-_ _;_: +-1-+1-+~-lt----.--+-+--t-t+;-H-t-!--+-1----++t++-+-+--l--+---++++-+-+-+-+--+----j : : : I"-' ! : I: : : f\i 80.0 l++H-++-tH-+--n--+-tft++-t-+.-+-+-H-:-++ :-H-H-+-+--t-..-t+nct-1-+-1--t-t---H-t-H-+-+-+--+----HH-t--t-t-t--+---+---1 ; i \ 70.0 60.0 50.0 40.0 i 1: I: ~ i r i I: i 30.0 20.0 10.0 I 0.0 100 10 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS PERFORMED IN GENERAL ACCORDANCE V\/ITH ASTM D 422 Geotechnlcal & Eh'i'lronhlehtal Sciences Cot1sultanls FIGURE B-3 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1os727001 I 3/19 10B7270D1_SIEVE w No B B-2@ 0.0-5.QJ(ISX GRAVEL SAND Coarse Fine Coars Medium U.S. STANDARD SIEVE NUMBERS FINES Fine SILT CLAY HYDROMETER 100.0 rr;-cr3," -,:2,' r1',½'-,' 1-",,.'/4_,"--,'-½'-,-",r¾r" rrrr-.--18 ..... =K16nTT30.-.-5r0-,~1.;c00c..,CTT"2r00rr.-,--,---,m77r,,----,--TTTTTT7r7-.-------, : ....... r--I ! r--,~: 90.0 H-+'1-++-t;-t--;-t;---,._j t+++t--P.-J-+-,...J--:-lj -+++-t-+--+---+'-.,..t\--ttt;t-H-r--t--+---ttt,-t-t-t-t--+-----++++++-t-+-+------i 80.0 H-H++-1-t+-+-li -1 -H++-H-ti--+-+-H---+i +-H++-+-+--+--+-: -. -++-+-+--+----tt-tt-H--t-t--t-----ti+t+++-t-+---1 I-70.0 H+H-++-IH-l-+----M-H-f-+--l-+---t---+-+-++-t-i---t--+--l+T'1-t-+-t-+-+---++-t+-t-t-+-+--+---H-t-+++-t--+---+---1 I Cl ~ 60.0 H+++-H--t~i-+---+4+-l-+-f.-t-+-:-ll--,..-H+t-t-+--1-+---++++++-t-+--+---++-H+-IH--+--t--t++++-H--+-+--- ~ 0:: 50.0 ' : ! UJ z u:: 1--z UJ t) 0:: UJ a. 40.0 H++++-t-+--t.--....-f'l++-f-f-+-+ .... :-1-----;!--1-++-t-+-+-+---+-+-i-l+H-i--l-+--t---+---t+H-t-t-t-1-+---+t-t++-+-1-t-+------1 30.0 H-1-c+++-1--t-,--¥.-1:-,-+4+-1-+-f.-t-+-:-lf---H-:-++-H-+---t----+-.,--j-++++++-+-+--+----++-H+-IH--+---+--t+++++-11-t-+--- 20.0 H+H-++-IH-l-t--ti-1:--i-+H+-H--li-+-+-t-l---++ ;-+-++-+--+---t---+-+-i-++-+++--t-+--+--1---+----++-H-t-r-+--+---+--+++++-t-t--t-+-- 10.0 1+++++-+--1--1--'--+++++-l'-t--1----+---+-1-1-t-f-l--+--t--.-+++;+-++-1--1-+----11++1-+-+--+-+--r--+H++-t-+--1---1--- 0.0 µ..1.u....l.+-"-'-'--"---+-j.l..LI....'--".+--'-'-'----'---f-LI+-L....1.-'---'--+--l-'-'-"-'--'-L.....J-.J__-+'-.,_,_'--'-_,_-'---'---+LI.J.-'-'-'---'----'--- 100 10 0.1 O.Q1 0.001 0.0001 GRAIN SIZE IN MILLIMETERS PERFORMED IN GENERAL ACCORDANCE VVITH ASTM D 422 G12ohichhlcal & Environmental Sciences Consultatll!i FIGURE B-4 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1087270011 3/19 108727001_SIEVE W No B B-3@ 0.0-5.0.XISX GRAVEL SAND FINES Coarse Fine Coarse Medium Fine SILT CLAY U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 1-1/2' 1" 314" 1/2" 318" 4 16 30 50 100 200 100 rn.rr-.-c.-r.---,lt--""-.r-,,-;;--,---.---.---,,.,,-,--,-,--,--,--,---,-,-,r.-,-,-.--,---,---,-,.,...,-,--,--.---,---,-,-,,r-,--,--,---,---, ~ 90 H--+H--t--+-+--'--e----'l',---t,!H-+-t-e-t--t--;-+---++-++-+-+-+-+--+---'----l+P--l--<-+-+--+----1-H-+-+-+--+---+--++++-+-t-t-+---t---< 80 H+++-+-+'-+---ll,---+H-.!-++--1-+---;-+---++-l-+++-l--l-+-;---++,f--1-+-+--l--+--+-H-l-l-+-+--+----1+++-f-+-+-+-+---I ...... ' 70 H-H-H-+-l'-l----11'--f++-l+-+:--l---+--;..-'-f-'~::,,.._-..+H-++-+-+---1--+-'--+++'---H-+-+--+---+-+,H-f--+-+-+----l*l-+-+--+-+--+----, >-I ~, ~ ', ~ 00 1~ ~ ~ I ~ ~UJ 50H-tt++-+-+c-+---l,---J;H-!+-H-+-r-+---++-l+++-1--1-+'<-'----H,f--1-+-+--l--+--+-H-l-l-+-+--+----l+++-f-+-+-+-+---I ~ :: '\ ~ ~H-tt++-+-+c...+---1;---J;H-1+-H-+-r-+---++-l+++-l--l-+-i--''<J+,f--l-+-+--l--+--+-H-l-l-+-+--+----1+++-f-+-+-+-+---I ~ 1 1! • ~ 301+-iT++-+-ii.-+---lr---tit-+++-ii-<--+-r+--+-H-+-T-+-l-i-+-r--l-M~-+-+->-+---+-+-H-+-+-+--+---+r++->-+-+-+--+--~ ! 20 H-rr++-+-ii.-+---lr---tit-+++-tr--i-+-r+--+-H-t-ti-1-+-l-i-+-i---l-MH-; -t-t-+--+-.-+---+-H-+-r-+--+--+----ic++-H-+-+--+---+---< 10 H-tt++-+---li'-++:--H-----jjj 1:-t++-H-t-+-+-+--'-+H-t-l-f-+--+--+-+--++++-+-t-+-l-'-+---+-+,1-+-f-+-+-+----ll+t-t+-t-+---t---t---j 0 .......... ~~.-+~+---tU-'-~~-~+--+'-'~-~-+-+-......... ~-+-+->-+---+-~-+-+-+--+----1-'-~~+-+--+--~ 100 10 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS ■■■■■■11111 ■■ • B-4 0.0-5.0 31 26 5 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 G&otechnical & Environmantal Science, Consuttants 10B727001_SPLITSIEVE 8-4@ 0.0-5.0.Jdsx 32 SM FIGURE B-5 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 >-I (') ~ >-ca 0:: w z ii: >-z w 0 0:: w [l. 100 90 80 70 60 50 40 30 20 10 o GRAVEL SAND FINES Coarse Fine Coarse Medium Fine SILT CLAY U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 1-1/Z' 1" 314" 1/2" 318" 4 8 16 30 50 100 200 i 1! I\ i \ : i i 100 10 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS ■■■■■■11111 ■■ • B-6 0.0-5.0 41 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 38 SC FIGURE B--6 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA Geotochnical & Environmen1al Sciences Consultants 10872700113/19 108727001_SPLITSIEVE B-6@ 0.0-5.0.xlsx GRAVEL SAND FINES Coarse Fine Coarse Medium Fine SILT CLAY U.S. STANDARD SIEVE NUMBERS HYDROMETER 3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 16 100.0 I:' 30 50 100 200 90.0 j f\ : 1: I\ : 80.0 \, Ii 70.0 I-1 I I (!) I: iiJ 60.0 ~ I >-ll'.l 50.0 a:: : UJ : ' I: z u::: 40.0 I- j z UJ (.) 30.0 a:: UJ a.. 20.0 10.0 0.0 100 10 0,1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 NP -INDICATES NON-PLASTIC Gaotechnical & Environmental Sciences Consultants 108727001_SIEVE+HYDRO TP-5 @ 1.0-6.0.xls.ic FIGURE B-7 GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 J 3/19 I- I Cl ijj s: ~ co 0:: UJ z u: I-z UJ () 0:: UJ [l_ GRAVEL SAND FINES Coarse Fine Coarse Medium Fine SILT CLAY U.S. STANDARD SIEVE NUMBERS HYDROMETER 100.0 3" 2" 1-1/2" 1" 314" 318" 4 10 16 30 50 100 200 ~ 90.0 i I! 1: I! 80.0 i 70.0 ; ; 60.0 Ii I: I: 50.0 : 1: : 40.0 i j: 30.0 I! 20.0 10.0 0.0 100 10 0.1 0.01 0.001 0.00D1 GRAIN SIZE IN MILLIMETERS ■■-■■11111■■ PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 FIGURE B--8 G•otechnical & Environmental Sciences Consuttanls GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 J 3/19 108727001_S1EVE+HYDRO TP•7 @1.0-6.0.xl!.X f- I (!) ijj ~ ► OJ 0:: w z U:: f-z w u 0:: w c.. GRAVEL SAND FINES Coarse Fine Coarse Medium Fine SILT CLAY U.S. STANDARD SIEVE NUMBERS HYDROMETER 100.0 3" Z' 1-1/2" 1" 3/4" 3/8" 4 10 16 3D 50 100 200 -,-......., ~ ---J. 90.0 1: : : \ 1: : I: 80.0 ! ! i ~. 70.0 ; ; ; \ 60.0 I: I: \ i \, 1: : : 50.0 '\ ~ 40.0 • : 3D.O I: ' ' ) ......, ['-1 ~ r---........ 20.0 10.0 a.a 100 10 0.1 0.01 0.001 0.0001 GRAIN SIZE IN MILLIMETERS ■■■-■11111 ■■ • TP-12 1.0-7.0 39 19 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 FIGURE B-9 Geotechnical & Environmental Sciences Consultants GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1087270011 3/19 108727001_SIEVE+HYDRO TP-12@ 1.0-7.0.,Jsx ••• .. • 8-1 10.0-11.5 23 • 8-1 40.0-41.5 50 ♦ 8-2 0.0-5.0 28 0 8-4 0.0-5.0 31 □ 8-6 0.0-5.0 41 I:!,. TP-5 1.0-6.0 NP X TP-7 1.0-6.0 27 NP-INDICATES NON-PLASTIC 60 50 a: I 19 37 22 26 20 NP 25 V V CH or OH I 4 13 6 5 21 NP 2 / uses CLASSIFICATION (Fraclion Finer Than No. 40 Sieve) / ML MH CL-ML ML CL V SM MH CL-ML SM SC >< 40 w 0 ~ >-30 V V / !:: 0 i== en 20 <t ...I 0.. 10 0 / i/ - 0 IV CL or OL ~v V / / CL-r L ,o -X 10 20 30 n MH or OH / V 1 • MLorOL I I 40 50 60 70 80 90 100 110 120 LIQUID LIMIT, LL PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318 FIGURE 8-10 Geotechnical & Environmental Sciences Consultants ATTERBERG LIMITS TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 10872700113/19 10B727001_ATTERBERGx8.xlsx STRESS IN KIPS PER SQUARE FOOT ~ z 0 ui z <{ Q_ >< w ~ Cf) Cf) w z >:'. 0 :i: f- w _J Q_ ::;; <{ Cf) LL 0 f-z w 0 Cl'. w Q_ ;s z 0 ~ 0 :::i 0 Cf) z 0 0 0.1 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 I I I •--...... ~:::, .• ·~---,.... 1.0 I r--._ I ...______,II ....... ~ " ll " I I " -..., -... ...... ...... -... -... ..... _ Seating Cycle Loading Prior to Inundation Loading After Inundation Rebound Cycle PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435 Geo:leehnlc:al & EnvironmenuJ Sciences Consulblnts 10B727001_CONSOLIDATION B-2 @0.0-5.0.xtsx 10.0 100.0 I I I I ' I I I ' \ ' \ \ \ \ I\ \ ' \ -, \ --~--..._~ Sample Location Depth (ft) Soil Type B-2 10.0-10.8 CL-ML FIGURE B-11 CONSOLIDATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 ~ z 0 ui z <( 0.. X w ~ (J) (J) w z :,,:'. 0 :r I- w _J 0.. ::a;c <( (J) LL 0 I-z w 0 [l'. w 0.. ,::; z 0 ~ 0 :::i 0 (J) z 0 0 0.1 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 •-- I I -----.. I I I I --•-- --e-_._ ------ STRESS IN KIPS PER SQUARE FOOT 1.0 10.0 I I I I I I I tE I ~N ...___ -I ~ "' ---"- "" "\. '- ). " ' --\ ,.. -------'-~----~ Seating Cycle Loading Prior to Inundation Loading After Inundation Rebound Cycle Sample Location Depth (ft) Soil Type - I I B-3 15.0-16.4 ML I 100.0 I I I PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435 Geotectmlcal & Environmontal Sciences Consultants 108727001_CONSOUDATION 8-3 @15.0-16.4.Jdsx FIGURE B-12 CONSOLIDATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1 □8727001 I 3/19 5000 4000 •• LL (J) 3000 0... (J) (J) w ~ ~ ,I ~-/2 ,'/ ' D:'. I- (J) D:'. 2000 <( ~ '/ ~ ,I w I (J) ~, ~ 1000 ~ V ~ ~ .,_·, A ~ ~ 0 ,~r 0 1000 2000 3000 4000 5000 NORMAL STRESS (PSF) Description Silty SAND Silty SAND B-1 -x-- PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Geotechnical & Environmental Sclenc0$ Conwhants 108727001_DIRECT SHEAR B-1 @ 15.0-16.5.xlsx Friction Angle (degrees) Soil Type SM SM FIGURE B-13 DIRECT SHEAR TEST RES UL TS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 LL Cf) a. Cf) Cf) w o:'. f- Cf) o:'. <( w I Cf) Description Sandy SILT 9000 8000 7000 6000 5000 4000 3000 2000 1000 / V 0 0 I ~ -~ .... ,, ~ vr:; /- ' ~ /t,,,, V" I/ ,, .,,,. ., / ~ " - / ~ ...... . ./ , / ~ ~ ~ -I ~ ., 1000 2000 3000 4000 5000 6000 7000 8000 9000 NORMAL STRESS (PSF) --··-·· --•·· . -. ... . . Friction Angle (degrees) B-1 : 25.0-25.9 I ) '. : 25.0-25.9 i Soil Type ML ML PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Geotechnlcal & Environmental Sclen<eS Consultants 108727001_DIRECT SHEAR B-1 @ 25.D-25.9.xlsx FIGURE 8-14 DIRECT SHEAR TEST RES UL TS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 13/19 5000 4000 LL (f) 3000 0... (f) (f) w /4' • V/' /2 V 0:: f- (f) 0:: 2000 <( w I (f) ~ , ,, / / ~~ ., ., ,, 1000 -~ ~1~ V; jl,> r / / ,, , .... 0 0 1000 2000 3000 4000 5000 NORMAL STRESS (PSF) Description .-,---, ----· . .. . -. . Friction Angle (degrees) Soil Type Clayey SAND B-5 Peak PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Geotechnlcal & Envlronmentol Sciences Consultants 108727001_DIRECT SHEAR B-5@ 5.0-6.5.xlsx 400 30 SC SC FIGURE 8-15 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 13/19 5000 4000 # ¥ -~ LL (I) 3000 0... (I) (I) / /" w ~ 0:: f- (I) 0:: 2000 <( w I (I) ~ /' .A , - 1000 / II" , ~I 0 v~ 0 1000 2000 3000 4000 5000 NORMAL STRESS (PSF) Description .-,---, ----· . .. . -. . Friction Angle (degrees) Soil Type Silty SANDSTONE B-7 5.0-5.4 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Gootechnical & Environmental Sclencos Conwltanls 108727001_DIRECT SHEAR B-7 @5.0-5.4.xlsx Peak 41 Formation FIGURE,8-16 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 13/19 6000 5000 4000 LL Cl) 0.. ~v / / /. Cl) Cl) w 3000 0::: I- Cl) 0::: <( w I Cl) 2000 / / / /. v1'/ /, V ./ ,,.,.,,,, ,,, ~ V / .A 1000 / , / .. , ,,,,. ,,,. V / / 0 0 1000 2000 3000 4000 5000 6000 NORMAL STRESS (PSF) Description .-,---, -· --· . .,. . ,., . . Friction Angle (degrees) Soil Type Silty SANDSTONE B-8 5.0-5.8 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Geotechnical & Environmental Seiencoo Consultants 108727001_DIRECT SHEAR B--8@ 5.0-5.8.xlsx Peak Ultimate 830 550 30 28 Formation Formation FIGURE 8-17 DIRECT SHEAR TEST RES UL TS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 5000 4000 LL ~ 3000 (/) (/) w / !./, V / ~ 0::: f- (/J ~ 2000 w I (/) V' r / ,,,, / ~ / / _,,,, 1000 ~ v/ ~ ~ ~, ,( ./r'/ ~/I 0 0 1000 2000 3000 4000 5000 NORMAL STRESS (PSF) Description .-.---· ----· . .. . ... . . Friction Angle (degrees) Soil Type Remolded @ 90% TP-6 1.0-6.0 Relative Compaction +-_ X _ PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Geotechnical & Environmental Sc~ C<>nsullanls 108727001_DIRECT SHEAR TP-6@ 1.0-6.0.xlsx -FIGURE B-18 DIRECT SHEAR TEST RES UL TS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 IWUrlllll■I B-6 0.0-5.0 9.5 PERFORMED IN GENERAL ACCORDANCE WITH Geotechnical & Environmental Sciences Consultants 10B727001_EX.PANSION • SOX4,xlu COMPACTED DRY DENSITY 112.2 l■I 19.5 □ UBC STANDARD 18-2 VOLUMETRIC SWELL in 0.024 0 ASTM D 4829 24 LO\IV FIGURE B-19 EXPANSION INDEX TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1 □8727001 I 3/19 140.0 '~ \1\\1 I I i \ \ \ I Zero Air Void Line I (Specific Gravity = 2. 70) 130.0 ' \ \ \\ I \I \ 120.0 LL 0 0... >-!:: 110.0 CJ) z w 0 >-0::: 0 100.0 90.0 80.0 0 5 -.·.· . PERFORMED IN GENERAL ACCORDANCE WITH Geolechnlcal & Environmental Sciences Consultants 106727001_MI\XDENSITY TP-6@ 1.0-6.0.xlsx \~ ' I\\ I Zero Air Void Line \ \ \ I (Specific Gravity = 2.60) I I\\ I\ I I \ I <\ ,1 I \ i\ '\ 'i\ f\ I Zero Air Void Line ~ \. \ I (Specific Gravity = 2.50) - '\ I ~~ \ ~~I~ / I\ ~ [\_ '\. '\, ~ \ "' '\ 'j\. '\ \ ~~ I"\ 0, '"' "-"'"' I"'-"'-'- ~ ~ N~ ~ 10 15 20 25 30 35 40 MOISTURE CONTENT (%) Soil Description Maximum Dry Density (pcf) Optimum Moisture Content (percent) 15.5 0 ASTM D 1557 □ ASTM D 698 METHOD 0 A □ B □ C FIGURE B-20 PROCTOR DENSITY TEST RES UL TS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA SAMPLE LOCATION B-6 TP-2 TP-9 SAMPLE DEPTH(ft) 0.0-5.0 0.0-3.0 1.0-5.0 ■ 8.9 9.0 8.3 RESISTIVITY 1 (ohm-cm) 1,000 800 700 SULFATE CONTENT 2 40 10 10 0.004 CHLORIDE CONTENT 3 • (ppm) 30 1000 1035 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417 3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422 Geotectmical & EnYiroMHl'nlDI Scienctt Consultants 1oan1001_GORROSIVJTYx3.xl~ FIGURE 8-21 CORROSIVITY TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 SAMPLE LOCATION SAMPLE DEPTH (ft) PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2844/CT 301 SOIL TYPE Clayey SAND (SC) Silty SAND (SM) R-VALUE 35 39 , FIGURE 8-22 Geotechnical & Environmental Sciences Consultants 108727001_RVTABLE1 .xlsx R-VALUE TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 1 osn7001 I 311 e Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 8:54 2.50 9:19 9:19 3.36 9:44 9:44 3.53 10:14 10:14 3.71 10:44 10:44 3.21 11 :14 11 :14 3.34 11 :44 11 :44 3.46 12:14 12:14 3.63 12:44 12:44 3.80 1 :14 1 :14 3.94 1:44 1:44 3.11 2:14 2:14 3.25 2:44 8:53 3.00 9:18 9:18 3.23 9:43 9:43 3.46 10:13 10:13 3.67 10:43 10:43 2.94 11 :13 11 :13 3.10 11 :43 11 :43 3.25 12:13 12:13 3.46 12:43 12:43 3.67 1 :13 1 :13 3.81 1:43 1:43 3.95 2:13 2:13 4.06 2:43 Notes: !1 = initial time when filling or refilling is completed d 1 = initial depth to water in hole at 11 t2 = final time when incremental water level reading is taken d2 = final depth to water in hole at t2 3.36 3.53 3.71 3.89 3.34 3.46 3.63 3.80 3.94 4.08 3.25 3.38 3.23 3.46 3.67 3.88 3.10 3.25 3.46 3.67 3.81 3.95 4.06 4.16 Ill= change in time between initial and final water level readings IIH = change in depth to water or change in height of water column (Le., d2 -d 1) H0 = Initial height of water column in/hr= inches per hour 25 25 30 30 30 30 30 30 30 30 30 30 25 25 30 30 30 30 30 30 30 30 30 30 0.86 2.42 2.74 1.42 0.17 12.25 2.23 0.34 0.18 13.89 2.05 0.32 0.18 13.89 1.87 0.35 0.13 19.23 2.40 0.20 0.12 20.83 2.27 0.20 0.17 14.71 2.13 0.30 0.17 14.71 1.96 0.32 0.14 17.86 1.80 0.28 0.14 17.86 1.66 0.31 0.14 17.86 2.49 0.21 0.13 19.23 2.36 0.21 0.23 9.06 2.22 0.46 0.23 9.06 1.99 0.51 0.21 11.90 1.77 0.43 0.21 11.90 1.56 0.49 0.16 15.63 2.31 0.26 0.15 16.67 2.16 0.26 0.21 11.90 1.98 0.39 0.21 11.90 1.77 0.43 0.14 17.86 1.59 0.32 0.14 17.86 1.45 0.35 0.11 22.73 1.33 0.29 0.10 25.00 1.22 0.29 Percolation Rate to Infiltration Rate Conversion 1 b.H x 60 x r It = --,-----,-M(r + 2Havg) 11 = tested infiltration rate, inches/hour fi.H:;;;: change in head over the time interval, inches lu;:;; time interval, minutes r = effective radius of test hole H""'il = average head over the time interval, inches 1 Based on the "Porche! Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. Ninyo Moore j 830 Showroom Place, Chula Vista, California J 108727001 I March 6, 2019 1 of 4 ~;~~.LJ; :2.3ra1 ;9;,iJS 9:05 2.76 9:30 9:30 2.90 10:00 10:00 3.10 10:30 10:30 3.27 11 :DO 11 :00 3.40 11 :30 11 :30 3.49 12:00 12:00 3.57 12:30 12:30 3.64 1:00 1:00 3.68 1:30 1:30 3.70 2:00 2:00 3.72 2:30 8:37 2.35 9:02 9:02 2.74 9:27 9:27 2.90 9:57 9:57 3.10 10:27 10:27 3.24 10:57 10:57 3.38 11 :27 11 :27 3.48 11 :57 11 :57 3.57 12:27 12:27 3.64 12:57 12:57 3.67 1:27 1:27 3.69 1 :57 1:57 3.72 2:27 Notes: t 1 = initial time when filling or refilling is completed d 1 = initial depth to water in hole att1 t2 = final time 'Mlen incremental '-Nater level reading is taken d2 = final depth to water in hole att2 ~:,.7~;.; 2.90 3.10 3.27 3.40 3.49 3.57 3.64 3.68 3.70 3.72 3.74 2.74 2.90 3.10 3.24 3.38 3.48 3.57 3.64 3.67 3.69 3.72 3.74 Ill= change in time between initial and final water level readings IIH = change in depth to water or change in height of water column (i.e., d2 -d 1) H0 = Initial height of water column in/hr= inches per hour ;:i;} 25 30 30 30 30 30 30 30 30 30 30 25 25 30 30 30 30 30 30 30 30 30 30 (~,.4~;r, ~-·~~.,~~-::£..~~? :~· ... ~~::'. 0.14 14.88 2.59 0.24 0.20 12.50 2.42 0.31 0.17 14.71 2.24 0.28 0.13 19.23 2.09 0.23 0.09 27.78 1.98 0.17 0.08 31.25 1.89 0.16 0.07 35.71 1.82 0.14 0.04 62.50 1.76 0.08 0.02 125.00 1.73 0.04 0.02 125.00 1.71 0.04 0.02 125.00 1.69 0.04 0.39 5.34 2.88 0.62 0.16 13.02 2.60 0.28 0.20 12.50 2.42 0.31 0.14 17.86 2.25 0.23 0.14 17.86 2.11 0.25 0.10 25.00 1.99 0.19 0.09 27.78 1.90 0.17 0.07 35.71 1.82 0.14 0.03 83.33 1.77 0.06 0.02 125.00 1.74 0.04 0.03 83.33 1.72 0.06 0.02 125.00 1.69 0.04 Percolation Rate to Infiltration Rate Conversion 1 llH X 60 X r It = --,-----,-llt(r + 2Hav9 ) 1, = tested infiltration rate, inches/hour .6.H = change in head over the time interval, indles l1t. = time interval, minutes r = effective radius of test hole Hil',9 = average head over the time interval, inches 1 Based on the "Porche! Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. Ninyo Moore 1830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 2 of 4 .~i'.f.7 ;:~.: t!Ji ff·•-"'.";:--:-~ 9:22 3.12 9:47 9:47 3.22 10:17 10:17 3.31 10:47 10:47 3.40 11 :17 11 :17 3.49 11 :47 11 :47 3.56 12:17 12:17 3.63 12:47 12:47 3.72 1 :17 1 :17 3.80 1 :47 1:47 3.84 2:17 2:17 3.88 2:47 8:58 3.59 9:23 9:23 3.59 9:52 9:52 3.61 10:22 10:22 3.63 10:52 10:52 3.66 11:22 11:22 3.69 11 :52 11 :52 3.71 12:22 12:22 3.73 12:52 12:52 3.77 1:22 1:22 3.81 1:52 1:52 3.83 2:22 2:22 3.84 2:52 Notes: t 1 = initial time when filling or refilling is completed d1 = initial depth to water in hole att1 t2 = final time v-.tien incremental water level reading is taken d2 = final depth to water in hole at t2 ·''.:,d:"'! .;.;:,!.:fu 3.22 3.31 3.38 3.45 3.53 3.59 3.66 3.75 3.82 3.85 3.89 3.59 3.61 3.63 3.66 3.69 3.71 3.73 3.77 3.81 3.83 3.84 3.86 lit= change in time between initial and final water level readings llH = change in depth to water or change in height of water column (i.e., d2 • d1) H0 = Initial height of water column in/hr= inches per hour :2:~:.~ 25 30 30 30 30 30 30 30 30 30 30 25 25 30 30 30 30 30 30 30 30 30 30 ,!'':..!''o:"'• "'·!'',:.! """''' ~.::r: fi,tJ~ ;;,:! .. '!.J . ..::: 'i'!_.:"!:t.ll,! 0.10 20.83 2.25 0.20 0.09 27.78 2.16 0.16 0.07 35.71 2.08 0.12 0.05 50.00 2.00 0.09 0.04 62.50 1.91 0.08 0.03 83.33 1.85 0.06 0.03 83.33 1.78 0.06 0.03 83.33 1.69 0.06 0.02 125.00 1.61 0.05 0.01 250.00 1.58 0.02 0.01 250.00 1.54 0.02 0.00 #DIV/0! 1.91 <0.01 0.02 104.17 1.90 0.05 0.02 125.00 1.88 0.04 0.03 83.33 1.86 0.06 0.03 83.33 1.83 0.06 0.02 125.00 1.80 0.04 0.02 125.00 1.78 0.04 0.04 62.50 1.75 0.08 0.04 62.50 1.71 0.09 0.02 125.00 1.68 0.04 0.01 250.00 1.67 0.02 0.02 125.00 1.65 0.04 Percolation Rate to Infiltration Rate Conversion 1 11H X 60 X r ft=--,----~ 11t(r + 2Havg) I,= tested infiltration rate, inches/hour D.H = change in head over the time interval, inches 6J. = time interval, minutes r = effective radius of test hole H.,9 = average head over the time interval, inches 1 Based on the "Porchet Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. Ninyo Moore I 830 Showroom Place, Chula Vista, California 1108727001 I March 6, 2019 3 of 4 9:14 2.49 9:39 9:39 3.01 10:03 10:03 3.42 10:33 10:33 3.82 11 :03 11 :03 3.32 11 :33 11 :33 3.64 12:03 12:03 3.95 12:33 12:33 4.25 1 :03 1:03 2.39 1:33 1:33 2.89 2:03 2:03 3.39 2:33 2:33 3.77 3:03 9:12 2.74 9:37 9:37 3.85 10:02 10:02 3.95 10:32 10:32 4.06 11 :02 11 :02 3.02 11 :32 11 :32 3.23 12:02 12:02 3.44 12:32 12:32 3.59 1:02 1:02 3.73 1:32 1:32 3.84 2:02 2:02 3.96 2:32 2:32 4.08 3:02 Notes: 11 = initial time when filling or refilling is completed d 1 = inilial depth to water in hole at t1 t2 = final time .......tlen incremental water level reading is taken d 2 = final depth to water in hole at t2 3.01 3.42 3.82 4.21 3.64 3.95 4.21 4.43 2.75 3.20 3.64 3.97 3.85 3.95 4.06 4.17 3.23 3.44 3.59 3.73 3.84 3.96 4.08 4.19 Lit= change in time between initial and final water level readings LIH = change in depth to water or change in height of water column (i.e., d2 -d 1) H0 = Initial height of water column in/hr= inches per hour 25 25 30 30 30 30 30 30 30 30 30 30 25 25 30 30 30 30 30 30 30 30 30 30 0.52 4.01 2.67 0.88 0.41 5.08 2.21 0.83 0.40 6.25 1.80 0.81 0.39 6.41 1.41 0.99 0.32 7.81 1.94 0.61 0.31 8.06 1.63 0.69 0.26 9.62 1.34 0.69 0.18 13.89 1.08 0.58 0.36 6.94 2.85 0.48 0.31 8.06 2.38 0.49 0.25 10.00 1.91 0.48 0.20 12.50 1.55 0.47 1.11 1.88 2.29 2.17 0.10 20.83 1.68 0.26 0.11 22.73 1.58 0.25 0.11 22.73 1.47 0.27 0.21 11.90 2.46 0.32 0.21 11.90 2.25 0.35 0.15 16.67 2.07 0.27 0.14 17.86 1.92 0.27 0.11 22.73 1.80 0.22 0.12 20.83 1.68 0.26 0.12 20.83 1.56 0.28 0.11 22.73 1.45 0.27 Percolation Rate to Infiltration Rate Conversion 1 !iH x 60 x r it=--,-----!it(r + 2Havg) 1, = tested infiltration rate, inches/hour Di!-! ::;; change in head over the time interval, inches /JJ. =time interval, minutes r = effective radius of test hole Hf,/9 = average head over the time interval, inches 1 Based on the "Porche! Method" as presented in: Riverside County Flood Control, 2011, Design Handbcok for Low Impact Development Best Management Practices: dated September. Nin yo Moore j 830 Showroom Place, Chula Vista, California 1108727001 I March 6, 2019 4 of 4 Appendix C: Geotechnical and Groundwater Investigation Requirements 1 Worksheet C.4-1: Cate orization of Infiltration Feasibili Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: ✓ As presented in the project geotechnical evaluation report (Ninyo & Moore, 2019), in-situ infiltration rates at the site were measured between 0.02 inches per hour and 0.47 inches per hour. Any infiltration system utilizing these results should apply the appropriate factor of safety to determine applicable site infiltration rates prior to design. For this project, a Suitability Assessment Safety Factor of 2.25 should be used. The design safety factor shall be determined by the design engineer. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. 2 Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C2. Provide basis: ✓ As discussed in the project geotechnical evaluation report (Ninyo & Moore, 2019), laboratory testing of the subsurface soils indicated the presence the presence of soils with high expansion potential. Infiltration of storm water into expansive soils is not recommended. Additionally, fill slopes up to 90 feet in height are present on the west, east, and north portions of the site. Infiltration within 50 feet of the top of a slope is anticipated to induce seepage on the slope face and increase the risk of slope failures in these areas. As stated in the project geotechnical evaluation report, Ninyo & Moore recommends that the bottom and sides of stormwater control devices be lined with an impermeable liner. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/data source applicability. BMP Design Manual-Appendices December 2015 C-11 ~I~ -.-'HJhi -CITY OF CHUIAVISTA Appendix C: Geotechnical and Groundwater Investigation Requirements· 3 Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, stonn water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: ✓ As discussed in the project geotechnical evaluation report (Ninyo & Moore, 2019), groundwater was not encountered during our subsurface exploration and is anticipated at depths in excess of 60 feet. Based on the measured infiltration rates and the anticipated groundwater depth, infiltration at the site is not likely to have a significant impact on groundwater contamination. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. 4 Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: ✓ Based on the measured infiltration rates and the distance between the proposed BMPs and the nearest surface water (Salt Creek), infiltration at the site is not likely to have a significant impact to the water balance of the creek or increased discharge of contaminated groundwater to surface waters. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. Part 1 Result* If all answers to rows 1 -4 are ''Yes" a full infiltration design is potentially feasible. The feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to some extent but would not generally be feasible or desirable to achieve a "full infiltration" design. Proceed to Part 2 Proceed to Part 2 "'To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/ or studies may be required by City Engineer to substantiate findings. BMP Design Manual-Appendices December 2015 C-12 OlYOF CHUlAVISTA Appendix C: Geotechnical and Groundwater Investigation Requirements 5 Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. Provide basis: ✓ As presented in the project geotechnical evaluation report (Ninyo & Moore, 2019), in-situ infiltration rates at the site were measured between 0.02 inches per hour and 0.47 inches per hour. Any infiltration system utilizing these results should apply the appropriate factor of safety to determine applicable site infiltration rates prior to design. For this project, a Suitability Assessment Safety Factor of 2.25 should be used. The design safety factor shall be determined by the design engineer. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. 6 Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. Provide basis: ✓ As discussed in the project geotechnical evaluation report (Ninyo & Moore, 2019), laboratory testing of the subsurface soils indicated the presence the presence of soils with high expansion potential. Infiltration of storm water into expansive soils is not recommended. Additionally, fill slopes up to 90 feet in height are present on the west, east, and north portions of the site. Infiltration within 50 feet of the top of a slope is anticipated to induce seepage on the slope face and increase the risk of slope failures in these areas. As stated in the project geotechnical evaluation report, Ninyo & Moore recommends that the bottom and sides of stormwater control devices be lined with an impermeable liner. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. BMP Design Manual-Appendices December 2015 C-13 OTYOF CHUlAVISTA Appendix C: Geotechnical and Groundwater Investigation Requirements 7 Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: ✓ As discussed in the project geotechnical evaluation report (Ninyo & Moore, 2019), groundwater was not encountered during our subsurface exploration and is anticipated at depths in excess of 60 feet. Based on the measured infiltration rates and the anticipated groundwater depth, infiltration at the site is not likely to have a significant impact on groundwater contamination. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. 8 Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: ✓ Based on the measured infiltration rates and the distance between the proposed BMPs and the nearest surface water (Salt Creek), infiltration at the site is not likely to have a significant impact to the water balance of the creek or increased discharge of contaminated groundwater to surface waters. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. Part2 Result"' If all answers from row 1-4 are yes then partial infiltration design is potentially feasible. The feasibility screening category is Partial Infiltration. If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration. No infiltration "'To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/ or studies may be required by Agency /Jurisdictions to substantiate findings BMP Design Manual-Appendices December 2015 C-14 ~~le-r-..c ~ CTIYOF CHUIAVISTA Appendix.D: Approved Infiltration Rate Assessment Methods A Suitability Assessment Soil assessment methods Predominant soil texture Site soil variability Depth to groundwater impervious layer 0.25 0.25 0.25 I 0.25 Suitability Assessment Safety Factor, SA= Ip B Design Level of pretreatment/ e:i..'Pected sediment loads Redundancy/ resiliency Compaction during construction Design Safety Factor, SB = Ip Combined Safety Factor, S,01a1= SA x SB Observed Infiltration Rate, inch/hr, K,bserved (corrected for test-specific bias) Design Infiltration Rate, in/hr, Kc1esign = Kobserved / Stotal 0.5 0.25 0.25 Briefly describe infiltration test and provide reference to test forms: 2 0.50 3 0.75 3 0.75 0.25 2.25 Two infiltration tests were performed at each of the four proposed basin areas for a total of eight tests Tests were performed in boreholes drilled to depths of 5 feet below existing grades. In-situ infiltration rates at the site were measured between 0.02 and 0.47 inches per hour. Test locations and infiltration test results are presented in the project geotechnical evaluation report (Ninyo & Moore, 2019). BMP Design Manual-Appendices December 2015 D-17 ~Vt--_.-'li.ll OJYOF CHUlAVISTA Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 Ninyo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 Ninyo & Moore I WRM Acadia Medical Facility, Chula Vista, CA Section A-A' Circular (Static) \A-A' Circular.gsd 1062 No. FS Soil ----,----------M-oi-st-Wt--S-at-Wt--c--P-h-i--ru--Pc-o-ns_t_P_ie_z_Su-rt--S-oil-~------~1O62 1 1.621 No. 2 1.623 1 Olay Fonnatioo 3 1.623 2 Fill 4 1.627 5 1.630 950 6 1.631 7 1.631 8 1.634 9 1.635 10 1.637 837 -------···· 725 ....... · .............. . GEOSTASE. Slope Stability Analysis 112 225 (pcfj (pcfj (psfj (deg) (ratio) (psfj No. Options 120.0 130.0 300.0 28.0 0.000 0.0 0 120.0 130.0 200.0 30.0 0.000 0.0 337 450 562 GEOSTASE FS = 1.621 Spencer Method GEOSTASE® by GREGORY GEOTECHNCAL SOFTWARE 675 950 .. 837 725 787 PLATE E-1 *** GEOSTASE(R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Eishcp, Simplified Janbu, or General Equilibrium (GE) Cpticns. (Spencer, Morgenstern-Price, USACE, and Lcwe & Karafiath) Including P!er/Pile, Planar Reinf, Nail, T!eback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudo-Static & Simplified Newmark Seismic Ar:alyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular.gad Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Circular (Static) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X -1 (ft) 0.000 88.000 135.000 290.000 450.000 555.000 570.000 590.000 610.000 660.000 855.000 135.000 135.100 149.900 150.000 465.000 636.000 855.000 855 .100 User Specified X-Origin User Specified Y-Origin y -1 (ft) 620.000 620.000 642.000 714.000 713. 000 715.000 717.000 717.000 717.000 713. 000 713.000 642.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 88.000 135.000 290.000 450.000 555.000 570.000 590.000 610.000 660.000 855.000 900.000 135.100 149.900 150.000 465.000 636.000 855.000 855.100 900.000 0.000(ft) 500.000(ft) y -2 (ft) 620.000 642.000 714.000 713.000 715.000 71 7. 000 717.000 717.000 713.000 713.000 713.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 712.000 Soil Type Below Bnd 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay C 2 Fill 0 Formation 120.0 130.0 300.00 28.00 0.000 0.0 120. 0 13C.C 200.00 3C.O0 0.000 o.c TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 0 0 5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the Start Range Along The Specified Surface Between X and X 88.00(ft) 135.00(ft) Each Surface Enters within a Range Between and X X 290.00(ft) 900.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y 500.00(ft) Specified Maximum Radius= 5000.000(ft) 25.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient= 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 45.00 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 836 Number of Trial Surfaces With Valid FS = 4164 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 16.7 % Statistical Data On All Valid FS Values: FSMax= 10.713 FSMin 1.621 FSAve= 3.981 Standard Deviation= 2.001 Coefficient of Variation 50.27 % Critical Surface is Sequence Number 297 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FRQ~ A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 327. 479219(ft) 79.780997(ft) ; Y 948.776488(ft); and Radius Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 91. 197 621. 4 96 2 116.130 623.321 3 140.851 627.042 4 165.217 632.638 5 189.085 640.077 6 212.315 649.315 7 234.774 660.298 8 256.329 672. 962 9 276.855 687.234 10 296.232 703.030 11 307.652 713.890 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=l.0) Lambda 1 15.0000 1.755823 1. 604422 0.268 2 19.9500 1.675343 1. 615690 0.363 3 23.1677 1.595856 1. 623454 0.428 4 22.1501 1. 624274 1. 620956 0. 4 07 5 22.2595 1.621384 1.621222 0.409 6 22. 2651 1. 621235 1.621236 0.409 Factor Of Safety For The Preceding Specified Surface Theta (fx 1.0) 22.27 Deg Lambda 0.409 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Delta FS 0.1514010E+00 0. 5965232E-01 0. 27 597 94E-01 0. 3318397E-02 0.1620673E-03 0.9935420E-06 1. 621 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) at Side of Last Slice= 0.000(ft) Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth 0.000(ft) 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4 4 45 46 47 + ** Table 1 -Line of Tl-:r1-:st (if api=:licable) and Slice Force Data * ** X Coord. 96.18 101. 1 7 106.16 111.14 116.13 120.85 125.56 130.28 135.00 135.10 137. 98 140.85 145.38 14 9. 90 150.00 155.07 160.14 165.22 169.99 174.76 1 7 9. 54 18 4 . 31 189.08 194.11 199.14 2 04 . 1 7 2 09. 19 212.32 217.93 223.54 229.16 234.77 240.16 245.55 250. 94 256.33 2 61 . 4 6 266.59 271.72 276.85 281.24 285.62 290.00 293.12 296.23 301. 94 307. 65 y Coo rd. 622. 70 623.80 624.86 625.90 626. 91 628.09 629.26 630.43 631.60 631. 62 632. 34 633. 04 63 4 . 4 0 635.76 635. 7 9 637. 30 638.82 64 0. 34 642.03 643.72 64 5. 41 647.10 648.80 650.87 652. 94 655.02 657.10 658.38 661.02 663.67 666.33 669.00 671. 92 67 4. 85 677.81 680.80 684.06 687.29 690.38 693.29 696. 02 698.66 701.26 703.09 704.77 711. 01 713.89 h/H 0.426 C.400 0.384 0.373 0.365 0.358 0.352 0.347 0.343 0.343 0.341 0.340 0.337 0.335 0.335 0.333 0.331 0.329 0.328 0.326 0.325 0.324 0.322 0.321 0.320 0.319 0.318 0.317 0.315 0.313 0.311 0.310 0.309 0.308 0. 308 0.309 0.311 0.312 0.308 0. 2 93 0.273 0.243 0.206 0 .192 0.159 0. 4 67 0.000 Side Force (lbs) 1266.36 2885.50 4857.41 7182.09 9859.54 12024.63 14356.20 16854.25 19518.78 19577.06 21284.78 23053.67 24987.98 26981. 48 27026.21 29333.04 31714 .27 34169.89 35344.61 36526.05 37714. 22 38909.10 40110. 70 40048.45 39973.03 39884.43 39782. 65 39785.09 38292.68 36811.12 35340.40 33880.52 31184.47 28570.63 26038.98 23589.54 20283.75 17134.97 14169.86 11437.56 8609.65 6047.23 3741. 85 2348.92 1271.03 -166.16 0.07 fx 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1. 000 1. 000 1. 000 1. 000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.948 0.830 0. 711 0.610 0.509 0. 4 08 0.336 0. 264 0.132 0.000 Force Angle (Deg) 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22 .27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 21.22 18. 77 16.24 14.03 11.77 9. 4 8 7.83 6 .16 3.09 0.00 Vert. Shear Force(lbs) 479.8 1093.3 1840.4 2721.2 3735.7 4556.1 5439.5 6386.0 7395.5 7417.6 8064.7 87 3 4 . 9 94 67. 8 10223.1 10240.0 11114.l 12016.3 12946.7 13391.8 13839.5 14289.7 14742.4 15197. 7 15174.1 15145. 5 15111.9 15073.4 15074.3 14508.8 13947.5 13390.2 12837.1 11815. 6 10825.2 9866. 0 8937.9 7685.4 62 02. 6 4558.8 319 8. 4 2086.7 1233.6 616.1 319.9 136.5 -9.0 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 -Geometry Data on the 47 Slices**,_ Width Height x-cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4. 99 0.98 93.69 621.68 622.66 4 .19 25.08 5.00 2 4.99 2.95 98.68 622.04 625.00 4 .19 25.08 5.00 3 4.99 4. 92 103.66 622.41 627.33 4 .19 25.08 5.00 4 4.99 6.89 108. 65 622.77 62 9. 67 4.19 25.08 5.00 5 4. 99 8. 86 113. 64 623.14 632.00 4.19 25.08 5.00 6 4.72 10.60 118.49 623.68 634.27 8.56 25.08 4.77 7 4.72 12.09 123.21 624.39 636. 4 8 8.56 25.08 4. 77 8 4.72 13.59 127.92 625.lC 63e.69 8.56 25.C8 4. 77 9 4.72 15.09 132.64 625.81 640.90 8.56 25.08 4. 77 10 0 .10 15. 85 135.C5 626.17 642.02 8.56 24.92 0.10 11 2.88 16.32 136.54 626. 39 642.71 8.56 24.92 2. 91 12 2.88 17.22 139.41 626.83 644.05 8.56 24.92 2. 91 13 4.52 18. 21 143.11 627.56 645.77 12. 94 24.92 4. 64 14 4.52 19.27 14 7 . 64 628.6C 647.87 12. 94 24.92 4. 64 15 C.10 19.81 149.95 62 9. 13 648.94 12. 94 24.92 O.lC 16 5. 07 20. 4 2 152.54 62 9. 7 3 650.15 12. 94 24.92 5.20 17 5.07 21.61 157. 61 630.89 652.50 12. 94 24. 92 5.20 18 5.07 22.80 162.68 632.06 654.86 12. 94 24.92 5.20 19 4.77 23. 7 6 167.60 633.38 657.14 17. 31 24. 92 5.00 20 4.77 2 4. 4 9 172.38 634.87 659.36 17.31 24. 92 5.00 21 4.77 25.22 177.15 636.36 661. 58 17.31 24.92 5.00 22 4.77 25.95 181.92 637.85 663.80 17.31 24. 92 5.00 23 4.77 26.68 186. 70 639.33 666.01 17. 31 24. 92 5.00 24 5.03 27.21 191. 60 641. 08 668.29 21.69 24.92 5. 41 25 5.03 27.55 196. 63 643.08 670.63 21.69 24.92 5. 41 26 5.03 27.89 201.65 645.08 67 2. 96 21.69 24.92 5. 41 27 5.03 28.22 206.68 647.07 675.30 21.69 24.92 5. 41 28 3.12 28. 50 210. 75 648.69 677.19 21.69 24.92 3.36 29 5.61 28.53 215.12 650.69 679.22 26.06 24. 92 6.25 30 5.61 28.39 220.74 653.43 681.83 26.06 24.92 6.25 31 5.61 28.26 226.35 656.18 684.43 26.06 24.92 6.25 32 5.61 28 .12 231.97 658.92 687.04 26.06 24.92 6.25 33 5.39 27.72 237.47 661. 88 689.60 30.44 24. 92 6.25 34 5.39 27.05 242.86 665.05 692.10 30.44 24.92 6.25 35 5.39 26. 39 248.25 668.21 694.60 30.44 24. 92 6.25 36 5.39 25. 73 253.63 671. 38 697.11 30.44 24. 92 6.25 37 5.13 24.80 258.89 67 4. 7 5 699.55 34. 81 24. 92 6.25 38 5.13 23.62 264.03 67 8. 31 7 01. 93 34.81 24. 92 6.25 39 5.13 22.44 269.16 681. 88 704.32 34. 81 24.92 6.25 40 5.13 21. 25 274.29 685.45 706.70 34.81 24. 92 6.25 41 4.38 19. 8 9 279.05 689.02 708.91 39 .19 24. 92 5.65 42 4.38 18.36 283. 4 3 692.59 710.95 39.19 24.92 5.65 43 4.38 16.82 287. 81 696.16 712.98 39.19 24.92 5.65 44 3.12 14.77 291. 56 699.22 713.99 39.19 -0.36 4. 02 45 3.12 12.21 2 94. 67 7 01. 7 6 713. 97 39 .19 -0.36 4. 02 46 5. 71 8.20 2 99. 0 9 7 05. 7 4 713.94 43.56 -0.36 7.88 47 5.71 2.73 304.80 711.17 713.91 43.56 -0.36 7.88 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. ( ft) (ft) 1 91.196639 621.496299 2 96.183306 621.861204 3 101.169973 622.226108 4 106.156639 622.591013 5 111.143306 622.955917 6 116.129973 623.320822 7 120.847480 624.030933 8 125.564986 624.741044 9 130.282493 625. 4 51155 10 135.000000 626.161266 11 135.100000 626.176319 12 137. 975734 626.609194 13 140.851468 627.042069 14 145.375734 628.081202 15 149.900000 629.120335 16 150.000000 629.143303 17 155.072350 630. 308320 18 160.144700 631. 473337 19 165. 217050 632.638354 20 169.990584 634 .126096 21 174.764118 635.613838 22 179.537651 637.101579 23 184.311185 638.589321 24 189.C84719 640.077063 25 194 .112166 642.076251 26 199.139614 644.075439 27 204.167062 646.074627 28 209.194509 648.C73815 29 212.315376 649.314842 30 217.929941 652. 060596 31 223.544505 654.806349 32 229.159070 657.552103 33 234.773635 660. 297856 34 240.162379 663. 463916 35 245.551123 666. 629976 36 250.939868 669. 7 96036 37 256.328612 672.962097 38 261. 460130 676.530012 39 266.591649 680.097927 40 271.723167 683.665842 41 276.854685 687.233757 42 281.236457 690.805626 43 285.618228 694.377495 44 290.000000 697.949363 45 293.116116 700.489514 46 296.232232 703. 029664 47 301.942118 708.459669 48 307.652004 713. 88967 5 ***Table 3 -Force and Pore Pressure Data On The 47 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Poree Stress Poree Pore Poree Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 589.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 1767.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 2946.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 4124.5 0.0 0.0 o.o 0.0 0.0 0.0 0.00 5 5302.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 5998.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 6846.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 7694.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 8542.3 0.0 0.0 0.0 o.o 0.0 0.0 0.00 10 190.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 5632.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 5944.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 9884.9 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 14 10461.8 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 15 237.8 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 16 12429.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 13154.3 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 18 13879.4 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 19 13611. 9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 20 14029. 8 0.0 0. 0 0.0 0.0 0.0 0.0 0.00 21 14447. 8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 22 14965. 8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 23 15283.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 24 16418.2 0.0 0.0 0.0 0.0 0 r, • V 0.0 0.00 25 16621.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 26 16823.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 27 17026.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 28 10671.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 29 19222.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 30 19129.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 31 19036.8 0.0 0. 0 0.0 0.0 0.0 32 18944.1 0.0 0.0 0.0 0.0 0.0 33 17923. 3 0.0 0. 0 0.0 0.0 0.0 34 17494.6 0.0 0.0 0.0 0.0 0.0 35 17065.9 0.0 0.0 0.0 0.0 0.0 36 16637.3 0.0 0.0 0.0 0.0 0.0 37 15274. 4 0.0 0.0 0.0 0.0 0.0 38 14545.2 0.0 0.0 0.0 0.0 0.0 39 13815.9 0. 0 0.0 o.c c.c 0.0 40 13086.7 0.0 0.0 0.0 o.c 0.0 41 10459.4 0.0 0.0 c.o 0.0 0.0 42 9651. 5 0.0 0.0 0.0 0.0 0.0 43 8843.6 0.0 0.0 0.0 0.0 0.0 44 5523.3 0.0 0.0 0.0 0.0 0.0 45 4566.2 c.o 0.0 0.0 0.0 0.0 46 5617. 5 0.0 0.0 0.0 0.0 0.0 47 1872.5 0.0 0.0 0.0 0.0 0.0 TOTAL WEIGHT OF SLIDING MASS 514135.26(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 514135.26(lbs) TOTAL AREA OF SLIDING MASS 4284.46(ft2) ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 47 SLICES*** Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 Soil Type 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Cohesion (psf) 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 Phi(Deg) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Options 0.0 0.00 0. 0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 o.c o.cc 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 44 45 46 47 2 2 2 2 200.00 200.00 2 00. 0 0 200.00 30.00 30.00 30.00 30.00 SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL ( FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are mod!fied values based en specified Seil Options (if any). Slice Ne. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 Slice No. ***TABLE 5 -Total Base Stress Cata en the 47 Slices*** Alpha (deg) 4.19 4.19 4 .19 4.19 4.19 8.56 8.56 8.56 8.56 8.56 8.56 8.56 12. 94 12. 94 12. 94 12. 94 12.94 12.94 17.31 17.31 17.31 17.31 17.31 21. 69 21. 69 21. 69 21. 69 21. 69 26.06 26.06 26.06 26.06 30. 4 4 30.44 30. 4 4 30.44 34.81 34.81 34.81 34.81 39.19 39.19 39.19 39.19 39.19 43.56 43.56 X-Ccord. Slice Cntr ( ft) 93.69 98.68 103.66 108. 65 113.64 118.49 123.21 127.92 132.64 135.05 136. 54 13 9. 41 143.11 14 7 • 64 14 9. 95 152. 54 157.61 162.68 167.60 l 7 2. 38 177.15 181. 92 186.70 191.60 196. 63 201.65 206.68 210.75 215.12 220.74 226.35 231. 97 237.47 242.86 248.25 253.63 258.89 264.03 269.16 274.29 27 9. 05 283.43 287.81 291.56 294.67 299.09 304.80 Base Leng. (ft) 5.00 5.00 5.00 5.00 5.00 4.77 4. 77 4. 77 4. 77 0.10 2. 91 2. 91 4. 64 4. 64 0.10 5.20 5.20 5.20 5.00 5.00 5.00 5.00 5.00 5.41 5.41 5.41 5.41 3.36 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 5.65 5.65 5.65 4.02 4.02 7.88 7.88 Total Normal Stress (psf) 196.13 453.08 710.03 966. 98 1223.93 1350.81 1534.86 1718.91 1902.97 1996.93 2054.32 2165.26 2142.94 2266.12 2329.06 2399.47 2537.57 2675.66 2619.36 2699.29 2779.21 2859.13 2939.05 2819.70 2854.50 2889.31 2924 .11 2952.53 2778.7'.J 2765.25 2751. 80 2738.35 2533.85 2472.85 2411. 85 2350.84 2121. 4 4 2027.53 1943.35 1857.12 1649.33 1535.25 1417. 99 1247.89 1028.54 636.99 157.34 Total Vert. Stress (psf) 118 .16 354.47 590.78 827.10 1063.41 1271.45 1451.22 1630.99 1810.76 1902.53 1958.59 2066.95 2184.87 2312.37 2377. 52 2450.40 2593.34 2736.28 2851. 53 2939. 09 3026.65 3114. 20 3201.76 3265.71 3306.05 3346.38 3386. 72 3419.41 3423.67 3407.14 3390.62 3374.09 3326.06 3246.51 3166. 96 3087.41 2976. 59 2834.48 2692. 37 2550.26 2387. 02 2202.64 2018.26 1772.50 1465.34 983.82 327. 94 ***TABLE SA -Total Base Force Data on the 47 Slices*** Alpha (deg) X-Coord. Slice Cntr Base Leng. Total Normal Force Total Vert. Force Total Normal/Vert. Stress Ratio 1. 660 1. 27 8 1. 202 1.169 1.151 1.062 1.058 1. 054 1.051 1.050 1. 049 1. 04 8 0.981 0.980 0.980 0. 97 9 0. 97 8 0. 97 8 0. 919 0. 918 0. 918 0.918 0. 918 0.863 0.863 0.863 0.863 0.863 0.812 0.812 0.812 0.812 0. 7 62 0.762 0. 7 62 0.761 0. 713 0.715 0.722 0.728 0.691 0.697 0.703 0.704 0.702 0.647 0.480 Total Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 4.19 93. 69 5.00 980.65 589.21 1.664 2 4 .19 98.68 5.00 2265. 40 1767.63 1. 282 3 4 .19 103.66 5.00 3550.16 2946. 04 1. 205 4 4 .19 108. 65 5.00 4834.91 4124.46 1.1 72 5 4.19 113. 64 5.00 6119.67 5302.88 1.154 6 8.56 118. 4 9 4. 77 6444 .22 5998.09 1.074 7 8.56 123.21 4.77 7322.28 6846.15 1. 070 8 2.56 127. 92 4.77 82CC.34 7694.22 l. 066 9 8.56 132.64 4.77 9072.41 2542.29 1. 063 10 8.56 135.05 0.10 2 Cl. 94 190.25 1.061 11 8.56 136.54 2.91 5974.24 5632.39 1. 061 12 8.56 139.41 2. 91 6296.86 5943.99 1. 059 13 12. 94 143.11 4. 64 9947.68 9884. 94 1. 006 14 12. 94 14 7. 64 4. 64 10519.46 10461. 76 1. 006 15 12.94 14 9. 95 0 .10 238.97 237.75 1. 005 16 12. 94 152.54 5.20 12487.86 12429. 30 1. 005 17 12.94 157. 61 5.20 13206. 57 13154.35 1.004 18 12.94 162.68 5.20 13925.28 13879.39 1.003 19 17.31 167.60 5.00 13096. 82 13611.89 0. 962 20 17.31 17 2. 38 5.00 13496.43 14029.84 0. 962 21 17.31 177.15 5.00 13896.03 14447.80 0.962 22 17.31 181.92 5.00 14295.64 14865. 76 0.962 23 17.31 186.70 5.00 14695.25 15283. 71 0. 961 24 21. 69 191.60 5. 41 15255.57 16418.18 0. 929 25 21. 69 196. 63 5.41 15443.88 16620. 97 0. 929 26 21. 69 201.65 5.41 15632.18 16823.76 0.929 27 21.69 206.68 5.41 15820.49 17026.55 0. 929 28 21. 69 210.75 3.36 9916.28 10671. 52 0. 929 29 26.06 215.12 6.25 17366.85 19222.39 0.903 30 26.06 220.74 6.25 17282.79 19129.62 0.903 31 26.06 226.35 6.25 17198.73 19036.85 0.903 32 26.06 231. 97 6.25 17114.67 18944. 07 0.903 33 30. 4 4 237. 4 7 6. 25 15836.59 17923.28 0.884 34 30.44 242.86 6. 25 15455.32 17494.61 0.883 35 30.44 248.25 6.25 15074.04 17065.95 0.883 36 30.44 253.63 6.25 14692.76 16637.29 0.883 37 34.81 258.89 6.25 13259.01 15274.40 0.868 38 34.81 264.03 6.25 12672.07 14545.17 0.871 39 34.81 269.16 6.25 12145. 96 13815.93 0. 87 9 40 34.81 274.29 6.25 11606.99 13086.70 0.887 41 39 .19 27 9. :)5 5.65 9323.95 1:)459.36 0.891 42 39.19 283.43 5.65 8679.02 9651.47 8.899 43 39 .19 287.81 5.65 8016.14 8843.57 0.906 44 39 .19 291. 56 4.02 5016.86 5523.31 0.908 45 39.19 294.67 4.02 4134.99 4566.18 0.906 46 43.56 299.09 7.88 5019.18 5617. 53 J.893 47 43.56 304.80 7.88 1239. 78 1872.51 0.662 ***TABLE 6 -Effective and Base Shear Stress Data on the 47 Slices--r*+ Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 4 .19 93.69 5.00 196.13 404.28 249.37 2 4. 19 98.68 5.00 453.08 540.91 333.64 3 4 .19 103.66 5.00 710. 03 677.53 41 7. 91 4 4 .19 108.65 5.00 966. 98 814.15 502.18 5 4 .19 113.64 5.00 1223.93 950. 78 586.45 6 8.56 118.49 4.77 1350.81 1018.24 628.06 7 8.56 123.21 4.77 1534. 86 1116.10 688. 4 3 8 8.56 127.92 4. 77 1718.91 1213. 96 748.79 9 8.56 132.64 4.77 1902.97 1311. 83 809.15 10 8.56 135.05 0.10 1996. 93 1361.78 839.97 11 8.56 136.54 2.91 2054.32 1392.30 858. 7 9 12 8.56 139.41 2. 91 2165.26 1451. 29 895.17 13 12. 94 143.11 4. 64 2142.94 1439.42 887.86 14 12.94 147.64 4. 64 2266.12 1504.91 928.25 15 12.94 149.95 0 .10 2329.06 1538.38 948.90 16 12. 94 152.54 5.20 2399.47 1575.82 971. 99 17 12. 94 157. 61 5.20 2537.57 1649.25 1017.28 18 12. 94 162.68 5.20 2675.66 1722.68 1062.57 19 17.31 167.60 5.00 2619.36 1692.74 1044.11 20 17. 31 172.38 5.00 2699.29 1735.24 1070.32 21 17. 31 177.15 5.00 2779.21 1777.73 1096.53 22 17. 31 181.92 5.00 2859 .13 1820.23 1122. 74 23 17.31 186.70 5.00 2939. 05 1862. 72 1148.95 24 21.69 191. 60 5.41 2819.70 1799.26 1109. 81 25 21.69 196. 63 5.41 2854.50 1817.77 1121.22 26 21. 69 201.65 5.41 2889.31 1836.27 1132. 64 27 21.69 206.68 5.41 2924.11 1854.78 1144.05 28 21. 69 210.75 3.36 2952.53 1904.65 1174.81 29 26.06 215.12 6.25 2778.70 1804.28 1112. 90 30 26.06 220.74 6.25 2765.25 1796.52 1108.12 31 26.06 226.35 6.25 2751.80 1788.75 1103.33 32 26.06 231.97 6.25 2738.35 1780.99 1098.54 33 30. 4 4 237.47 6.25 2533.85 1662. 92 1025. 71 34 30.44 242.86 6.25 2472.85 1627.70 1003.99 35 30.44 248.25 6.25 2411.85 1592.48 982.26 36 30.44 253.63 6.25 2350.84 1557.26 960.54 37 34.81 258.89 6.25 2121.44 1424.81 878.85 38 34. 81 264.03 6.25 2027.53 1370.60 845.40 39 34.81 269.16 6.25 1943.35 1322.00 815.43 40 34.81 27 4. 2 9 6.25 1857.12 1272. 21 7 84. 71 41 39.19 27 9. 05 5.65 1649.33 1152.24 710. 72 42 39.19 283.43 5.65 1535.25 1086.38 670.09 43 39 .19 287.81 5.65 1417.99 1018.68 628.34 44 39 .19 2 91. 56 4.02 1247.89 920.47 567. 7 6 45 39 .19 2 94. 67 4.02 1028.54 793.83 489.64 46 43.56 299.09 7.88 636.99 567.76 350.20 47 43.56 304.80 7.88 157.34 290.84 179.39 ***TABLE 6A -Effective and Base Shear Force Data on the 47 Slices+-** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 4.19 93.69 5.00 980.65 2021.42 1246.84 2 4.19 98.68 5.00 2265.40 2704.53 1668.19 3 4.19 103.66 5.00 3550.16 3387.65 2089.55 4 4.19 108.65 5.00 4834.91 4070. 77 2510.98 5 4 .19 113. 64 5.00 6119.67 4753.88 2932.26 6 8.56 118.49 4. 77 6444.22 4857.65 2996. 26 7 8.56 123.21 4. 77 7322.28 5324.52 3284.24 8 8.56 127.92 4. 77 8200.34 5791. 48 3572.21 9 8.56 132.64 4. 77 9078.41 6258.27 3860.19 10 8.56 135.05 0.10 2 01. 9 4 137. 71 84. 94 11 8.56 136.54 2.91 5974.24 4049.00 2497.48 12 8.56 139. 41 2.91 6296.86 4220.54 2603.28 13 12.94 143.11 4.64 9947.68 6681. 8 9 4121. 48 14 12.94 147.64 4.64 10519.46 6985.91 4309.01 15 12.94 149.95 0.10 238. 97 157.84 97. 36 16 12.94 152.54 5. 20 12487.86 8201. 24 5058.64 17 12.94 157.61 5. 20 13206.57 8583.38 5294.35 18 12. 94 162.68 5.20 13925.28 8965. 53 5530.06 19 17.31 167.60 5.00 13096. 82 8463.70 5220.53 20 17.31 172. 38 5.00 13496.43 8676.18 5351.58 21 17.31 1 77 .15 5.00 13896.03 8888.65 5482. 64 22 17.31 181.92 5.00 14295.64 9101.13 5613.70 23 17. 31 186. 70 5.00 14695.25 9313.60 5744.75 24 21. 69 191. 60 5.41 15255.57 9734.64 6004. 46 25 21.69 196. 63 5.41 15443.88 9834.76 6066.21 26 21.69 201. 65 5.41 15632.18 9934.89 6127. 97 27 21. 69 206.68 5.41 15820.49 18035. 01 6189.73 28 21. 69 210. 75 3.36 9916.28 6396. 88 3945.68 29 26.06 215.12 6.25 17366. 85 11276.75 6955.65 30 26.06 220.74 6.25 17282.79 11228.22 6925.72 31 26.06 226.35 6.25 17198. 73 11179.69 6895.78 32 26.06 231. 97 6.25 17114.67 11131.16 6865.85 33 30.44 237. 47 6.25 15836.59 10393.26 6410. 70 34 30.44 242.86 6.25 15455.32 10173.13 6274.92 35 30.44 248.25 6. 25 15074.04 9953.00 6139.15 36 30.44 253.63 6.25 14692.76 9732.87 6003.37 37 34.81 258.89 6. 25 13259.01 8905.09 54 92. 7 8 38 34.81 264.03 6. 25 12672.07 8566.22 5283.76 39 34.81 269.16 6.25 12145.96 8262.47 5096. 41 40 34.81 27 4. 2 9 6. 25 11606.99 7951.30 4904.47 41 39 .19 27 9. 05 5.65 9323.95 6513.81 4017.81 42 39 .19 283.43 5.65 8679.02 6141.47 3788.14 43 39.19 287.81 5.65 8016.14 5758.75 3552. 08 44 39.19 291.56 4.02 5016.86 3700.54 2282.54 45 39 .19 2 94. 67 4.02 4134.99 3191.39 1968.49 46 43.56 299.09 7.88 5019.18 4473.74 2759.46 47 43.56 304.50 7.88 1239.78 2291.70 1413.55 Average Effective Normal Stress 2011.4672(psf) Average Available Shear Strength = 1363.8408(psf) Total Length of Failure Surface = 240. 7592(ft) SUM OF MOMENTS 0. 2896781E-06 -0.148934E+OO (ft/lbs);Imbalance (Fraction of Total Weight) = SUM OF FORCES 10 -.409033E-04 (lbs);Imbalance (Fraction of Total Weight) = Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.621235 328357.16(lbs) 202535.15(lbs) **** END OF GEOSTASE OUTPUT**** -0.7955748E- Ninyo & Moore/ WRM Acadia Medical Facility, Chula Vista, CA Section A-A' Block (Static) \A-A' Block.gsd 1062~N-o.-F-S~-S-o-il-------M-oi-st-Wt--Sa_t_Wt __ c __ P_h_i--ru--P-c-on-st-Pi-ez_S_u_rt __ S_oi_l_~-----~1 o62 1 1.801 No. (pen (Pen (psn (deg) (ratio) (Psn No. Options 2 1.801 EJ1 Olay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 3 1.801 11112 Fill 120.0 130.0 200.0 30.0 0.000 0.0 950 837 4 1.801 5 1.801 6 1.801 7 1.801 8 1.801 9 1.801 10 1.801 725 .. GEOSTASE. Slope StDbllity Analysis 112 225 337 450 562 GEOSTASE FS = 1.801 Spencer Method GEOSTASEIEl by GREGORY GEOTECHNCAL SOFTWARE .. , ............ · ................ 950 · .. 837 675 787 PLATE E-2 *** GEOSTASE(R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Block\A-A' Block.gsd Output File Name: Calcs\A-A'\Block\A-A' Block.OUT Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Block (Static) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary X -1 No. (ft) 1 0.000 2 88.00J 3 135.000 4 290.000 5 450.000 6 555.000 7 570. 000 8 590.000 9 610. 000 10 660.000 11 855.000 12 135.000 13 135.100 14 149.900 15 150.000 16 465.000 17 636.000 18 855.000 19 855 .100 User Specified X-Origin User Specified Y-Origin y -1 (ft) 62:J.OJO 620.000 642.000 714. 000 713.000 715.000 717.000 717.000 717.000 713.000 713.000 642.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 88.000 135.000 290.000 450.000 555.000 570.000 590.000 610.000 660.000 855.000 900.000 135.100 149.900 150.000 465.000 636.000 855.000 855.100 900.000 O.OOO(ft) 5:)0.000(ft) y -2 Soil Type (ft) Below Bnd 620.000 1 642.JOO 1 714.000 2 713.000 2 715.000 2 717. 000 2 717.000 2 717.000 2 713.000 2 713.000 2 713.000 2 637.000 1 637.000 1 643.000 1 670. 000 1 708.000 1 708.000 1 712.000 1 712.000 1 Soil Number Moist Saturated Cohesion Friction Pore Pressure Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) 1 Otay 0 2 Fill 0 Formation 120.0 130.0 300.00 28.00 120.0 130.0 200.00 30.00 A Non-Circular Zone Search Has Been Selected Fer Analysis Using Random Generation Within Specified Zones. 2 Zones Defined Fer Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. 0.000 0.000 Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search 5.00(ft) Zone No. 1 2 X -1 (ft) 150.00 150.10 y -1 (ft) 643.50 643.50 X -2 (ft) 150.00 465.00 y -2 (ft) 643.50 67 0. 50 The Spencer Method Was Selected for FS Analysis. Selected fx function= Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) 0.0001000 Height (ft) 0.10 0.10 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor 5000.00 Maximum number of iterations 50 Allowable negative side force -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 0.0 0.0 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 483 Number of Trial Surfaces With Valid FS = 4517 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 9.7 % Statistical Data On All Valid FS Values: FS Max= 9.030 FS Min= 1.801 FS Ave= 3.130 Standard Deviation 0.934 Coefficient of Variation Critical Surface is Sequence Number 447 of Those Analyzed. 29.84 % Water Surface No. 0 0 *r+,H·BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***"* Iter. Theta FS FS No. (deg) (Moment) (Force) ( fx=l. 0) Lambda 1 15.0000 1. 923519 1. 765767 0.268 2 19.9500 1. 838297 1. 792615 0.363 3 21. 9674 1. 778809 1.804638 0.403 4 21.2389 1. 802694 1. 800213 C.389 5 21. 3029 1. 800716 1. 800597 C.390 6 21. 3061 1.800616 i. 80061 7 C.390 Factor Of Safety Fer The Preceding Specified Surface Theta (fx = l.C) 21.31 Deg Lambda= 0.390 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= C.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = C.0001000 Delta FS 0 .1577 516E+00 0. 456824 9E-01 0.2582887E-01 0.24817C8E-02 0.1183768E-03 0.5640570E-06 1.801 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.CC Maximum number of iterations= 50 Maximum force imbalance= 100.CC0000(lbs) Maximum moment imbalance(if Applicable) = 100.CCCCCC (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0. CC (lbs) Specified Tension Crack Water Depth Factor= C.CCC Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack C.C00(ft) Theoretical Tension Crack Depth 5.774(ft) C.CCC(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** Slice X y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force ( lbs) 1 145.33 645.99 0. 4 61 667. 03 1. 000 21.31 242.4 2 150.00 645.72 C. 4 04 4139.63 1.000 21. 31 1504.1 3 154.97 64 6. 81 C.391 5807.66 1. 000 21. 31 2110. 2 4 159.94 647.83 C.376 7779. 92 1.0cc 21. 31 2826.8 5 164. 91 64 8. 82 C.362 10056.41 1.0cc 21. 31 3654.0 6 169.88 64 9. 7 8 C.351 12637.12 l.CCC 21. 31 4591.7 7 174.85 650.73 C.342 15522.06 l.CCC 21. 31 5639.9 8 179.82 651.67 C.335 18711.23 l.C0J 21.31 67 98. 7 9 184.79 652.60 C.328 22204.63 l.CCC 21. 31 8068.0 10 189.76 653.54 C.323 26002.26 1.000 21.31 94 4 7 . 9 11 194. 7 3 654.47 0.319 30104 .11 1.000 21.31 10938.3 12 199. 7 0 655.40 0.315 34510.19 1.000 21. 31 12539.3 13 2 04. 67 656.33 0. 311 39220.49 1.000 21. 31 14250.8 14 208. 97 658. 52 0. 305 36768.22 1.000 21. 31 13359.7 15 213.28 660. 71 C. 2 97 34377.90 1.000 21.31 12491.2 16 217.59 662. 91 0.290 32049.53 1.000 21. 31 11645.2 17 221.90 665.09 0.282 29783.12 1.000 21. 31 10821.7 18 226.20 667.28 0.273 27578.67 1.000 21.31 10020.7 19 230.51 669.47 0. 264 25436.18 1.000 21. 31 92 42. 2 20 234.82 671.65 0.255 23355.64 1.000 21. 31 8486.3 21 239.13 673.83 0.244 21337.05 1.000 21. 31 7752. 8 22 243.43 67 6. 00 0.234 19380.43 1.000 21.31 7041.9 23 247.74 678.18 0.222 17485. 76 1.000 21. 31 6353.4 24 252.05 680.35 0.21C 15653.04 l.OCO 21. 31 5687.5 25 256.36 682.52 0 .197 13882. 28 l.OCO 21.31 5044.l 26 260.66 684.68 0.183 12173.48 1. 000 21.31 4423.2 27 264.97 686.84 0.168 10526.64 1.00C 21. 31 3824.9 28 269.28 689.CO 0.152 8941. 75 1.000 21. 31 3249.0 29 273.59 691.16 0.135 7418.82 1.000 21.31 2695.6 30 277.89 693.32 0.117 5957.84 1.000 21.31 2164.8 31 282.20 695.46 0. 097 4554. 98 0.983 20.98 1630.8 32 286.51 697.47 0. 067 3202. 00 0.858 18.51 1016.3 33 290.00 698.86 0.026 2164. 02 0. 757 16. 45 612.7 34 290.82 699.13 0. 013 1932.12 0.733 15. 96 531. 2 35 2 95. 13 699.72 0.000-888.90 0.608 13.35 205. 2 36 299.43 687.46 0.000-141.05 0.483 10. 67 26.1 37 303.74 713.31 0.918 -315. 71 0.358 7. 96 -43.7 38 308.05 711. 79 0.563 -482.00 0.233 5.20 -43.7 39 312.36 712.66 0. 459 -354.48 0.108 2.42 -15.0 40 316.09 713.84 0.000 0.02 0.000 0.00 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1. 000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 -Geometry Data on the 40 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) ( ft) ( ft) (deg) (deg) (ft) 1 1. 58 0. 7 5 144.54 645.68 64 6. 4 3 -25.80 24.92 1. 75 2 4. 67 3.47 14 7. 66 64 4. 41 647.88 -20.80 24. 92 5.00 3 4. 97 6. 39 152. 4 8 643.74 650.12 4.86 24. 92 4.99 4 4. 97 8.27 157. 45 644.16 652. 4 3 4.86 24.92 4. 99 5 4. 97 10 .16 162. 4 2 644.58 654.74 4.86 24. 92 4. 99 6 4.97 12.04 167. 3 9 645.00 657.05 4. 86 24.92 4. 99 7 4. 97 13.93 172.36 645.42 659.36 4.86 24. 92 4. 99 8 4.97 15.82 1 77. 33 645.85 661.66 4. 86 24. 92 4.99 9 4. 97 17.70 182.30 646.27 663.97 4. 8 6 24. 92 4.99 10 4. 97 19. 59 187.27 646.69 666.28 4. 86 24.92 4.99 11 4. 97 21. 4 8 192.24 64 7 .11 668.59 4.86 24.92 4. 99 12 4. 97 23.36 197. 21 647.54 670.90 4.86 24.92 4.99 13 4. 97 25.25 202.18 647.96 673.21 4.86 24. 92 4. 99 14 4.31 25.92 206.82 649.44 67 5. 36 30.51 24.92 5.00 15 4.31 25.39 211.13 651. 98 677. 36 30.51 24. 92 5.00 16 4.31 24.85 215.43 654.52 67 9. 36 30.51 24. 92 5.00 17 4.31 24.31 219.74 657.05 681. 36 30.51 24.92 5.00 18 4.31 23.77 224.05 659.59 683.37 30.51 24. 92 5.00 19 4.31 23. 23 228.36 662.13 685.37 30.51 24. 92 5.00 20 4.31 22.70 232.66 664.67 687.37 30.51 24. 92 5.00 21 4.31 22.16 236. 97 667.21 689.37 30.51 24. 92 5.00 22 4.31 21. 62 241.28 669.75 691.37 30.51 24. 92 5.00 23 4.31 21.08 245.59 672.29 693.37 30.51 24. 92 5.00 24 4.31 20.55 249.90 674.82 695.37 30.51 24. 92 5.00 25 4. 31 20.01 254.20 677. 36 697.37 30.51 24. 92 5.00 26 4.31 19. 4 7 258.51 67 9. 9 0 699.37 30.51 24. 92 5.00 27 4.31 13. 93 262.82 682.44 7 01. 37 30.51 24.92 5.00 28 4.31 18.40 267.13 684.98 703.37 30.51 24.92 5.00 29 4.31 17.86 271.43 687.52 705.38 30.51 24.92 5.00 30 4.31 17.32 275.74 690.06 707.38 30.51 24. 92 5.00 31 4.31 16. 78 280.05 692.60 709.38 30.51 24.92 5.00 32 4.31 16.24 284.36 695.13 711.38 30.51 24.92 5.00 33 3. 4 9 15. 7 6 288.25 697.43 713.19 30.51 24. 92 4.05 34 0.82 15.30 290.41 6 98. 7 0 714.00 30.51 -0.36 0.95 35 4.31 13.77 2 92. 97 700.21 713.98 30.51 -0.36 5.00 36 4. 31 11. 20 297.28 37 4.31 8.64 301.59 38 4.31 6.07 305.89 39 4.31 3.51 310. 2 0 40 3.74 1.11 314.22 7 02. 7 5 713. 95 7 05. 2 9 713. 93 707.83 713.90 710.37 713. 87 712. 74 713.85 30.51 30.51 30.51 30.51 30.51 -0.36 -0.36 -0.36 -0.36 -0.36 5.00 5.00 5.00 5.00 4.34 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 143.747378 646.063298 2 145.325863 645.300238 3 150.000000 643.524725 4 154. 969591 643.946952 5 159.939181 64 4. 36917 9 6 164. 908772 644.791406 7 169.878362 645.213632 8 174.847953 645. 635859 9 179.817544 646.058086 10 184.787134 646.480313 11 189.756725 646.902540 12 194.726316 647.324766 13 199.695906 647.746993 14 204.665497 648.169220 15 208. 973097 650. 707840 16 213.280697 653.246460 17 217 .588297 655.785080 18 221. 895896 658.323700 19 226.203496 660.862320 20 230.511096 663.400940 21 234. 818696 665.939560 22 239.126296 668.478180 23 243.433896 671. 016800 24 247. 741496 673.555421 25 252.049096 676. 094041 26 256. 356696 678.632661 27 260.664295 681.171281 28 264. 971895 683.709901 29 269.279495 686.248521 30 273.587095 688.787141 31 277. 894695 691.325761 32 282. 202295 693.864381 33 286.509895 696.403001 34 290.000000 698.459843 35 290.817495 698.941621 36 295.125095 701.480241 37 299. 432694 704.018861 38 303.740294 706.557481 39 308. 047894 709. 096101 40 312.355494 711. 634721 41 316.092250 713.836923 ***Table 3 -Force and Pore Pressure Data On The 40 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 141.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 194 6. 1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 3808.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 4933.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 6058.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 7182.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 8307.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 9432.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 10557.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 11682. 4 0.0 0.0 0.0 0.0 12807.2 0.0 0.0 0.0 0.0 13932.1 0.0 0.0 0.0 0.0 15056.9 0.0 0.0 0.0 0.0 13399.8 0.0 0.0 0.0 0.0 13121.8 0.0 0.0 0.0 0.0 12843.9 0.0 0.0 0.0 0.0 12566.0 0.0 0.0 0.0 0.0 12288.0 0.0 0.0 0.0 0.0 12010.1 0.0 0.0 0.0 0.0 11732.2 0.0 0.0 0.0 0.0 11454.3 0.0 0.0 0.0 0.0 11176. 3 0.0 0.0 0.0 0.0 10898.4 0.0 0.0 0.0 0.0 10620.5 0.0 0.0 0.0 G.O 10342.5 0.0 0.0 0.0 0.0 10064.6 0.0 0.0 0.0 0.0 97 86. 7 0.0 0.0 0.0 0.0 9508.8 0.0 0.0 0.0 0.0 9230.8 0.0 0.0 0.0 0.0 8952.9 0.0 0.0 0.0 0.0 8675.0 0.0 0.0 0.0 0.0 8397.0 0.0 0.0 0.0 0.0 6599.6 0.0 0.0 0.0 0.0 1500.6 0.0 0.0 0.0 0.0 7118.1 0.0 0.0 0.0 0.0 5792.0 0.0 0.0 0.0 0.0 4465.8 0.0 0.0 0.0 0.0 313 9. 7 0.0 0.0 0.0 0.0 1813.5 0.0 0.0 0.0 0.0 499.0 0.0 0.0 0.0 0.0 TOTAL WEIGHT OF SLIDING MASS 343844.72(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 343844.72(lbs) TOTAL AREA OF SLIDING MASS= 2865.37(ft2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 40 SLICES*** Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Soil Type 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Cohesion (psf) 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 Phi(Deg) 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30. 00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Options 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 30 31 32 33 34 35 36 37 38 39 40 2 2 2 2 2 2 2 2 2 2 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.0C 200.0C 20C.OO 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.CO 3C.OC 30.CC SCIL CPTICNS: A= ANISCTRCPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SCIL ( FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDCWN CR RAPID LOADING (SEISMIC) SHEAR STRENGTH NCTE: Phi and C in Table 4 are modified values based on speoified Soil Options (if any). ***TABLE 5 -Total Base Stress Data on the 40 Slices*** Slice Alpha No. (deg) * 1 -25.80 2 -20.80 3 4.86 4 4. 8 6 5 4.86 6 4.86 7 4.86 8 4. 86 9 4. 86 10 4.86 11 4.86 12 4.86 13 4.86 14 30.51 15 30.51 16 30.51 17 30.51 18 30.51 19 30.51 20 30.51 21 30.51 22 30.51 23 30.51 24 30.51 25 30.51 26 30.51 27 30.51 28 30.51 29 30.51 30 30.51 31 30.51 32 30.51 33 30.51 34 30.51 35 30.51 36 30.51 37 30. 51 38 30. 51 39 30.51 40 30.51 X-Coord. Slice Cntr (ft) 14 4. 54 14 7 . 66 152.48 157.45 162.42 167.39 172.36 177.33 182.30 187.27 192.24 197. 21 202.18 206.82 211.13 215.43 21 9. 7 4 22 4. 05 228.36 232.66 236. 97 241.28 245.59 24 9. 90 254.20 258.51 262.82 267.13 271. 43 275.74 280.05 284.36 288.25 290.41 292. 97 297.28 301.59 305.89 310.20 314.22 Base Leng. (ft) 1. 75 5.00 4. 9 9 4. 9 9 4. 9 9 4.99 4. 9 9 4.99 4. 9 9 4. 99 4.99 4. 9 9 4. 9 9 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.05 0. 95 5.00 5.00 5.00 5.00 5.00 4. 34 Total Normal Stress (psf) 351. 50 82 9. 53 855.55 1097 .55 1339.55 1581. 54 1823.54 2065.54 2307.54 2549.54 2791.54 3033.53 3275.53 2387.30 2337. 43 2287.56 2237.69 2187.81 2137.94 2088.07 2038.20 1988.33 1938.46 1888.59 1838.72 1788.85 1738.98 1689.11 1639.24 1589.37 1541.03 1502.13 1465.19 1423.53 1287.89 1048.77 804.55 555.05 300.12 57.25 Total Vert. Stress (psf) 89.78 416.36 7 66. 34 992.68 1219.03 1445.38 1671. 73 1898. 07 2124. 42 2350. 77 2577 .11 2803.46 3029.81 3110. 72 3046.20 2981.68 2917.16 2852.64 2788.12 2723. 60 2659.08 2594.56 2530.04 2465.52 2401.00 2336.48 2271. 96 2207.44 2142.92 2078.40 2013. 88 1949.35 1890. 96 1835.61 1652.46 1344.59 1036.73 728.86 4 21. 00 133.53 ***TABLE 5A -Total Base Force Data on the 40 Slices*** Slice No. Alpha (deg) X-Coord. Slice Cntr Base Leng. Total Normal Force Total Vert. Force Total Normal/Vert. Stress Ratio 3.915 1. 992 1.116 1.106 1.099 1. 094 1.091 1. 088 1. 086 1.085 1. 083 1.082 1. 081 0. 7 67 0. 7 67 0. 767 0. 7 67 0. 7 67 0. 767 0. 767 0. 767 0. 766 0.766 0. 766 0. 7 66 0. 766 0. 7 65 0. 7 65 0. 765 0. 7 65 0.765 0.771 0.775 0.776 0. 77 9 0.780 0. 776 0.762 0. 713 0.429 Total Normal/Vert. -J-(ft) (ft) (lbs) (lbs) Force Ratio 1 -25.80 14 4 . 54 1. 75 616.26 141. 71 4. 34 9 2 -20.80 147.66 5.00 4147.66 1946.12 2.131 3 4.86 152.48 4.99 4267.05 3808.37 1.120 4 4. 86 157.45 4.99 5474.01 4933.23 1.110 5 4.86 162.42 4.99 6680.98 6058.08 1.103 6 4. 86 167.39 4.99 7887.94 7182. 94 1. 098 7 4.86 172.36 4.99 9094.91 8307.79 1. C95 8 4. 86 177. 33 4.99 103Cl. 87 9432.64 1. 092 9 4.86 182.30 4.99 11508. 84 10557.50 1. 090 10 4.86 187.27 4.99 12715.80 11682.35 1. 088 11 4.86 192.24 4. 99 13922.77 12807. 21 1. 087 12 4.86 197. 21 4. 99 15129. 73 13932.06 1.086 13 4.86 202.18 4.99 16336.70 15056. 91 1.085 14 30.51 206.82 5.00 11936.49 13399.75 0. 891 15 30.51 211.13 5.00 11687 .14 13121.82 0. 891 16 30.51 215.43 5.00 11437. 78 12843.89 0. 891 17 30.51 219. 7 4 5.00 11188.43 12565.97 0.890 18 30.51 224.05 5.00 10939.08 12288.04 0.890 19 30.51 228.36 5.00 10689.72 12010.11 0.890 20 30.51 232.66 5.00 10440.37 11732.18 0.890 21 30.51 236. 97 5.00 10191.02 11454. 25 0.890 22 30.51 241. 28 5.00 9941.66 11176.32 0.890 23 30.51 245.59 5.00 9692.31 10898.40 0.889 24 30.51 24 9. 90 5.00 9442.96 10620. 47 0.889 25 30.51 254.20 5.00 9193.60 10342.54 0.889 26 30.51 258.51 5.00 8944.25 10064.61 0.889 27 30.51 262.82 5.00 8694.90 9786.68 0.888 28 30.51 267.13 5.00 8445.55 9508.75 0.888 29 30.51 271. 43 5.00 8196.19 9230.83 0.888 30 30.51 275.74 5.00 7946.84 8952.90 0.888 31 30.51 280.05 5.00 7705.16 8 67 4. 97 0.888 32 30.51 284.36 5.00 7510.64 8397.04 0.894 33 30.51 288.25 4. 05 5935.64 6599.64 0.899 34 30.51 290.41 0.95 1350.78 1500.60 0.900 35 30.51 2 92. 97 5.00 6439.45 7118.14 0.905 36 30.51 297 .28 5.00 5243.87 5791.98 0.905 37 30.51 301.59 5.00 4022.75 4465.82 0.901 38 30.51 305.89 5.00 2775.27 3139.66 0.884 39 30.51 310.20 5.00 1500.58 1813.50 0.827 40 30.51 314.22 4. 34 248.34 4 98. 98 0.498 *r*TABLE 6 -Effective and Base Shear Stress Data on the 40 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) ( ft) (psf) (psf) (psf) 1 -25.80 144.54 1. 75 351.50 4 02. 94 223.78 2 -20.80 147.66 5. 00 829.53 67 8. 93 377. 05 3 4.86 152. 4 8 4.99 855.55 693. 95 385.40 4 4. 86 157.45 4.99 1097. 55 833.67 4 62. 9 9 5 4.86 162. 4 2 4.99 1339.55 97 3. 39 540.59 6 4.86 167.39 4.99 1581.54 1113.10 618.18 7 4. 86 172.36 4.99 1823.54 1252.82 695.77 8 4.86 177. 33 4.99 2065.54 1392.54 773. 37 9 4.86 182.30 4.99 2307.54 1532.26 850. 96 10 4.86 187.27 4.99 2549.54 1671.98 928.56 11 4.86 192.24 4. 9 9 2791.54 1811. 69 1006.15 12 4.86 197.21 4.99 3033.53 1951. 41 1083.75 13 4.86 202.18 4. 9 9 3275.53 2091.13 1161.34 14 30.51 206.92 5.00 2387.30 1578.31 876.54 15 30.51 211.13 5.00 2337.43 1549.51 860.55 16 30.51 215. 43 5.00 2287.56 1520.72 844.56 17 30.51 219. 7 4 5.00 2237.69 1491. 93 828.57 18 30.51 224.05 5.00 2187.81 1463.14 812.57 19 30.51 228.36 5.00 2137.94 1434.34 7 96. 58 20 30.51 232.66 5.00 2088.07 1405.55 780.59 21 30.51 236.97 5.00 2038.20 1376. 76 7 64 . 6 0 22 30.51 241.28 5.00 1988.33 1347. 96 748.61 23 30.51 245.59 5.00 1938.46 1319.17 7 32. 62 24 30.51 249.90 5.00 1888.59 1290.38 716.63 25 30.51 254.20 5.00 1838.72 1261.59 700.64 26 30.51 258.51 5.00 1788.85 1232.79 684.65 27 30.51 262.82 5.00 1738.98 1204.00 668.66 28 30.51 267.13 5.00 1689.11 1175.21 652.67 29 30.51 271.43 5.00 1639.24 1146. 41 636.68 30 30.51 275.74 5.00 1589.37 1117. 62 620.69 31 30.51 28C.05 5.00 1541.03 1089. 71 605. 19 32 30.51 284.36 5.CC 1502.13 1C67.25 5 92. 7 2 33 30.51 288.25 4.C5 1465.19 1045. 93 580.87 34 30.51 290.41 C.95 1423.53 1021.88 567. 51 35 30.51 2 92. 97 5.0C 1287.89 943.56 524.02 36 3C.51 2 97. 28 5.00 1048.77 805.51 447.35 37 30.51 301. 59 5.00 804.55 664.51 369.04 38 30.51 305.89 5.00 555.05 52 0. 4 6 289.05 39 30.51 310. 2 0 5.00 3C0.12 37 3. 27 207.30 40 30.51 314.22 4. 34 57.25 233.06 129.43 ***TABLE 6A -Effective and Base Shear Force Data on the 40 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * ( ft) (ft) (lbs) (lbs) (lbs) 1 -25.80 144.54 1. 75 616.26 706. 45 392.34 2 -20.80 147.66 5.00 4147.66 3394.65 1885.27 3 4.86 152.48 4.99 4267.05 3461.08 1922.16 4 4.86 157.45 4.99 5474.01 4157.92 2309.17 5 4.86 162. 4 2 4.99 6680.98 4854.76 2696.17 6 4.86 167.39 4.99 7887. 94 5551.60 3083.17 7 4.86 172.36 4. 99 9094. 91 6248.45 3470.17 8 4.86 177.33 4.99 10301.87 6945.29 3857.17 9 4.86 182.30 4.99 11508.84 7642.13 4244.17 10 4.86 187.27 4.99 12715.80 8338.97 4631.18 11 4.86 192.24 4.99 13922.77 9035.81 5018.18 12 4.86 197.21 4.99 15129. 73 9732.65 5405.18 13 4.86 202.18 4.99 16336.70 10429.50 5792.18 14 30.51 206.82 5.00 11936.49 7891.53 4382.69 15 30.51 211.13 5.00 11687.14 7747.57 4302. 73 16 30.51 215.43 5.00 11437. 78 7 603. 61 4222.78 17 30.51 219.74 5.00 11188.43 7459.64 4142.83 18 30.51 224.05 5.00 10939.08 7315. 68 4062.87 19 30.51 228.36 5.00 10689.72 7171. 71 3982.92 20 30.51 232.66 5.00 10440.37 7 027. 7 5 3902.97 21 30.51 236. 97 5.00 10191.02 6883.79 3823.02 22 30.51 241.28 5.00 9941.66 6739.82 3743.06 23 30.51 245.59 5.00 9692.31 6595.86 3663.11 24 30.51 249.90 5.00 9442.96 6451.89 3583.16 25 30.51 254.20 5.00 9193.60 6307.93 3503.21 26 30.51 258.51 5.00 8944.25 6163. 97 3423.25 27 30.51 262.82 5.00 8694.90 6020.00 3343.30 28 30.51 267.13 5.00 8445.55 5876.04 3263.35 29 30.51 271.43 5.00 8196.19 5732.07 3183.40 30 30.51 275.74 5.00 7946.84 5588.11 3103.44 31 30.51 280.05 5.00 7705.16 5448.58 3025.95 32 30.51 284.36 5.00 7510.64 5336.27 2963.58 33 30.51 288.25 4.05 5935.64 4237.17 2353.18 34 30.51 290.41 0.95 1350.78 969.66 538.51 35 30.51 2 92. 97 5.00 6439.45 4 71 7. 82 2620.11 36 30.51 2 97. 28 5.00 5243.87 4027.55 2236.76 37 30.51 301.59 5.00 4022.75 3322.54 1845.22 38 30.51 305.89 5. 00 2775.27 2602.31 1445.23 39 30.51 310. 20 5.00 1500.58 1366.36 1036.51 40 30.51 314.22 4. 34 248.34 1010.86 561. 40 Average Effective Normal Stress = 1727.258l(psf) Average Available Shear Strength= 1197.2329(psf) Total Length of Failure Surface = 190.953l(ft) SUM OF MOMENTS 0.1064947E-06 -0.366176E-01 (ft/lbs);Imbalance (Fraction of Total Weight) = SUM OF FORCES 10 -.299739E-04 (lbs);Irrbalance (Fraction of Total Weight) Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balar.ce Check: FS = 1.800616 228615.34 (lbs) 126965. 04 (lbs) **** END OF GEOSTASE OUTPUT**** -0.8717272E- Ninyo & Moore/ WRM Acadia Medical Facility, Chula Vista, CA Section B-B' Easterly Slope -Circular \B-B' East Slope Circular.gsd 1062r-N-o.-F~S-,-S~o~il---------,-----------------------r---------, Moist Wt Sat Wt Phi Peons! Piez Surf Soil 1062 C ru 950 837 1 1.598 No. 2 1.600 CJ 1 Olay Formatioo 3 1.601 llilil2 Fill 4 1.610 5 1.610 6 1.613 7 1.616 8 1.617 9 1.618 10 1.621 725 ... (pen (pen (psn 120.0 130.0 300.0 120.0 130.0 200.0 (deg) (ratio) (psn No. Options 28.0 0.000 0.0 0 30.0 0.000 0.0 ..... 950 ······· 837 . .... 725 L...:;===.c:..i...i.:Z:=...i.:Z:...i.:Z:~=...i.:Z:...i.:Z:...i.:Z:~...i.:Z:...i.:Z:...i.:Z:'-".L...i.:Z:...i.:Z:...i.:Z:...i.:Z:~~~~~~~=~:..:.±~~~~500 GEOSTASE. SlopeMili~ /Juh'Sis 112 225 337 450 562 GEOSTASE FS = 1.598 Spencer Method GEOSTASE0 by GREGORY GEOTECHNCAL SOFTWARE 675 787 900 PLATE E-3 GEOSTASE(R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregcry, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified B:.shcp, Simplified .:'anbu, er General Equilibrium (GE) Options. (Spencer, Mcrgenstern-Pr:.ce, USACE, and Lcwe & Karafiath: Including P:.er/Pile, Planar Reinf, Nail, Tieback, Line Leads Applied Fcrces, Fiber-Reinfcrced Seil (FRS), Distributed Leads Ncnlinear Cndrained Shear Strength, Curved Strength Envelope, Anisctrcpic Strengths, Water Surfaces, 3-Stage Rapid Drawdc,m 2-er 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. +***********************************➔'******************************************** Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Circular.gsd Calcs\B-B'\Stability Fill\B-8' Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Circular.OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section 8-8' Easterly Slope -Circular BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 X -1 (ft) 0.000 30.000 57.000 155.000 205.000 828.000 876. 000 57. 000 57.100 71.900 72.000 245.000 371. 000 700.000 700.100 813.000 861.000 User Specified X-Origin User Specified Y-Origin y -1 (ft) 640.000 643.000 657. 000 708.000 710.000 710. 000 686.000 657. 000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 30.000 57.000 155.000 205.000 828.000 876.000 900.000 57.100 71. 900 72.000 245.000 371.000 700.000 700.100 813.000 861.000 876.000 O.OOO(ft) 500.000(ft) y -2 (ft) 643.000 657.000 708.000 710.000 710.000 686.000 686.000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 686.000 Soil Number Moist Saturated Cohesion Friction Pore Soil Type Below Bnd 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the Start Range Along The Specified Surface Between X and X 0.00(ft) 80.00(ft) Each Surface Enters within a Range Between and X X 130.00(ft) 600.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 500.00(ft) Specified Maximum Radius= 5000.000(ft) 20.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function= Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient= 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 45.00 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 969 Number of Trial Surfaces With Valid FS = 4031 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 19.4 % Statistical Data On All Valid FS Values: FS Max= 11.962 FS Min 1.598 FS Ave 3.888 Standard Deviation 1. 997 Coefficient of Variation 51.36 % Critical Surface is Sequence Number 1743 of Those Analyzed. ***'*BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***+* BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 155.152730(ft) 40.107367(ft); Y = 798.816762(ft); and Radius Circular Trial Failure Surface Generated With 9 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 31.718 643.891 2 51. 717 644.099 3 71.523 646.878 4 90.807 652.182 5 109.249 659.922 6 126.541 669.970 7 142.398 682.159 8 156.554 696.287 9 165.935 708.437 Iter. Theta FS FS No. (deg) (Moment) (Force) ( fx=l. 0) Lambda 1 15.0000 1. 735514 1.564095 0.268 2 19.9500 1.669606 1.582938 0.363 3 25.0109 1. 565991 1.603849 0.467 4 23. 4726 1. 602877 1.597285 0.434 5 23. 67 08 1.598434 1.598120 0.438 6 23.6827 1.598167 1. 598169 0. 439 7 23.6826 1.598169 1. 598169 0. 439 Factor Of Safety For The Preceding Specified Surface Theta (fx = 1.0) 23.68 Deg Lambda= 0.439 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Delta FS 0.1714187E+00 0.8666738E-01 0.3785826E-01 0.5592380E-02 0.3142604E-03 0.2728417E-05 0.5028648E-08 1. 598 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor 5000.00 Maximum number of iterations 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack 0.000(ft) 0.000(ft) Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Theoretical Tension Crack Depth= 5. 774 ( ft) NOTE: In Table 1 following, when a tension crack with wat:er is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** X Coord. 36.72 41. 7 2 46.72 51. 72 54.36 57.00 57 .10 61. 91 66.72 71.52 71. 90 72. 00 76.70 81. 4 0 86.11 90.81 95. 4 2 100.03 104.64 109.25 113. 21 117.18 121.86 126.54 131.83 137 .11 142. 40 146.60 150.80 155.00 156.55 161. 24 165.93 y Coord. 645.01 645.95 64 6. 84 647.70 648.38 64 9. 06 649.09 650. 32 651. 54 652. 7 5 652.88 652. 91 654.54 656.17 657.79 659.41 661.45 663.49 665.54 667.60 669.78 671. 98 67 4. 59 677.23 680. 87 684. 60 688.24 691.53 694.66 697.75 698.92 705.22 708.44 h/H 0. 421 0.385 0.366 0.354 0.350 0.347 0.347 0.341 0.336 0.332 0.332 0.332 0.329 0.327 0.325 0.322 0.320 0.319 0.317 0.316 0.315 0.313 0.312 0.313 0.312 0.316 0.316 0.300 0.270 0.227 0.223 0.485 0.000 Side Force (lbs) 1500.00 3622.22 6366.65 9733. 31 11044. 77 12425.35 12478.98 15174.68 18100.55 21256.59 21381.83 21415.11 22999. 73 24622.80 26284.32 27984.28 27917.33 27829.65 27721.26 27592.14 26034.44 24500.57 22714.59 20957. 94 17374.86 14046.09 10930.28 77 63 .10 5012.56 2657.26 1913. 42 -15. 7 0 0.00 fx 1.000 1.000 1.000 1. 000 1. 000 1. 000 1. 000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.877 0.720 0. 564 0. 4 07 0.349 0.175 0.000 Force Angle (Deg) 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 23.68 21.04 17.53 13.89 10 .13 8.71 4.38 0.00 Vert. Shear Force(lbs} 602.5 14 54. 9 2557.3 3909.6 4436.3 4990.9 5012.4 6095.2 7 27 0. 4 8538.1 8588.4 8601.8 9238.3 9890.2 10557.6 11240. 4 11213.5 11178.3 11134. 8 11082. 9 10457.2 9841.1 9123.7 8418.2 6978.9 5641. 9 3923.5 2338.8 1203.4 4 67. 4 289.9 -1.2 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. Width (ft) 5.00 5.00 5.00 5.00 2.64 2.64 0 .10 4.81 4.81 4.81 0.38 0 .10 4. 70 4.70 4. 70 ***Table 2 -Geometry Data on the Height (ft) 1. 27 3.81 6.35 8.89 10.66 11. 66 12.18 13.11 14.94 16.77 17.73 17.78 18.37 19.53 20.68 X-Cntr (ft) 34.22 39.22 44.22 49.22 53.04 55.68 57.05 59.50 64. 31 69.12 71.71 71. 95 74.35 79.05 83.75 Y-Cntr-Base ( ft) 643.92 643.97 644.02 644.07 644.28 644.65 644.85 645.19 645.87 646.54 646.93 647.00 647.66 648.95 650.24 33 Slices*** Y-Cntr-Top (ft) 64 5 .19 647.78 650.37 652. 96 654.95 656.32 657.03 658.30 660.81 663.31 664.66 664.78 666.03 668.48 67 0. 92 Alpha (deg) 0.60 0.60 0.60 0.60 7.99 7.99 7.99 7.99 7.99 7.99 15.38 15.38 15.38 15.38 15.38 Beta (deg) 27. 41 27.41 27. 41 27.41 27. 41 27.41 27. 4 9 27.49 27. 4 9 27. 4 9 27.49 27. 4 9 27. 4 9 27. 4 9 27. 4 9 Base Length ( ft) 5.00 5.00 5.00 5.00 2. 67 2. 67 0.10 4.85 4.85 4.85 0.39 0.10 4.88 4.88 4.88 16 4.70 21. 84 88. 4 6 651.53 673.37 15.38 27. 4 9 4.88 17 4.61 22.64 93.11 653.15 67 5. 7 9 22.77 27. 4 9 5.00 18 4. 61 23.11 97. 7 2 655.08 67 8 .19 22.77 27. 4 9 5.00 19 4. 61 23.57 102.33 657.02 680.59 22.77 27. 4 9 5.00 20 4.61 24.04 106.94 658.95 682.99 22.77 27. 4 9 5.00 21 3. 96 24.15 111. 23 661.07 685.22 30 .16 27. 4 9 4. 58 22 3. 96 23.91 115.19 663.38 687.29 30 .16 27. 4 9 4.58 23 4.68 23.65 119.52 665.89 689.53 30.16 27. 4 9 5.42 24 4. 68 23.36 124.20 668.61 691. 97 30.16 27. 4 9 5.42 25 5.29 22.56 129.18 672.00 694.57 37.55 27. 4 9 6. 67 26 5.29 21. 25 134.47 676.06 697.32 37.55 27. 4 9 6. 67 27 5.29 19.94 139.76 680.13 7 00. 07 37.55 27. 4 9 6. 67 28 4. 20 18.28 144.50 684.26 7 02. 53 4 4. 94 27. 4 9 5.93 29 4. 20 16.27 148.70 688.45 7 04. 7 2 44. 94 27. 4 9 5. 93 30 4.20 14.27 152.90 692.64 7 06. 91 4 4. 94 27. 4 9 5.93 31 1.55 12.52 155.78 695.51 708.03 44. 94 2.29 2.20 32 4. 69 8.83 158.90 699.32 708.16 52.33 2.29 7. 68 33 4. 69 2.94 163.59 705.40 708.34 52.33 2.29 7. 68 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 31. 718344 643.890993 2 36.718073 643.943000 3 41.717803 643.995006 4 46. 717532 644. 047013 5 51.717262 644.099019 6 54.358631 644.469619 7 57.000000 644.840220 8 57 .100000 644.854250 9 61. 9077 54 645.528808 10 66.715509 646.203365 11 71.523263 646. 877922 12 71.900000 646.981535 13 72.000000 647.009037 14 76. 701810 648.302160 15 81.403620 649.595282 16 86.105431 650.888404 17 90.807241 652.181526 18 95.417621 654 .116570 19 100.028001 656.051615 20 104.638381 657.986659 21 109.248761 659.921703 22 113.212817 662.225077 23 117.176873 664.528450 24 121.859131 667.249144 25 126.541388 669.969839 26 131.826852 67 4. 032882 27 137 .112316 67 8. 095924 28 142.397780 682.158967 29 146.598520 686.351073 30 150.799260 690.543179 31 155.000000 694.735286 32 156.554456 696. 28654 7 33 161.244676 702.361971 34 165.934895 708. 437396 ***Table 3 -Force and Pore Pressure Data On The 33 Slices (Excluding Reinforcement)*** Vbeta Ubeta Valpha Earthquake Force Stress Force Pore For::;e Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 7 62.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 2286.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 3810.5 0.0 o.o 0.0 0.0 0.0 0.0 0.00 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 5334.6 0.0 0.0 0.0 0.0 337 9. 2 0.0 0.0 0.0 0.0 3695.9 0.0 0.0 0.0 0.0 146.1 0.0 0. 0 0.0 0.0 7564.4 0.0 0.0 0.0 0.0 8618.7 0.0 0. 0 0.0 0.0 967 3. 0 0.0 0. 0 0.0 0.0 801. 4 0.0 0.0 0.0 0.0 213. 4 0.0 0.0 0.0 0.0 10366.9 0.0 0.0 0.0 0.0 11017.9 0.0 0.0 0.0 0.0 11668. e 0.0 0.0 0.0 0.0 12319. 8 0.0 0.0 0.0 o.o 12527.8 0.0 0.0 0.0 0.0 12784.6 0.0 0.0 0.0 0.0 13041.5 0.0 0.0 0.0 0.0 13298.3 0.0 0.0 0.0 0.0 11487.2 0.0 0.0 0.0 0.0 11372. 9 0.0 0.0 0.0 0.0 13286.0 0.0 0.0 0.0 0.0 13126.5 0.0 0.0 0.0 0.0 14311. 2 0.0 0.0 0.0 0.0 13478.8 0.0 0.0 0.0 0.0 12646.4 0.0 0.0 0.0 0.0 9214.6 0.0 0.0 0.0 0.0 8203.4 0.0 0.0 0.0 0.0 7192. 2 0.0 0.0 0.0 0.0 2335.4 0.0 0.0 0.0 0.0 4 97 0. 7 0.0 0.0 0.0 0.0 1656.9 0.0 0.0 0.0 0.0 TOTAL WEIGHT OF SLIDING MASS 266593.63(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 266593.63(lbs) TOTAL AREA OF SLIDING MASS = 2221. 61 ( ft2) ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 33 Slice Soil Cohesi:::,n Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 2 200.00 30.00 24 2 200.00 30.00 25 2 200.00 30.00 26 2 200.00 30.00 27 2 200.00 30.00 28 2 200.00 30.00 29 2 200.00 30.00 30 2 200.00 30.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0. 0 O.GO 0.0 0.0 0.00 0.0 0. 0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0 0.00 SLICES*** 31 32 33 2 2 2 00.00 00.00 00.00 30.00 30.00 30.00 SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL ( FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Seil Options (if any). Slice Ne. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Slice No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 ***TABLE 5 -Total Ease Stress Data on the 33 Slices*** Alpha (deg) 0.60 0.60 0.60 0.60 7.99 7.99 7.99 7.99 7.99 7. 99 15.38 15.38 15.38 15.38 15.38 15.38 22.77 22.77 22. 77 22.77 30 .16 30.16 30.16 30.16 37.55 37.55 37.55 4 4. 94 4 4. 94 4 4. 94 4 4. 94 52.33 52.33 X-Coord. Slice Cntr (ft) 34. 22 39.22 44. 22 4 9. 22 53. 04 55.68 57.05 5 9. 50 64. 31 69.12 71. 71 71. 95 74.35 7 9. 05 83.75 88.46 93 .11 97. 72 102.33 10 6. 94 111. 23 115.19 119. 52 124.20 129.18 134. 4 7 139. 76 144.50 148.70 152.90 155.78 158.90 163.59 Base Leng. (ft) 5.00 5.00 5.00 5.00 2. 67 2. 67 0 .10 4.85 4.85 4.85 0.39 0.10 4.88 4. 88 4. 88 4.88 5.00 5.00 5.00 5.00 4. 58 4. 58 5. 4 2 5. 4 2 6.67 6.67 6.67 5. 93 5.93 5. 93 2.20 7.68 7.68 Total Normal Stress (psf) 270.05 623.66 977.28 1330.90 1387.67 1512.25 1576. 91 1693.22 1921.10 2148.99 2023.87 2030.46 2096. 76 2226.62 2356.47 2486.32 2310.10 2357.40 2404.70 2451.99 2204.72 2182.57 2158.50 2132.41 1830.75 1722.62 1634.54 1349.97 1224.60 1091. 7 9 957.90 589.33 130.23 Total Vert. Stress (psf) 152.43 457.28 762.13 1066.99 127 9. 35 1399.23 1461.45 1573.38 1792.67 2011. 97 2127.16 2134 .18 2204.87 2343.32 2481.77 2620.22 2717.30 2773.01 2828.72 2884.42 2897.85 2869.00 2837.53 2803.45 2707.66 2550 .17 2392.67 2193.57 1952.85 1712.13 1502.42 1059. 81 353.27 ***TABLE 5A -Total Base Force Data on the 33 Slices*** Alpha (deg) 0.60 0.60 0.60 0.60 7.99 7.99 7.99 7.99 7.99 7.99 15.38 15.38 15.38 X-Coord. Slice Cntr ( ft) 34. 22 3 9. 22 44.22 4 9. 22 53. 04 55.68 57. 05 59.50 64. 31 69.12 71. 71 71. 95 74.35 Base Leng. (ft) 5.00 5.00 5.00 5.00 2.67 2.67 0.10 4.85 4. 85 4.85 0.39 0 .10 4.88 Total Normal Force (lbs) 1350.23 3118.32 4886.41 6654.50 3701.25 4033.53 159.24 8220.32 9326.67 10433.01 7 90. 7 8 210.58 10224.64 Total Vert. Force (lbs) 762.09 2286.28 3810. 46 5334.65 3379.25 3695.89 146.15 7564.43 8618.73 9673.04 801.38 213. 4 2 10366.90 Total Normal/Vert. Stress Ratio 1.772 1. 364 1. 282 1. 24 7 1. 085 1. 081 1. 07 9 1. 076 1. 07 2 1. 068 0. 951 0.951 0. 951 0. 950 0. 950 0. 94 9 0.850 0.850 0.850 0.850 0. 7 61 0. 7 61 0.761 0. 7 61 0.676 0.675 0.683 0.615 0.627 0.638 0.638 0.556 0.369 Total Normal/Vert. Force Ratio 1. 77 2 1. 364 1. 282 1. 24 7 1. 095 1.091 1. 090 1.087 1.082 1. 07 9 0. 987 0. 987 0.986 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Slice No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Slice No. * 1 2 3 15.38 15.38 15.38 22.77 22.77 22. 77 22.77 30.16 30.16 30.16 30.16 37 .. 55 37.55 37.55 4 4. 94 4 4. 94 4 4. 94 4 4. 94 52.33 52.33 7 9. 05 83.75 88.46 93.11 97. 72 102.33 10 6. 94 111. 23 115 .19 119. 52 124.20 129.18 134.47 139.76 144.50 148.70 152. 90 155.78 158.90 163.59 4.88 4.88 4.88 5.00 5.00 5.00 5.00 4. 58 4.58 5.42 5. 42 6.67 6.67 6. 67 5.93 5.93 5 .. 93 2. 20 7.68 7.68 10857.85 114 91. 05 12124.26 11550. 50 11786.99 12023.48 12259.97 10107. 94 10006.36 11688.99 11547.71 12205.03 114f:4.ll 10896. 95 8011. 62 7267.56 6479.40 2103.62 4523.24 999.52 11017.86 11668.82 12319. 78 12527.78 12784.62 13041.45 13298.29 11487.24 11372. 87 13286. 04 13126. 47 14311.25 13478.82 12646. 40 9214. 61 8203.40 7192.20 2335.45 4970. 73 1656. 91 0.985 0.985 0.984 0.922 0.922 0.922 0.922 0. 880 0.880 0.880 0.880 0.853 0.852 0.862 0.869 0.886 0.901 0.901 0. 910 0.603 ***TABLE 6 -Effective and Base Shear Stress Data on the 33 Slices*** Alpha (deg) 0.60 0.60 0.60 0.60 7.99 7.99 7. 99 7.99 7.99 7. 99 15.38 15.38 15.38 15.38 15.38 15.38 22. 77 22.77 22.77 22.77 30.16 30.16 30.16 30.16 37.55 37.55 37.55 4 4. 94 4 4. 94 4 4. 94 4 4. 94 52.33 52.33 X-Coord. Slice Cntr (ft) 34.22 39. 22 4 4. 22 4 9. 22 53.04 55.68 57.05 59.50 64.31 69.12 71. 71 71. 95 7 4. 35 79. 05 83. 75 88.46 93.11 97. 72 102.33 106.94 111.23 115.19 119.52 124 .20 129.18 134.47 13 9. 7 6 144.50 148.70 152.90 155.78 158.90 163.59 Base Leng. (ft) 5.00 5.00 5.00 5.00 2.67 2.67 0.10 4.85 4.85 4.85 0.39 0.10 4.88 4.88 4. 8 8 4.88 5.00 5.00 5.00 5.00 4.58 4.58 5.42 5.42 6.67 6.67 6.67 5.93 5.93 5.93 2.20 7.68 7.68 Effective Normal Stress (psf) 270.05 623.66 977.28 1330.90 1387.67 1512.25 1576. 91 1693.22 1921.10 2148.99 2023.87 2030.46 2896. 76 2226.62 2356.47 2486.32 2310.10 2357.40 2404.70 2451.99 2204.72 2182.57 2158.50 2132.41 1830.75 1722.62 1634.54 1349.97 1224.60 1091. 79 957.90 589.33 130.23 Available Shear Strength (psf) 443.59 631.61 819. 63 1007. 65 1037.84 1104.08 1138.46 1200.30 1321.47 1442.64 1376.11 1379.61 1414.87 1483.91 1552. 96 1622.00 1528. 30 1553.45 1578.60 1603.75 1472.27 1460.49 1446.21 1431.15 1256.99 1194 .55 1143. 70 97 9. 41 907. 02 830.35 753.04 54 0. 25 275.19 Mobilized Shear Stress (psf) 277. 56 395.21 512.86 630.50 649.39 690.84 712.35 751.05 826.86 902.68 861.06 863.25 885.31 928.51 971.71 1014.91 956.28 972.02 987. 7 6 1003.49 921.22 913.85 904. 92 8 95. 4 9 786.52 747.45 715.63 612.83 567.54 519.56 471.19 338.04 172.19 ***TABLE 6A -Effective and Base Shear Force Data on the 33 Slices*"'* Alpha (deg) 0.60 0.60 0.60 X-Coord. Slice Cntr ( ft) 34.22 39 .22 44.22 Base Leng. (ft) 5.00 5.00 5.00 Effective Normal Force (lbs) 1350.23 3118.32 4886.41 Available Shear Force (lbs) 2217.93 3158.04 4098.15 Mobilized Shear Force (lbs) 1387.80 1976.04 2564.28 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 0.60 4 9. 22 5.00 6654.50 7.99 53.04 2. 67 3701.25 7.99 55.68 2. 67 4033.53 7.99 57. 05 0.10 159.24 7.99 59. 50 4.85 8220.32 7.99 64.31 4. 85 9326.67 7.99 69 .12 4.85 10433.01 15.38 71. 71 0.39 7 90. 7 8 15.38 71. 95 C.10 210.58 15.38 74.35 4. 88 10224.64 15.38 7 9. 05 4. 88 1(857.85 15.38 83.75 4.88 11491.05 15.38 88. 4 6 4.88 12124.26 22.77 93.11 5.CO 11550.50 22.77 97.72 5.00 11786.99 22.77 102.33 5.CO 12023. 48 22.77 106. 94 5.00 12259.97 30.16 111.23 4.58 10107.94 30.16 115.19 4. 58 10006.36 30.16 119. 52 5. 4 2 11688. 99 30.16 124 .20 5.42 11547.71 37. 55 129.18 6.67 12205.03 37.55 134.47 6.67 11484 .11 37.55 139. 76 6.67 10896. 95 4 4. 94 144.50 5. 93 8011. 62 4 4. 94 148. 70 5.93 7267.56 4 4. 94 152.90 5.93 6479.40 4 4. 94 155.78 2.20 2103.62 52.33 158.90 7.68 4523.24 52.33 163.59 7.68 999.52 Average Effective Normal Stress= 1625.5225(psf) Average Available Shear Strength= 1147.3254(psf) Total Length of Failure Surface= 155.3504(ft) 5038.26 3152.52 2768.16 1732.08 2944.84 1842.63 114.96 71.93 5827.27 3646.22 6415.53 4014.30 7003. 78 4382.38 537.68 336.44 143.08 89.53 6899.45 4317.lC 7236.14 4527.77 7572.82 4738.43 7909.50 4949.lC 7641. 51 4781. 41 7767. 25 4860.09 7893.00 4938.78 8018.74 5017.46 6749.89 4223.51 6695.88 4189.72 7831.71 4900.42 7750.14 4849.39 8379.91 5243.44 7963.69 4983.01 7624.69 4770.89 5812.44 3636.93 5382.86 3368.14 4927.81 3083.41 1653.74 1034.77 4146.54 2594.55 2112 .11 1321. 58 SUM OF MOMENTS = -0. 362302E-03 (ft/lbs); Imbalance ( Fraction of Total \~eight) 0.1359004E-08 12 SUM OF FORCES= -.309219E-07 (lbs);Imbalance (Fraction of Total Weight)= Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.598169 178237.50(lbs) 111526. 07 (lbs) **** END OF GEOSTASE OUTPUT**** -0.1159889E- Ninyo & Moore I WRM Acadia Medical Facility, Chula Vista, CA Section B-8' Easterly Slope -Block (Static) \B-B' East Slope Block.gsd 1062~--~----------------------------~--------,1062 Soil Moist Wt Sat Wt e Phi ru Peons! Piez Surf Soil No. FS 1 1.889 2 1.895 3 1.895 4 1.895 5 1.895 950 6 1.895 7 1.895 8 1.895 9 1.895 10 1.895 837 725 ......... 612 GEOSTASE. Slope Su,bility Analvsls No. (pen (pen (psn {deg) (ratio) (psn No. Options 01 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 1112 Fill 120.0 130,0 200.0 30.0 0.000 0.0 0 112 225 337 450 562 GEOSTASE FS = 1.889 Spencer Method GEOSTASEol by GREGORY GEOTECHfilCAL SOFlWARE 675 ... , .............. 950 .. 837 ............. 725 787 PLATE E-4 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified 5ishcp, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Seil (FRS), Distributed Leads Ncr.linear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-er 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ****************************************y**************************************** Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slcpe Stability East Slope Block.gsd Calcs\B-B'\Stability Fill\B-B' Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slcpe Stability East Slope Block.OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope -Block (Static) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 X -1 (ft) 0.000 30.000 57.000 155.000 205.000 828.000 876.000 57. 000 57.100 71. 900 72.000 245.000 371. 000 700.000 700.100 813. 000 861.000 User Specified X-Origin User Specified Y-Origin y -1 (ft) 640.000 643.000 657. 000 708.000 710.000 710.000 686.000 657.000 652.000 652.000 658.000 683.000 705. 000 705.000 709.000 709.000 686.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 30.000 57. 000 155.000 205.000 828.000 876.000 900.000 57.100 71.900 72.000 245.000 371.000 700.000 700.100 813. 000 861.000 876.000 0.000(ft) 500.000(ft) y -2 (ft) 643.000 657.000 708.000 710.000 710. 000 686.000 686.000 652.000 652.000 658.000 683.000 705.000 705. 000 709.000 709.000 686.000 686.000 Soil Number Moist Saturated Cohesion Friction Pore Seil Type Below Bnd 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. l Otay 0 2 Fill 0 Formation 120. 0 130.0 300.00 28.00 120.0 130.0 200.00 30.00 A Non-c:_rcular Zone Search Has Been Selected For P..nalysis Using Ra~dom Generatio~ Within Specified Zones. 2 Zones Defined For Generation Cf Non-Circular Surfaces 5000 Trial Surfaces Have Peen Generated. 0.000 0.000 Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search= 25.00(ft) Zone No. l 2 X -l (ft) 72.00 72.10 y -1 (ft) 658.50 658.50 X -2 (ft) 72.00 370.00 y -2 (ft) 658.50 704.50 The Spencer Method Was Selected for FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Height (ft) 0.10 0.10 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient= 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 0.0 0.0 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS Number of Trial Surfaces With Valid FS = 3528 1472 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 29. 4 % Statistical Data On All Val id FS Values: FSMax= 11.465 FSMin= 1.899 FSAve 3.112 Standard Deviation= 0.828 Coefficient of Variation Critical Surface is Sequence Number 4 of Those Analyzed. 26.61 % 0 0 *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=l.0) Lambda Delta FS 1 15.0000 2.021309 1.803180 0.268 0. 2181291E+00 2 19.9500 1. 961303 1.850477 0.363 0.1108254E+00 3 25.0614 1.858517 1.902728 0. 4 68 0. 4421077E-01 4 23.6041 1. 893488 1. 887415 0. 437 0.6073402E-C2 5 23.7804 1.889536 1. 889248 C.441 0. 2877 992E-03 6 23. 7892 1.889337 1.889339 0.441 C. 192 67 37E-05 7 23.7891 1.889339 1.889339 0. 4 41 0.4101654E-08 Factor Of Safety For The Breceding Specified Surface 1. 88 9 Theta (fx = 1.0) 23.79 Deg Lambda= 0.441 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) 0.0001000 Minimum theta (deg) = -45. 00 ; Maximum theta (deg) 45. 00 Theta convergence Step Factor 5000.00 Maximum number of iterations 5Cl Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) 3t Side of Last Slice Depth of Water in Tension Crack Theoretic3l Tension Cr3ck Depth 0.000(ft) 5.774(ft) 0.000(ft) NOTE: In Table l following, when 3 tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the W3ter pressure resultant. *** T3ble 1 -Line of Thrust(if applic3ble) 3nd Slice Force Data*** Slice X y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 67 .15 660.52 0. 4 38 1299. 43 1. 000 23. 7 9 524.2 2 72.00 660.87 0.372 3717.98 1. 000 23. 7 9 1499.7 3 76.88 662.23 0.366 5020.97 1.000 23. 7 9 2025.3 4 81. 76 663.55 0. 357 6502.06 1. 000 23. 7 9 2622.7 5 86.64 664.84 0.349 8161.25 1. 000 23. 7 9 32 92. 0 6 91. 52 666.12 0.342 9998.54 1. 000 23. 7 9 4033.1 7 96. 4 0 667.38 0.335 12013.93 1. 000 23. 7 9 4846.1 8 101.28 668.63 0.330 14207. 41 1.000 23.79 5730.9 9 106.16 669.88 0.325 16579.00 1.000 23. 7 9 6687.5 10 111. 04 671.12 0.321 19128.68 1.000 23.79 7716. 0 11 115. 92 672.36 0.317 21856.46 1.000 23.79 8816. 3 12 120.80 673.60 0.314 24762.33 1.000 23.79 9988.4 13 125.68 674.83 0.311 27846.31 1.000 23.79 11232.4 14 130.56 67 6. 06 0.308 31108. 38 1.000 23. 7 9 12548.2 15 136.17 680.94 0. 296 22910.60 1.000 23. 7 9 9241. 5 16 141. 79 685.84 0.283 15832.06 1.000 23. 7 9 6386.2 Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ***Table Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 17 147.40 690.82 0.268 9876.63 0. 991 23.60 3954.8 18 151. 20 693.93 0.251 6719.10 0.812 19. 7 0 2265.3 19 155.00 696. 97 0.224 3960.14 0.633 15.60 1065.0 20 159.92 700.79 0.208 1287. 90 0. 4 02 10.04 224.5 21 164.84 706.08 0.486 -39.63 0.170 4.28 -3.0 22 168.45 708.54 0.000 0.00 0.000 0.00 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lcwer boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line cf thrust is at or above the upper boundary cf the sliding mass. **+Table 2 -Geometry Data en the 22 Slices+** Width Height X-Cntr Y-Cntr-Ease Y-Cntr-Top Alpha Eeta Base Length (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 4.85 1. 57 64. 72 659.45 661. 02 -7.20 27. 4 9 4. 89 4.85 4.71 69.57 658.83 663.54 -7. 20 27. 4 9 4. 8 9 4. 8 8 7.17 74.44 658.90 666.08 8.72 27. 4 9 4. 94 4.88 8. 96 79.32 659.65 668.62 8.72 27. 4 9 4. 94 4.88 10. 7 6 84. 20 660.40 671.15 8.72 27. 4 9 4. 94 4.88 12.55 89.08 661.15 673.69 8.72 27. 4 9 4. 94 4. 88 14.34 93. 96 661. 90 676.23 8.72 27. 4 9 4. 94 4. 88 16 .13 98.84 662.64 678.77 8.72 27. 4 9 4. 94 4.88 1 7. 92 103.72 663.39 681. 31 8.72 27.49 4. 94 4.88 19. 71 108.60 664.14 683.85 8.72 27. 4 9 4. 94 4. 8 8 21. 50 113. 4 8 664.89 686.39 8.72 27. 4 9 4. 94 4. 8 8 23.29 118. 36 665.64 688.93 8.72 27. 4 9 4. 94 4. 8 8 25.08 123.24 666.39 691.47 8.72 27. 4 9 4. 94 4. 8 8 26.88 128.12 667. 13 694.01 8.72 27. 4 9 4. 94 5.62 26.15 133.36 67 0. 5 9 696.74 47.64 27. 4 9 8.33 5.62 22.92 138.98 676.74 699.66 47.64 27. 4 9 8.33 5.62 19.68 144.59 682.90 702.58 47. 64 27. 4 9 8.33 3.80 17.10 149.30 687.93 705.03 45. 7 6 27. 4 9 5. 45 3.80 15 .18 153.10 691. 83 707.01 45. 7 6 27. 4 9 5. 45 4.92 11. 7 9 157.46 696.31 708.10 45.76 2.29 7.05 4. 92 6.93 162.38 7 01. 36 708.30 45.76 2.29 7.05 3.60 2.25 166.65 706.21 708.47 52 .19 2.29 5.88 2A -Coordinates of Slice Points Defining the Slip Surface*** X-Pt Y-Pt (ft) (ft) 62.292693 659.754360 67.146346 659.141374 72.000000 658.528387 76.879694 659.276685 81.759388 660.024982 86.639082 660.773279 91.518776 661. 52157 6 96.398471 662.269873 101.278165 663.018170 106.157859 663.766467 111.037553 664.514764 115. 917247 665.263062 120. 796941 666. 011359 125. 676635 666. 759656 130.556329 667. 507 953 136.171419 673.665486 141.786509 679. 823019 147.401598 685.980553 151.200799 689.882077 155.000000 693.783601 159.921419 698.837567 164.842837 703.891533 168. 447676 708.537907 ***Table 3 -Force and Pore Pressure Data On The 22 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Weight Top Top Bot Pressure (lbs) (lbs) (psf) (lbs) (psf) 914 .1 0.0 0.0 0.0 0.0 2742.3 0.0 0.0 0.0 0.0 4200.4 0.0 o.c o.c 0.0 5249.2 0.0 0.0 c.c o.c 6298.1 0.0 0.0 c.o c.c 7 34 6. 9 c.o 0.0 c.o c.o 8395.7 0.0 0.0 0.0 0.0 9444.5 c.c 0.0 c.c c.c 10493.4 c.c c.o c.o c.o 11542.2 0.0 c.c 0.0 0.0 12591.0 0.0 0.0 0.0 0.0 13639.8 0.0 0.0 0.0 0.0 14688.7 0.0 0.0 0.0 0.0 15737.5 0.0 0.0 0.0 0.0 17622.6 0.0 0.0 0.0 0.0 15442.6 0.0 0.0 0.0 0.0 13262.5 0. 0 0.0 0.0 0.0 77 97. 3 0. 0 0.0 0.0 0. 0 6 92 0. 0 0.0 0.0 0.0 0.0 6 961. 6 0.0 0.0 0.0 0.0 4093.1 0.0 0.0 0.0 0.0 97 3. 8 0.0 0.0 0.0 0.0 TOTAL WEIGHT OF SLIDING MASS 196357.25(1bs) EFFECTIVE WEIGHT OF SLIDING MASS = 196357. 25 (lbs) TOTAL AREA OF SLIDING MASS= 1636.31(ft2) •·**TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 22 Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.C0 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 21 2 200.00 30.00 22 2 200.00 30.00 Hor Ver (lbs) (lbs) 0.0 0.0 c.o 0.0 0.0 0.0 c.o 0.0 o.c c.o o.c c.o c.c c.c 0.0 c.o 0.0 c.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 SLICES*** SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL ( FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). Load (lbs) 0.00 C.00 0.00 C.00 C.00 0.00 c.co c.cc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 **,-TABLE 5 -Total Base Stress Data on the 22 Slices+** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -7.20 64. 72 4.89 322.12 188.33 1. 710 2 -7.20 69. 57 4.89 810.65 565.00 1. 4 35 3 8.72 7 4. 4 4 4. 94 909.65 860.80 1. 057 4 8.72 79.32 4. 94 1129.02 107 5. 7 3 1. 050 5 8.72 84.20 4. 94 1348.40 129C.67 1. 045 6 8.72 e9.oe 4. 94 1567.78 1505. 61 1.041 7 8.72 93. 96 4. 94 1787 .16 1720. 54 1. 039 8 8. 72 98. 84 4. 94 2006.54 1935.48 1. 037 9 8.72 103.72 4. 94 2225.92 2150.41 1.035 10 8. 72 108.60 4. 94 2445.29 2365.35 1. 034 11 8.72 113.48 4. 94 2664.67 2580.29 1.033 12 8.72 118. 36 4. 94 2884.05 2795.22 1.032 13 8.72 123.24 4. 94 3103.43 3010.16 1.031 14 8. 7 2 128.12 4. 94 3322.81 3225.10 1. 030 15 47.64 133.36 8.33 1822.67 3138.44 0.581 16 4 7. 64 138. 98 8.33 1592.09 2750.19 0. 57 9 17 47.64 144.59 8.33 1363. 73 2361. 94 0.577 18 4 5. 7 6 149.30 5.45 1260.43 2052.36 0.614 19 45. 7 6 153.10 5. 45 1149.85 1821.43 0.631 20 45. 7 6 157.46 7.05 918.88 1414.54 0.650 21 45. 7 6 162.38 7.05 534.36 831.69 0.643 22 52.19 166.65 5.88 95. 91 270.13 0.355 ***TABLE 5A -Total Base Force Data on the 22 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * ( ft) (ft) (lbs) (lbs) Force Ratio 1 -7.20 64.72 4. 8 9 1575.90 914 . 10 1. 7 24 2 -7.20 69. 57 4. 8 9 3965.86 2742.30 1. 44 6 3 8. 7 2 7 4. 4 4 4 . 9 4 4490.68 4200.42 1. 069 4 8.72 79.32 4. 94 5573.69 5249.25 1.062 5 9.72 84. 20 4. 94 6656.71 6298.07 1. 057 6 8.72 89.08 4. 94 7739.72 7346.89 1.053 7 8.72 93. 96 4. 94 8822.73 8395. 72 1. 051 8 8.72 98. 84 4. 94 9905.74 9444.54 1. 049 9 8.72 103.72 4. 94 10988.76 10493.36 1. 04 7 10 8.72 108.60 4. 94 12071. 77 11542.19 1. 046 11 8.72 113.48 4 . 94 13154.78 12591.01 1.045 12 8.72 118.36 4. 94 14237.79 13639.83 1. 04 4 13 8.72 123.24 4. 94 15320.80 14688.65 1. 043 14 8.72 128.12 4. 94 16403.82 15737.48 1. 042 15 47.64 133.36 8.33 15188.90 17622.62 0.862 16 47.64 138. 98 8.33 13267.43 15442.58 0.859 17 4 7. 64 144.59 8.33 11364.44 13262.53 0.857 18 45. 7 6 149.30 5.45 6863.93 7797.32 0.880 19 45. 7 6 153.10 5.45 6261.74 6919.98 0.905 20 4 5. 76 157.46 7.05 6482.01 6961.55 0.931 21 45. 76 162.38 7.05 3769.54 4093.09 0.921 22 52.19 166.65 5.88 564.04 973.78 0.579 ,-**TABLE 6 -Effective and Base Shear Stress Data on the 22 Slices*'Y* Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress ;-(ft) (ft) (psf) (psf) (psf) 1 -7. 20 64.72 4. 8 9 322.12 385.98 204.29 2 -7. 20 69.57 4. 8 9 810.65 668.03 353.58 3 8.72 74.44 4. 94 909.65 725.18 383.83 4 8.72 7 9. 32 4. 94 1129.02 851.84 450.87 5 8.72 84.20 4. 94 1348.40 97 8. 50 51 7. 91 6 8.72 89.08 4. 94 1567.78 7 8.72 93. 96 4. 94 1787.16 8 8.72 98.84 4. 94 2006.54 9 8.72 103. 72 4. 94 2225.92 10 8.72 108.60 4. 94 2445.29 11 8. 7 2 113. 4 8 4. 94 2664.67 12 8.72 118.36 4. 94 2884.05 13 8.72 123.24 4. 94 3103. 43 14 8.72 128.12 4. 94 3322.81 15 47. 64 133.36 8.:03 1822.67 16 47. 64 138.98 8.33 1592.09 17 47. 64 144.59 8. :03 1363.7:o 18 45. 76 14 9. 30 5. 45 1260.43 19 45.76 153 .10 5. 45 1149.85 20 45. 7 6 157.46 7.05 918.88 21 45. 7 6 162.38 7.05 534.36 22 52 .19 166.65 5.88 95. 91 ***TABLE 6A -Effective and Base Shear Force Data Slice Alpha X-Coord. Base Effective No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (deg) Slice Cntr Leng. Normal Force ( ft) ( ft) (lbs) -7.20 64.72 4. 8 9 1575.90 -7.20 6 9. 57 4. 89 3965.86 8.72 74.44 4. 94 4490.68 8.72 7 9. 32 4. 94 5573.69 8.72 84.20 4. 94 6656. 71 8.72 8 9. 08 4. 94 7739. 72 8.72 93. 96 4. 94 8822.73 8. 72 98.84 4. 94 9905.74 8.72 103.72 4. 94 10988.76 8.72 108.60 4. 94 12071. 77 8.72 113.48 4. 94 13154.78 8.72 118.36 4.94 14237.79 8.72 123.24 4. 94 15320.80 8.72 12 8 .12 4. 94 16403.82 47. 64 133.36 8.33 15188.90 47.64 138.98 8.33 13267.43 47. 64 144.59 8.33 11364.44 45.76 149.30 5. 4 5 6863.93 45.76 153.10 5.45 6261. 74 45.76 157.46 7.J5 6482.01 45.76 162.38 7.05 3769.54 52 .19 166.65 5.88 564. 04 Average Effective Normal Stress= 1558.5378(psf) Average Available Shear Strength= 1099.8222(psf) Total Length of Failure Surface= 124.9060(ft) 1105.16 584. 94 1231. 82 651. 98 1352.47 719.02 1485.13 786.06 1611.79 853. 10 1738. 45 920.14 1865.11 987.17 1991. 76 1054.21 2118.42 1121. 25 1252.32 662.83 1119.19 592.37 987.35 522.59 927. 71 4 91. 02 863.86 457.23 7 30. 51 386.65 508.51 269.15 255.37 135.17 on the 22 Slices*** Available Mobilized Shear Force Shear Force (lbs) (lbs) 1888.29 999.44 3268.13 1729.78 3580.04 1894.87 4205.32 2225.82 4830.60 2556.77 5455.88 2887.72 6081.15 3218.67 6706.43 3549.62 7331. 71 3880.57 7956.99 4211. 52 8582.26 4542.47 9207.54 4873.42 9832.82 5204.37 10458.09 5535.32 10435.98 5523.62 9326.62 4936.45 8227.93 4354.92 5052.04 2673.97 4704.36 2489. 95 5153.24 2727.54 3587.20 1898.66 1501.80 794.88 SUM OF MOMENTS 0.7700665E-09 -0.151208E-03 (ft/lbs);Imbalance (Fraction of Total Weight)= SUM OF FORCES 12 -. 4 28195E-07 (lbs); Imbalance ( Fraction of Total Weight) = Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.889339 137374.43(lbs) 72710.33(lbs) **** END OF GEOSTASE OUTPUT**** -0.2180693E- Ninyo & Moore I WRM Acadia Medical Facility, Chula Vista, CA Section B-8' Stability Fill (Static) \B-B' Stability Fill Static.gsd 77S,,...,N-o.-----:F~S-i-S~o~il---------,-.,.,.----,-~------------------,-------Moist Wt Sat Wt Phi Pconst Piez Surf Soil 775 C ru 750 GEOSTASE I SlopaSwbilicy Ami,..;, 1 2.169 No. 2 2.183 01 Otay Fonnation 3 2.190 2 Fill 4 2.200 5 2.203 6 2.203 7 2.205 8 2.212 9 2.213 10 2.214 25 so (pct) (pen (psn (deg) (ratio) (psn 120.0 130.0 300.0 28.0 0.000 0.0 120.0 130.0 200.0 30.0 0.000 0.0 75 100 125 GEOSTASE FS =2.169 Spencer Method GEOSTASElu by GREGORY GEOTECHNCAL SOFlWARE No. Options 0 750 150 175 PLATE E-5 GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, er Ger.eral Equilibrium (GE) Optior.s. (Sper.cer, Morgenstern-Price, USACE, and Lowe & Karafiath) Ir.eluding Pier/Pile, Plar.ar Reir.f, Nail, Tieback, Line Loads Applied Forces, Fiber-Reir.forced Soil (FRS), Distributed Loads Nor.lir.ear Ur.drained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Stability Fill Static.gsd G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Stability Fill Static.OUT Calcs\B-B'\Stability Fill\B-B' Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Stability Fill (Static) BOUNDARY DATA 3 Surface Boundaries 6 Total Boundaries Boundary X -1 No. (ft) 1 0.000 2 24.00J 3 72.00J 4 24.000 5 39.000 6 87.000 y -1 X -2 (ft) (ft) 686.000 24.000 686.000 72. OOJ 710.JOJ 200.0JO 686.000 39.000 686.000 87.000 709.000 200.000 User Specified X-Origin O.OOO(ft) User Specified Y-Origin MOHR-COULOMB SOIL PARA~ETERS 2 Type(s) of Soil Defined 650.000(ft) Soil Nurrber Moist Saturated Cohesion Water and Unit Wt. Unit Wt. lntercept Option Description (pcf) (pcf) (psf) 1 Otay Formation 120.0 130.0 3JO.JO 0 2 Fill 120.0 130.0 2JO.OO 0 y -2 Soil Type (ft) Below Bnd 686.000 1 710. JOJ 2 710. 000 2 686.JOO 1 709.000 1 709.000 1 Friction Pore Pressure Angle Pressure Constant (deg) Ratio(ru) (psf) 28.00 0.000 0.0 30.00 0.000 0.0 Water Surface No. 0 0 TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.0360(in) Equally Spaced Within the Start Range Alcng The Specified Surface Between X and X Each Surface Enters within a Range Between and 15.00(ft) 3C.OO(ft) X X 65.00(ft) 2CC.OO(ft) Unless XCLUDE Lines Were Specified, To Which A Surface Extends Is Y = The Minimum Elevation 650.CC(ft) Specified Maximum Radius= 5000.000(ft) 8.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 4'88 Number of Trial Surfaces With Valid FS = 4512 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 9.8 % Statistical Data On All Valid FS Values: FS Max 9.589 FS Min 2.169 FS Ave= 4.436 Standard Deviation= 1.770 Coefficient of Variation 39.90 % Critical Surface is Sequence Number 2971 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 66.642014(ft) 24.427814(ft) ; Y = 752.816904(ft); and Radius Circular Trial Failure Surface Generated With 9 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 24.350 686.175 2 32.336 686.646 3 40.208 688.070 4 7. 853 690.428 5 55.160 693.684 6 62.024 697. 793 7 68.347 702.694 8 74.037 708.318 9 75.372 710. 000 Iter. Theta FS FS No. (deg) (Moment) (Force) ( fx=l. 0) Lambda l 15.0000 2.345018 2.109622 0.268 2 19.9500 2.236837 2.130058 0.363 3 24.0588 2.055723 2.178462 0. 4 4 6 4 21. 8611 2.167436 2.169207 0. 401 5 21. 8294 2.168751 2.169075 0. 4 01 6 21.8223 2.169045 2.169046 0. 4 00 7 21.8223 2.169046 2.169046 0. 4 00 Factor Of Safety For The Preceding Specified Surface Theta (fx 1.0) 21.82 Deg Lambda= 0.400 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Delta FS 0. 2353964E+OO 0.1067799E+OO 0.1227395E+OO 0.1770779E-02 0.3248744E-03 0.1337365E-05 0.6883573E-07 2.169 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= O.OO(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth O.OOO(ft) 5.774(ft) O.OOO(ft) NOTE: ln Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** X Coard. y Coard. h/H Side Force (lbs) fx Force Angle (Deg) Vert. Shear Force(lbs) 1 28.34 687. 09 0. 387 527.67 1. 000 21. 82 196. 2 2 32. 34 687.90 0.356 1257.29 1.000 21. 82 4 67. 4 3 36.27 688.95 0.332 1832.94 1.000 21. 82 681.4 4 40. 21 690.01 0.321 2462.30 1. 000 21. 82 915.3 5 44. 03 691. 34 0.309 2719.19 1. 000 21.82 1010.8 6 47.85 692.68 0. 301 2962 .18 1.000 21. 82 1101. 1 7 50.62 693.89 0. 292 2830.35 1.000 21. 82 1052.1 8 53.39 695 .11 0.284 2690.39 1.000 21.82 1000.1 9 55 .16 695.85 0.275 2653.46 1.000 21.82 986.4 10 55.66 696.10 0.270 2592.89 1.000 21. 82 963. 9 11 58. 84 697.79 0.252 2111. 28 1.000 21.82 784. 8 12 62. 02 699.49 0. 235 1662.88 1.000 21. 82 618.1 13 65 .19 7 01. 4 6 0 .191 1018.55 1.000 21.82 378.6 14 68.35 703.36 0.121 502.60 l.OCC 21.82 186.8 15 72.00 710.03 1.000+ -43.09 1.000 21.82 -16.0 16 74. 04 708.89 0.341 -114.74 1.000 21.82 -42.7 17 75.37 710.00 0.000 0.00 1. 000 21.82 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 -Geometry Data on the 17 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 3.99 0.88 26.35 686.29 687 .17 3.37 26.57 4.00 2 3.99 2.64 30.34 686.53 689.17 3.37 26.57 4.00 3 3.94 4 .15 34.30 687.00 691.15 10.26 26.57 4.00 4 3.94 5.41 38.24 687.71 693.12 10.26 26.57 4.00 5 3.82 6. 4 0 42.12 688.66 695.06 17 .14 26.57 4.00 6 3.82 7.13 45.94 689.84 696.97 17.14 26.57 4.00 7 2.77 7.57 49.24 691. 04 698.62 24.02 26.57 3.03 8 2.77 7.72 52.01 692.28 700.00 24. 02 26.57 3.03 9 1. 77 7.85 54.28 693.29 7 01 .14 24.02 26.57 1. 94 10 0.50 7.87 55.41 693.83 7 01. 7 0 30.90 26.57 0.58 11 3.18 7.69 57.25 694.93 7 02. 62 30.90 26.57 3.71 12 3.18 7.38 60. 4 3 696. 84 704 .22 30.90 26.57 3.71 13 3.16 6. 7 8 63.61 699.02 7 05. 80 37.78 26.57 4.00 14 3 .16 5.91 66. 77 7 01. 4 7 7 07. 38 37. 78 26.57 4. 00 15 3.65 4.59 70.17 704.50 709.09 44. 67 26.57 5.14 16 2.04 2.69 73.02 787.31 710.00 44. 67 J.00 2.86 17 1. 34 0.84 74.70 709.16 710.00 51. 55 0.00 2.15 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. ( ft) (ft) 1 24.349870 686.174935 2 28.342936 686.410354 3 32.336002 686.645772 4 36.272088 687 .357976 5 40.208173 688.070179 6 44.030555 689.248904 7 47.852938 690. 427628 8 50.622427 691. 66187 8 9 53.391917 692.896127 10 55.160131 693.684148 11 55.656401 693.981192 12 58.840427 695.887001 13 62.024452 697. 792810 14 65.185716 700.243607 15 68.346981 702.694405 16 72.000000 706.305221 17 74.036605 708.318298 18 75.371931 710. 000000 ***Table 3 -Force and Pore Pressure Data On The 17 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 421. 9 c.o o.c 0.0 0.0 o.c 0.0 0.00 2 1265.8 o.c 0.0 0.0 0.0 o.c o.c 0.00 3 1960.2 c.c 0.0 o.c 0.0 0.0 0.0 C.00 4 2553.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 2935.7 0.0 o.o 0.0 o.c c.o 0.0 0.00 6 3271. 6 c.o 0.0 0.0 c.o c.o 0.0 0.00 7 2517. 2 0.0 o.o 0.0 0.0 o.c 0.0 0.00 8 2567.2 0.0 o.o c.o o.c 0.0 0. 0 C.00 9 1665. 2 0. 0 o.o 0.0 0.0 o.c 0.0 0.00 10 468.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 2938.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 2818.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 2573.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 2243.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 2010.7 0.0 o.o 0.0 0.0 0.0 0.0 0.00 16 657.0 0.0 o.o 0.0 0.0 0.0 0.0 0.00 17 134. 7 0.0 o.o 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS 33003.27(lbs) EFFECTIVE WEIGHT OF SLIDING MASS 33003.27(lbs) TOTAL AREA OF SLIDING MASS= 275.03(ft2) ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 17 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 2JO.OO 30.00 5 2 200.00 30.00 6 2 2JO. JO 30.00 7 2 200.00 30. JO 8 2 200.00 30.00 9 1 300.00 28.00 10 1 300.00 28.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 SOIL OPTIONS: A ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 -Total Base Stress Data on the 17 Slices*+-* Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 3.37 26.35 4. 00 147.05 105.67 1. 392 2 3.37 30. 34 4.00 373.62 317.00 1. 179 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Slice No. .,. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Slice No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Slice No. * 10. 26 10. 26 17.14 17.14 24.02 24.02 24.02 30.90 30.90 3C.90 37.78 37.78 4 4. 67 44.67 51.55 34.30 38.24 42.12 45. 94 4 9. 24 52. 01 54.28 55.41 57.25 60. 43 63. 61 66.77 70 .1 7 73.02 74.70 4.00 4.00 4.00 4.00 3.03 3.03 1. 94 0.58 3. 71 3.71 4.00 4.00 5.14 2.86 2.15 511. 08 65 9. 7 0 706.57 786.55 759.95 775.12 786. 43 711. 96 699.89 670. 75 552.80 478.75 319.66 172.88 12.52 498.02 648.72 7 6 8. 02 855. 91 908.89 92 6. 95 941.74 94 4. 58 922. 81 885.16 814.12 709. 70 550.43 322.59 100.90 ***TABLE 5A -Total Base Force Data on the 17 Slices*** Alpha (deg) 3.37 3.37 10. 26 10. 26 17.14 17.14 24.02 24.02 24.02 30.90 30.90 30.90 37.78 37.78 44.67 4 4. 67 51.55 X-Coord. Slice Cntr (ft) 26.35 30.34 34.30 38.24 42 .12 45. 94 49.24 52. 01 54. 28 55.41 57.25 60.43 63. 61 66. 77 7 0 .17 7 3. 02 74.70 Base Leng. (ft) 4.00 4.00 4.00 4.00 4.00 4.00 3.03 3.03 1. 94 0.58 3. 71 3.71 4.00 4.00 5.14 2.86 2.15 Total Normal Force (lbs) 588.18 1494.50 2044.33 2638. 79 2826.28 3146.19 2304.23 2350.23 1522.42 411. 7 8 2597.15 2489.04 2211.19 1915.01 1641.90 495.07 26. 8 9 Total Vert. Force (lbs) 421. 93 1265.80 1960. 24 2553.41 2935.65 3271.63 2517.16 2567.18 1665.21 468.76 2938.26 2818.36 2573.65 2243.55 2010.74 656.99 134.74 1. 026 1.017 0. 920 0. 919 0.836 0.836 0.835 0. 7 54 C.758 0.758 0.679 0.675 0.581 0.536 0.124 Total Normal/Vert. Force Ratio 1. 3 94 1.181 1.043 1.033 0. 963 0. 962 0.915 0. 915 0.914 0.878 0.884 0.883 0.859 0. 854 0.817 0. 7 54 0.200 ***TABLE 6 -Effective and Base Shear Stress Data on the 17 Slices*** Alpha (deg) 3.37 3.37 10.26 10.26 17.14 17.14 24.02 24.02 24.02 30.90 30. 90 30.90 37. 7 8 37. 7 8 44. 67 44. 67 51..55 X-Coord. Slice Cntr ( ft) 26 .35 30.34 34.30 38.24 42 .12 45. 94 4 9. 24 52. 01 54.28 55.41 57.25 60. 43 63.61 66. 77 7 0 .1 7 73.02 74.70 Base Leng. (ft) 4.00 4.00 4.00 4. 00 4.00 4.00 3.03 3.03 1. 94 0.58 3.71 3.71 4.00 4.00 5.14 2.86 2.15 Effective Normal Stress (psf) 147.05 373.62 511. 08 659.70 706.57 786.55 759.95 775.12 786. 43 711. 96 699.89 670.75 552.80 478.75 319.66 172.88 12.52 Available Shear Strength (psf) 284.90 415.71 495.07 580.88 607. 94 654 .11 638.76 647.52 718.15 67 8. 55 604.08 587.26 519. 16 476.41 384.56 299.81 207.23 Mobilized Shear Stress (psf) 131.35 191. 66 228.25 267.80 280.28 301. 57 2 94. 4 9 2 98. 53 331.09 312.84 278.50 270. 7 5 239.35 219.64 177.29 138.22 95.54 ***TABLE 6A -Effective and Base Shear Force Data on the 17 Slices*** Alpha (deg) X-Coord. Slice Cntr (ft) Base Leng. (ft) Effective Normal Force (lbs) Available Shear Force (lbs) Mobilized Shear Force (lbs) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3.37 26.35 4.00 588.18 3.37 30.34 4.00 1494.50 10. 26 34. 30 4.00 2044.33 10.26 38.24 4.00 2638.79 17 .14 42.12 4.00 2826.28 17.14 45.94 4.00 3146.19 24.02 4 9. 24 3.03 2304.23 24.02 52.01 3.03 2350.23 24.02 54.28 1. 94 1522.42 30.90 55. 41 0.58 411.78 30.90 57.25 3.71 2597 .15 30.90 60. 43 3.71 2489.04 37.78 63.61 4.00 2211.19 37. 7 e 66.77 4.00 1915.01 44. 67 7 0 .17 5.14 1641.90 44. 67 73.02 2.86 495.07 51.55 7 4. 7 0 2.15 26. 89 Average Effective Normal Stress= 528.0235(psf) Average Available Shear Strength= 507.6602(psf) Total Length of Failure Surface= 58.1474(ft) 1139. 59 525.39 1662.85 766.63 1980.30 912. 98 2323.51 1071. 21 2431.75 1121.12 2616.46 1206.27 1936.76 892.91 1963. 32 905.15 1390.24 640.95 392.46 180.94 2241. 63 1033.46 2179.21 1004.69 2076. 63 957. 3 9 1905.63 878.56 1975. 23 910. 64 858. 55 3 95. 22 445.00 205 .16 SUM OF MOMENTS 0.3303709£-08 -0.109033E-03 (ft/lbs);Imbalance (Fraction of Total Weight) SUM OF FORCES 10 -.190984£-05 (lbs);Imbalance (Fraction of Total Weight) = Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS 2.169046 29519.11 (lbs) 13609.26(lbs) **** END OF GEOSTASE OUTPUT**** -0.5786835£- Ninyo & Moore I WRM Acadia Medical Facility, Chula Vista, CA Section A-A' Circular (Seismic) \A-A' Circular (Seismic).gsd 1062~N-o.-F-S-~S-oil--------M-oi-~-Wt--S-at-Wt--c--P-h-i--ru--P-c-on_s_t_P-ie-zS_u_rt--So-il-------~-l!IJ.l--,1062 1 1.083 No. (pcij (pcij (psij (deg) (ratio) (Psn No. Options ·""'lr, 2 1.084 1 otay Formatioo 120.0 130.0 300.0 28.0 0.000 0.0 0 3 1.089 11112 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 4 1.099 5 1.102 950 6 1.105 7 1.105 8 1.107 9 1.107 10 1.109 837 725 ·····-· · ..... . 612 GEOSTASE. Slope Stability Analv-sis 112 225 337 450 562 GEOSTASE FS = 1.083 Spencer Method GEOSTASE'ti by GREGORY GEOTECHNCAL SOF1WARE ·····-···· 950 837 675 787 PLATE E-6 *** GEOSTASE(R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, ar:d Lowe & Karafiath) Ir:cluding Pier/Pile, Planar Reir:f, Nail, Tieback, Lir:e Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nor:lir:ear Undrair:ed Shear Strength, Curved Strength Er:velope, Anisotropic Strer;gths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudo-Static & Simplified Newmark Seismic Ar:alyses. ********************************************************************************* Analysis Date: Analysis Time: Analysis By: Input File Name: Calcs\A-A'\Circular\A-A' Circular Output File Name: Calcs\A-A'\Circular\A-A' Circular Unit System: 3/ 5/ 2019 Ninyo & Moore/ WRM G:\File Share\WRM.temp\108727001 Acadia\Slope Stability (Seismic) . gsd G: \ File Share\ l'lRM. temp\l 087 27 001 Acadia \Slope Stability (Seismic) .OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Circular (Seismic) BOUNDARY DATA 11 Surface Boundaries 19 Total Bour:daries Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X -1 (ft) 0.000 88.000 135.'.J00 290.000 450.000 555.000 570.000 590.000 610. 000 660.000 855.000 135.000 135.100 149.900 150.000 465.000 636.000 855.000 855 .100 User Specified X-Origin User Specified Y-Origin y -1 (ft) 620.000 620.000 642.000 714.000 713.000 715. 000 717.000 717.000 717.000 713.000 713.000 642.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 MOHR-COULOMB SOIL PFRAMETERS 2 Type(s) of Soil Defined X -2 ( ft) 88.000 135.000 290.000 45'.l. '.JOO 555.000 570.000 590.000 610.000 660.000 855.000 900.000 135.100 149.900 150.000 465.000 636.000 855.000 855.100 900.000 0.000(ft) 500.000(ft) y -2 (ft) 620.000 642.000 714.000 713.000 715.000 717. 000 71 7. 000 717.000 713.000 713.000 713. 000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 712. 000 Soil Type Below Bnd 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay C 2 Fill 0 Formation 120.0 130.0 300.00 28.00 0.000 120.0 130.0 20C.00 30.C0 0.000 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity= l.870(ft) per second Specified Hcrizcntal Earthquake Coefficient (kh) = 0.20CO(g) Specified Vertical Earthquake Coefficient (kv) 0.000(g) (NOTE:Input Velocity= 0.0 will result in default Peak Velocity= 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA 0.0 0.0 Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 0 0 5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the Start Range Along The Specified Surface Between X and X 88. 00 (ft) 135.00(ft) Each Surface Enters within a Range Between and X X 290.00(ft) 900.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y 500.00(ft) Specified Maximum Radius= 5000.000(ft) 25.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function= Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor 5000.00 Maximum number of iterations 50 Allowable negative side force -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 1506 Number of Trial Surfaces With Valid FS 3494 Percentage of Trial Surfaces With Non-Converged and/er Non-Valid FS Solutions cf the Total Attempted 30.1 % Statistical Data On All Valid FS Values: FSMax 3.094 FSMin= 1.083 FSAve= 2.100 Standard Deviation= 0.443 Coefficient of Variation 21.07 % Critical Surface is Sequence Nurrber 547 cf Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 203.246462(ft) 122.265688(ft) ; Y = 824.954712(ft); and Radius Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 95.446 623.485 2 120.384 621. 717 3 145.349 623.023 4 169.966 627.385 5 193.861 634.736 6 216.673 644. 965 7 238.056 657.917 8 257. 687 673. 396 9 275.270 691.168 10 290.537 710.965 11 292.323 713.985 Iter. Theta FS FS No. (deg) (Moment) (Force) : fx=l. 0) Lambda Del ta FS 1 15.0000 1.224198 1.031802 0.268 0.1923959E+OO 2 19.9500 1. 20521 7 1. 045646 0.363 0.1595707E+OO 3 44.0083 0.000000 1.156963 0. 966 0 .1156963E+Ol 4 22.8654 1.187821 1. 054 611 0. 422 0.1332099E+OO 5 25.0522 1.169927 1.061821 0. 4 67 0.1081056E+OO 6 34.4672 0. 936700 1. 099526 0.686 0.1628255E+OO 7 28.8082 1.122790 1.075386 0.550 0.4740330E-01 8 30.0850 1.098995 1. 080398 0. 57 9 0.1859749E-01 9 30.9093 1.080307 1.083756 0.599 0.3448741E-02 10 30. 7804 1.083437 1. 083224 0. 596 0.2134901E-03 11 30.7879 1.083256 1.083255 0.596 0.1654751E-05 12 30.7880 1.083255 1.083255 0. 596 0.2918654E-09 Factor Of Safety For The Preceding Specified Surface 1.083 Theta (fx 1.0) 30.79 Deg Lambda 0.596 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth cf Tension Crack (zc) at Side cf Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth O.OOO(ft) 5.7741ft) O.OOO(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 -Line of Thrust(if applicable) and Slice Force Data ""** Slice X y Side Force fx Force Angle Vert. Shear No. Coard. Coard. h/H (lbs) (Deg) Force ( lbs) 1 100.43 62 4 . 7 9 0.619 3110.71 1.000 30. 7 9 1592.3 2 105.42 625. 7 0 0.543 7316.76 1.000 30. 7 9 3745.2 3 110.41 626.50 0.505 12618.13 1.000 30. 7 9 6458.7 4 115. 40 627. 21 0.478 19014.83 1.000 30.79 97 33. 0 5 120.38 627.88 0.458 26506.86 1.000 30. 7 9 13567.9 6 125.26 62 9 .13 0. 4 63 31570.58 1.000 30. 7 9 16159.8 7 130.13 630.28 0. 4 60 37055.18 1.000 30. 7 9 18967.1 8 135.00 631. 35 0. 454 42960. 67 1.000 30. 7 9 21989.9 9 135.10 631.37 0.454 43086.29 1.000 30. 7 9 22054.2 10 140.22 632.44 0.447 49759.20 1.000 30. 7 9 25469.9 11 145.35 633.45 0. 438 56893. 79 1.000 30. 7 9 29121.8 12 149.90 634.90 0. 4 41 60236.22 1.000 30. 7 9 30832.6 13 150.00 634.93 0.441 60310.67 1.000 30. 7 9 30870.8 14 154. 99 636.47 0.442 64081. 42 1.000 30.79 32800.9 15 159. 98 637.95 0.441 67959.12 1.000 30. 7 9 34785.7 16 164. 97 639.38 0. 438 71943.78 1.000 30. 7 9 36825.3 17 169. 97 64 0. 77 0. 4 34 76035.40 1.000 30. 7 9 38919.7 18 174. 75 64 2. 65 0. 436 76713.82 1.000 30. 7 9 39266.9 19 179.52 644.49 0. 438 77369.67 1.000 30. 7 9 39602. 6 20 184.30 646.30 0. 438 78002.94 1.000 30. 7 9 39926.8 21 189.08 648.08 0. 437 78613.65 1. 000 30. 7 9 40239.4 22 193.86 64 9. 82 0. 436 79201.78 1.000 30. 7 9 40540. 4 23 198. 4 2 652.00 0.439 76955.53 1. 000 30. 7 9 39390. 6 24 202.99 654.16 0.441 74701. 37 1. 000 30. 7 9 38236.8 25 207.55 656.30 0.443 72439.31 1. 000 30. 7 9 37079.0 26 212 .11 658.42 0.444 70169.35 1.000 30. 7 9 35917.0 27 216.67 660.53 0.445 67891. 48 1. 000 30. 7 9 34751.1 28 220.28 662.61 0.449 64261. 68 1.000 30. 7 9 32893.1 29 223.88 664.69 0. 452 60702.18 1.000 30. 7 9 31071.2 30 228.61 667.40 0. 457 56240.59 1.000 30. 7 9 28787.4 31 233.33 67 0 .10 0. 4 61 51887.66 1.000 30. 7 9 26559.3 32 238.06 672.81 0. 4 66 47643.37 1. 000 30. 7 9 24386.8 33 242. 96 676.31 '.). 4 78 41401.36 1. 000 30. 7 9 21191.8 34 247.87 67 9. 86 0. 4 94 35533.39 1.000 30. 7 9 18188.2 35 252.78 683.51 '.). 514 30039.44 1.000 30. 7 9 15376.1 36 257. 6 9 686.95 0.530 24454.65 0.880 27.66 11352. 3 37 262.08 690.50 0.546 18952.25 0. 7 68 24.59 7886.1 38 266.48 693.90 0.559 14195.87 0.656 21. 36 5170. 4 39 270.87 697.18 0.569 10140.11 0.545 17.98 3130.4 40 275.27 7 00. 34 0.574 6744.67 0. 433 14. 4 7 1685.3 Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 41 42 43 44 45 280.18 285.09 290.00 290.54 292.32 7 05. 01 710. 24 712.86 712. 45 713. 99 0.628 0.810 0. 694 0. 4 90 0.000 3168.39 983. 91 242.90 258.75 669.53 0.308 0.184 0.059 0.045 0.000 10.41 6.25 2.01 1.55 0.00 572.6 107 .1 8.5 7.0 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at er above the upper boundary of the sliding mass. Width (ft) 4. 99 4. 99 4. 9 9 4. 99 4. 9 9 4. 87 4.87 4. 87 0.10 5.12 5.12 4.55 0.10 4. 9 9 4. 99 4. 9 9 4. 9 9 4.78 4.78 4.78 4.78 4.78 4.56 4.56 4.56 4.56 4.56 3.61 3.61 4. 72 4.72 4.72 4. 91 4. 91 4. 91 4. 91 4.40 4. 4 0 4. 40 4. 4 0 4.91 4. 91 4. 91 0.54 1. 7 9 ***Table 2 -Geometry Data on the He::.ght (ft) 1. 34 4.03 6. 7 2 9.41 12.10 14. 4 5 16.48 18.51 19. 54 20.62 22.73 2 4. 4 4 25.11 25.84 27.27 28.71 30.14 31. 23 31. 98 32.73 33. 4 8 34.23 34.64 34.72 34. 7 9 34.86 34.94 34.72 34.21 33.62 32.95 32.29 31.16 29. 57 27. 98 26.39 24. 3 9 21. 9 9 19.59 17.19 13. 95 9.86 5.78 3.38 1. 52 X-Cntr (ft) 97. 94 102. 93 107. 91 112. 90 117.89 122.82 127.69 132.56 135.05 137.66 142.79 147.62 149.95 152.50 157. 4 9 162. 4 8 167 . 4 7 172.36 1 77 .13 181. 91 186.69 191. 4 7 196.14 200.70 205.27 209.83 214.39 218.48 222.08 226.25 230.97 235.69 240.51 245.42 250.33 255.23 259.89 264.28 268.68 273.07 277.72 282.63 287. 54 290.27 2 91. 4 3 Y-Cr:tr-Base (ft) 623.31 622.95 622.60 622.25 621. 8 9 621. 8 4 622.10 622.35 622.48 622.62 622.89 623.43 623.84 624.29 625.17 626.06 626.94 628.12 629.59 631.06 632.53 634.00 635.76 637.80 639.85 641. 90 64 3. 94 646.06 648.24 650.76 653.62 656.49 659.85 663.72 667.59 671. 4 6 675.62 680.06 684.50 688.95 694.35 7 00. 7 2 707.08 710.62 712.48 Y-Cntr-Top (ft) 624.65 626.99 629.32 631.66 633.99 636.30 638.58 64 0. 8 6 642.02 643.24 645.62 647.86 648.94 650.13 652. 4 5 654. 7 6 657. 08 659.35 661.57 663.79 666.01 668.23 67 0. 4 0 672.52 674.64 67 6. 7 6 678.88 680.78 682. 4 5 684.39 686.58 688.77 691.01 693.29 695.57 697.85 700.01 702.05 7 04. 0 9 706.14 7 08. 3 0 710.58 712.86 714.00 713.99 Alpha (deg) -4.06 -4.06 -4.06 -4.06 -4.06 3.00 3.00 3.00 3.00 3.00 3.00 10.05 10.05 10.05 10.05 10.05 10.05 17.10 17.10 17.10 17.10 17.10 24.15 24 .15 24 .15 24 .15 24.15 31. 20 31.20 31. 20 31. 20 31. 20 38.26 38.26 38.26 38.26 45.31 45.31 45.31 45.31 52.36 52. 36 52. 36 52. 36 59.41 Beta (deg) 25.08 25.08 25.08 25.08 25.08 25.08 25.08 25.08 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24. 92 24.92 24. 92 24. 92 24. 92 24. 92 24.92 24. 92 24. 92 24.92 24.92 24.92 24. 92 24. 92 24. 92 24.92 24. 92 24.92 24. 92 24. 92 24. 92 24. 92 24. 92 -0.36 -0.36 Base Length ( ft) 5.00 5.00 5.00 5.00 5.00 4.88 4.88 4.88 0.10 5.13 5.13 4. 62 0.10 5. 07 5. 07 5. 07 5. 07 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.22 4. 22 5.52 5.52 5.52 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 8. 04 8. 04 8. 04 0.88 3.51 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point No. 1 2 X-Pt (ft) 95.446289 100. 433763 Y-Pt (ft) 623. 4 854 97 623.131790 3 105. 421236 622. 778083 4 110. 408710 622.424377 5 115.396183 622.070670 6 120.383657 621. 716963 7 125.255771 621. 971912 8 130.127886 622. 226861 9 135.000000 622.481810 10 135.100000 622.487043 11 140.224749 622.755212 12 145.349499 623.023381 13 149.900000 623. 829646 14 150.000000 623. 847364 15 154.991522 624. 731770 16 159.983043 625. 616175 17 164. 974565 626.500581 18 169. 966027 627.384986 19 174.745064 628.855146 20 179.524042 630.325306 21 184.303020 631.795467 22 189.081998 633.265627 23 193. 860976 634.735787 24 198.423309 636. 781543 25 202. 985642 638.827299 26 207.547974 640.873056 27 212 .110307 642. 918812 28 216.672640 644. 964568 29 220.278686 647.148772 30 223.884732 649.332977 31 228.608469 652.194174 32 233.332207 655.055372 33 238.055944 657.916569 34 242. 9637 98 661.786384 35 247.871652 665.656199 36 252.779506 669.526014 37 257. 687361 673.395828 38 262.082988 677.838908 39 266. 478616 682. 281988 40 270.874243 686.725068 41 275.269871 691.168148 42 280.179914 697.534684 43 285.089957 703.901219 44 290.000000 710.267755 45 290.537453 710.964636 46 292.323147 713.985480 ***Table 3 -Force and Pore Pressure Data On The 45 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) l 804.5 0.0 o.o 0.0 0.0 160.9 0.0 0.00 2 2413.4 0.0 o.o 0.0 0.0 482.7 0.0 0.00 3 4022.3 0.0 o.o 0.0 0.0 804.5 0. 0 0.00 4 5631.2 0.0 0.0 0.0 0.0 1126.2 0.0 0.00 5 7240.1 0.0 0. 0 0.0 0.0 1448.0 0.0 0.00 6 8450.7 0.0 o.o 0.0 0.0 1690.1 0.0 0.00 7 9635. 0 0.0 o.o 0.0 0.0 1927.0 0.0 0.00 8 10819.2 0.0 o.o 0.0 0.0 2163.8 0.0 0.00 9 234.5 0.0 o.o 0.0 0.0 46.9 0.0 0.00 10 12678.0 0.0 0.0 0.0 0.0 2535.6 0.0 0.00 11 13977. 0 0.0 0.0 0.0 0.0 27 95. 4 0.0 0.00 12 13344.6 0.0 0.0 0.0 0.0 2668.9 0.0 0.00 13 301. 3 0.0 o.o 0.0 0.0 60.3 0.0 0.00 14 15476.2 '.). 0 o. '.) 0.0 0.0 3095.2 0.0 0.00 15 16335.3 '..l. 0 0.0 0.0 0.0 3267.1 0.0 0.00 16 17194.4 '..l. 0 0.0 0.0 0.0 3438.9 0.0 0.00 17 18053.5 0.0 o.o 0.0 0.0 3610. 7 0.0 0.00 18 17911. 0 0.0 o.o 0.0 0.0 3582.2 0.0 0.00 19 18340.9 0.0 o.o 0.0 0.0 3668.2 0.0 0.00 20 18770. 9 0.0 0.0 0.0 0.0 3754.2 21 19200.9 0.0 0.0 0.0 0.0 3840.2 22 19630. 8 0.0 0.0 0.0 0.0 3926.2 23 18966. 3 0.0 0.0 0.0 0.0 37 93. 3 24 19006.5 0.0 0.0 0.0 0.0 3801. 3 25 19046.8 0.0 0.0 0.0 0.0 3809.4 26 19087.0 0.0 0.0 0.0 0.0 3817.4 27 19127.3 0.0 0.0 0.0 0.0 3825.5 28 15023.8 0.0 0.0 0.0 0.0 3004.8 29 14803.5 0.0 0.0 0.0 0.0 2960. 7 30 19058.5 0. 0 0.0 0.0 0.0 3811.7 31 18680.5 0.0 0.0 0.0 0.0 3736.1 32 18302.4 0.0 0.0 0.0 0.0 3660.5 33 18351. 2 0.0 0.0 0.0 0.0 3670.2 34 17414.7 0.0 0.0 0.0 0.0 3482.9 35 16478.3 0.0 0.0 0.0 0.0 3295.7 36 15541. 9 0.0 0.0 0.0 0.0 3108.4 37 12867.1 0.0 0.0 0.0 0.0 2573.4 38 11600. 5 0.0 0.0 0.0 0.0 2320.1 39 10333.9 0.0 0.0 0.0 0.0 2066.8 40 9067.3 0.0 0.0 0.0 0.0 1813.5 41 821 7. 4 0.0 0.0 0.0 0.0 1643.5 42 5810.1 0.0 0.0 0.0 0.0 1162.0 43 3402.7 0.0 0.0 0.0 0.0 680.5 44 218.1 0.0 0.0 0.0 0.0 43.6 45 324.9 0.0 0.0 0.0 0.0 65.0 TOTAL WEIGHT OF SLIDING MASS 561196.38(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 561196.38(lbs) TOTAL AREA OF SLIDING MASS= 4676.64(ft2) *HTABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE; Slice Soil No. Type 1 1 2 l 3 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 1 1 l 1 1 1 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 Cohesion (psf) 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 200.00 200.00 200.00 200.00 200.00 Phi(Deg) 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 30.00 30.00 30.00 30.00 30.00 Options 45 SLICSS*** 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0. 0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 c.o 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 35 36 37 38 39 40 41 42 43 44 45 2 2 2 2 2 2 2 2 2 2 2 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.C0 200.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.0C 30.00 SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDR~INED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 -Total Base Stress Data on the 45 Slices*** Slice No. * 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Alpha (deg) -4.06 -4.06 -4.06 -4.06 -4.06 3.00 3.00 3.00 3.00 3.00 3.00 10.05 10.05 10.05 10.05 10.05 10.05 17.10 17.10 17.10 17.10 17.10 24.15 24.15 24.15 24.15 24.15 31. 20 31. 20 31. 20 31. 20 31. 20 38. 26 38. 26 38. 26 38.26 45.31 45.31 45.31 45.31 52.36 52.36 52.36 52.36 59.41 X-Coord. Slice Cntr (ft) 97. 94 102.93 107. 91 112. 90 117.89 122.82 127.69 132. 56 135. 05 137. 66 142.79 147.62 14 9. 95 152.50 157.49 162.48 167.47 17 2. 36 177.13 181.91 186.69 191. 47 196.14 200.70 205.27 209.83 214.39 218.48 222.08 226.25 230. 97 235.69 240.51 245.42 250.33 255.23 259.89 264.28 268.68 27 3. 07 277.72 282.63 287.54 290.27 2 91. 43 Base Leng. (ft) 5.00 5.00 5.00 5.00 5.00 4. 88 4. BB 4.88 0.10 5.13 5.13 4.62 0.10 5.07 5.07 5.07 5.07 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.22 4. 22 5.52 5.52 5.52 6.25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 8. 04 8. 04 8. 04 0.88 3.51 Total Normal Stress (psf) 518.23 968. 92 1419.62 1870.31 2321. 00 2195.60 2475.70 2755.80 2898.70 3047.59 3339.69 2998.66 3077.12 3163.02 3331. 4 5 3499.88 3668.31 3245.30 3321. 36 3397.43 3473.50 3549.56 3098.89 3105.40 3111. 90 3118. 41 3124.91 2685.03 2645.63 2600.00 2548.39 2496.79 2071.86 1964.98 1858.10 1792.58 1455.13 1343.46 1223.07 1093.46 768.05 528.67 264.99 98.88 -68.58 Total Vert. Stress (psf) 161.30 483.89 806.48 1129. 07 1451. 67 1734.50 1977.57 2220.65 2344.66 2473.87 2727.35 2932.55 3012.72 3100.50 3272.61 3444.72 3616.82 3747.86 3837.83 3927.80 4017.77 4107.75 4157.14 4165. 96 4174.79 4183.61 4192.43 4166.29 4105.20 4034.63 3954.60 3874.57 3739.15 3548.34 3357.54 3166.73 2927.26 2639 .11 2350.96 2062.81 1673.59 1183.30 693.01 405.86 181. 92 Total Normal/Vert. Stress Ratio 3.213 2.002 1. 7 60 1. 657 1. 599 1. 266 1. 252 1. 241 1. 236 1. 232 1. 225 1. 023 1.021 1. 020 1. 018 1.016 1.014 0.866 0.865 0.865 0.865 0. 864 0. 7 4 5 0.745 0.745 0.745 0.745 0.644 0.644 0. 64 4 0. 64 4 0.644 0.554 0.554 0.553 0.566 0. 4 97 0.509 0.520 0.530 0. 4 59 0.447 0.382 0.244 -0.377 Slice No. * l 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Slice No. 1 2 3 5 6 7 8 9 10 11 12 **•TABLE 5A -Total Base Force Data on the 45 Slices*** Alpha (deg) -4.06 -4.06 -4.06 -4.06 -4.06 3.00 3.CO 3.00 3.00 3.00 3.00 10.05 10.05 10.05 10.05 10.05 10. 05 17.10 17.10 17.10 17.10 17.10 24 .15 24.15 24.15 24.15 24.15 31. 20 31. 20 31. 20 31. 20 31. 20 38.26 38.26 38. 26 38.26 45.31 45.31 45.31 45.31 52.36 52.36 52.36 52.36 59.41 X-Coord. Slice Cntr ( ft) 97. 94 102.93 l 07. 91 112. 90 11 7. 89 122.82 127.69 132.56 135.05 137.66 142.79 147.62 149.95 152.50 157.49 162.48 167.47 1 72. 36 177.13 181. 91 186.69 191.47 196.14 200.70 205.27 209.83 214.39 218.48 222. 08 226.25 230. 97 235.69 240.51 245.42 250.33 255.23 259.89 264.28 268.68 27 3. 07 27 7. 7 2 282.63 287. 54 290.27 291.43 Base Leng. (ft) 5.00 5.00 5.00 5.00 5.00 4. Se 4.88 4. 58 0 .10 5.13 5 .13 4. 62 0.10 5.07 5.07 5.07 5. 07 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.22 4.22 5.52 5.52 5.52 6. 25 6.25 6.25 6.25 6.25 6.25 6.25 6.25 8.04 8.04 8.04 0.88 3.51 Total Normal Force (lbs) 2591.14 4844.61 7098.08 9351.55 11605. 02 10711.87 12078.41 13444.94 290.27 15639.53 17138.48 13857. 94 312.50 16034.21 16888.02 17741.83 18595.63 16226.48 16606.81 16987.15 17367.48 17747.81 15494.47 15526.99 15559.51 15592.03 15624.55 11320. 00 11153.87 14358.98 14074.00 13789.02 12949.14 12281.14 11613 .15 11203.63 9094.57 8396.62 7644.18 6834.14 6175.14 4250.50 2130.53 87.02 -240.66 Total Vert. Force (lbs) 804.46 2413.38 4022.30 5631.22 7240.14 8450.67 9634. 96 10819.24 234.47 12677. 97 13977. 00 13344.56 301.27 15476. 21 16335.29 17194.38 18053.46 17910. 96 18340.93 18770. 89 19200.86 19630. 82 18966. 26 19006.51 19046. 77 19087. 02 19127. 27 15023.85 14803.53 19058.55 18680.49 18302.43 18351.19 17414.75 16478.31 15541.87 12867.13 11600. 54 10333. 94 9067.35 8217.41 5810.07 3402.73 218.13 324.85 Total Normal/Vert. Force Ratio 3.221 2.007 1. 765 1. 661 1.603 1. 268 1. 254 1. 24 3 1.238 l. 234 1. 226 1.038 1.037 1. 036 1. 034 1.032 1.030 0.906 0.905 0.905 0.905 0.904 0.817 0.817 0.817 0.817 0.817 0. 7 53 0. 7 53 0. 7 53 0. 753 0. 753 0. 706 0. 705 0. 705 0.721 0. 707 0.724 0. 7 4 0 0. 7 54 0.751 0.732 0. 626 0.399 -0.741 ***TABLE 6 -Effective and Base Shear Stress Data on the 45 Slices*** Alpha (deg) -4.06 -4.06 -4. 06 -4.06 -4.06 3. 0'.l 3.00 3.00 3.00 3.00 3.00 10.05 X-Coord. Slice Cntr ( ft) 97. 94 102.93 107.91 112.90 117.89 122.82 127.69 132.56 135. 05 137.66 142.79 147.62 Base Leng. (ft) 5.00 5.00 5.00 5.00 5.00 4.88 4. 88 4. BB 0.10 5.13 5.13 4.62 Effective Normal Stress (psf) 518.23 968. 92 1419.62 1870.31 2321.00 2195.60 2475.70 2755.80 2898. 70 3047.59 3339.69 2998.66 Available Shear Strength (psf) 575.55 815.18 1054.82 1294.46 1534.10 1467.42 1616.35 1765.28 1841.27 1920.43 2075.74 1894.42 Mobilized Shear Stress (psf) 531.31 752.53 97 3. 7 5 1194. 97 1416.19 1354.64 1492.13 1629.61 1699.75 1772.84 1916.21 1748.82 13 10.05 14 9. 95 0 .10 3077 .12 1936.13 1787.33 14 10.05 152.50 5. 07 3163.02 1981.81 1829.49 15 10.05 157.49 5. 07 3331. 45 2071. 36 1912.17 16 10.05 162. 4 8 5.07 3499.88 2160.92 1994.84 17 10.05 167.47 5.07 3668.31 2250.47 2077.51 18 17.10 172. 36 5.00 3245.30 2025.55 1869.88 19 17.10 177.13 5.00 3321. 36 2066.00 1907. 21 20 17.10 181.91 5.00 3397.43 2106.45 1944.55 21 17 .10 186.69 5.00 3473.50 2146.89 1981.89 22 17 .10 191. 4 7 5.00 3549.56 2187. 34 2019.23 23 24.15 196.14 5.00 3098.89 1947.71 1798.02 24 24.15 200. 70 5.00 3105.40 1951.17 1801. 21 25 24.15 205.27 5.00 3111. 90 1954. 63 1804.40 26 24.15 209.83 5.00 3118.41 1958.09 1807. 60 27 24.15 214.39 5.00 3124.91 1961. 54 1810.79 28 31.20 218.48 4.22 2685.03 1727.66 1594.88 29 31. 20 222.08 4.22 2645.63 1706.71 1575.54 30 31. 20 226.25 5.52 2600.00 1701.11 1570.37 31 31. 20 230. 97 5.52 2548.39 1671. 32 1542.86 32 31. 20 235.69 5.52 2496.79 1641.52 1515.36 33 38. 26 2 4 0. 51 6.25 2071. 86 1396.19 1288.88 34 38. 26 245.42 6.25 1964.98 1334.48 1231. 92 35 38.26 250.33 6.25 1858.10 1272.78 1174.96 36 38.26 255.23 6.25 1792.58 1234.95 1140.03 37 45.31 259.89 6.25 1455.13 1040.12 960. 18 38 45.31 264.28 6.25 1343.46 97 5. 65 900.66 39 45.31 268.68 6.25 1223.07 906.14 836.50 40 45.31 273.07 6.25 1093.46 831.31 7 67. 4 2 41 52.36 277.72 8. 04 768.05 64 3. 4 4 593.98 42 52.36 282.63 8.04 528.67 505.23 466.40 43 52.36 287.54 8.04 264. 99 352.99 325.86 44 52.36 290.27 0.88 98.88 257.09 237.33 45 59.41 291. 43 3.51 0.00 0.00 0.00 ***TABLE 6A -Effective and Base Shear Force Data on the 45 Slices*'Y* Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -4.06 97. 94 5.00 2591.14 2877.73 2656.56 2 -4.06 102.93 5.00 4844.61 4075. 92 3762.66 3 -4.06 107.91 5.00 7098.08 5274.12 4868.77 4 -4.06 112.90 5.00 9351. 55 6472.31 5974.87 5 -4.06 117.89 5.00 11605.02 7670.50 7080.97 6 3.00 122.82 4. 88 10711.87 7159.24 6609.00 7 3.00 127.69 4. 88 12078.41 7885.84 7279. 76 8 3.00 132.56 4. 88 13444.94 8612.44 7950.52 9 3.00 135.05 0.10 290.27 184.38 170.21 10 3.00 137.66 5.13 15639.53 9855.21 9097.78 11 3.00 142.79 5.13 17138.48 10652.22 9833.53 12 10.05 147.62 4.62 13857.94 8754.81 8081. 95 13 10.05 14 9. 95 0.10 312.50 196. 63 181.52 14 10.05 152.50 5. 07 16034.21 10046.32 9274.20 15 10.05 157.49 5. 07 16888.02 10500.30 9693.28 16 10.05 162.48 5. 07 17741.83 10954.28 10112.37 17 10.05 167.47 5.07 18595.63 11408.25 10531. 46 18 17.10 172 .36 5.00 16226.48 10127.77 9349.39 19 17.10 177.13 5.00 16606.81 10330.00 9536.07 20 17.10 181.91 5.00 16987.15 10532.23 9722.76 21 17.10 186.69 5.00 17367.48 10734.45 9909.44 22 17 .10 191.47 5.00 17747.81 10936.68 10096.13 23 24 .15 196.14 5.00 15494.47 9738.56 8990.09 24 24 .15 200. 70 5.00 15526.99 9755.85 9006.05 25 24. lS 205.27 5.00 15559.51 9773.14 9022.01 26 24. lS 209.83 5.00 15592. 03 9790. 43 9037.98 27 24 .15 214.39 5.00 15624.55 9807.72 9053.94 28 31. 20 218.48 4. 22 11320. 00 7283.74 6723.94 29 31.20 222.08 4. 22 11153. 87 7195.41 6642.40 30 31. 20 226.25 5.52 14358.98 9394.70 8672.66 31 31. 20 23 0. 97 5.52 14074.00 9230.17 8520.77 32 33 34 35 36 37 38 39 40 41 42 43 44 45 31.20 235.69 5.52 13789.02 38.26 240.51 6.25 12949.14 38.26 245.42 6.25 12281.14 38. 26 250.33 6.25 11613.15 38.26 255.23 6.25 11203. 63 45.31 25 9. 8 9 6.25 9094.57 45.31 264 .28 6.25 8396.62 45.31 268.68 6.25 7644 .18 45.31 27 3. 07 6.25 6834.14 52.36 277.72 8.04 6175.14 52. 36 282.63 8.04 4250.50 52. 36 287.54 8.04 2130.53 52.36 290.27 0.88 87. 02 59.41 2 91. 4 3 3.51 o.co Average Eff ctive Normal Stress= 2223.4219(psf) Average Ava lable Shear Strength= 1465.C357(psf) Tctal Lengt of Failure Surface 228.5092(ft) 9065.63 8368.88 8726.19 8055.53 8340.52 7699.50 7 954. 86 7343.47 7718.42 7125.21 6500.75 6001.13 6097.79 5629.14 5663.37 5228.10 5195.69 4796.37 5173.22 4775.62 4 062. 02 3749.83 2838.06 2619. 94 226.25 208.86 0.00 o.cc SUM OF MOMSNTS 0.15633778-09 -0. 87 7 362E-04 (ft/lbs); Imbalance ( Fraction of Total Weight) = SUM OF FORCES 07 -.510676E-01 (lbs);Imbalance (Fraction of Total Weight) = Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.083255 334774.08(lbs) 309044.60(lbs) The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GSOSTASS OUTPUT**** -0.9099779E- Ninyo & Moore I WRM 1062 No. FS 1 1.558 2 1.558 3 1.558 4 1.558 5 1.558 950 6 1.558 7 1.558 8 1.558 9 1.588 10 1.588 837 ·········· 725 .......... . GEOSTASE I Sl<p,Stabilitj A,u!v,is Soil No. 01 Olay Formation 1111112 Fill 112 Acadia Medical Facility, Chula Vista, CA Section A-A' Block (Seismic) Moist'Nt Sat 'NI C Phi ru Peons! Piez Surf (pcQ (pcQ (psQ (deg) (ratio) (psQ No. 120.0 130.0 300.0 28.0 0.000 0.0 0 120.0 130.0 200.0 30.0 0.000 0.0 0 Soil Options 225 337 •450 562 675 I GEOSTASE FS = 1.558 Spencer Method GEOSTASE!E; by GREGORY GEOTECHNCAL SOFlWARE \A-A' Block (Seismic).gsd 1062 ~ I ............ 950 837 787 PLATE E-7 GEOSTASE (R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Ncnlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. +******************************************************************************** Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\A-A'\Block\A-A' Block Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability (Seismic) .gsd Calcs\A-A'\Block\A-A' Block Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability (Seismic) .OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Block (Seismic) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary No. 1 2 3 s 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X -1 (ft) 0.000 88.000 135. 000 290.000 450.000 555.000 570.000 590.000 610.000 660.000 855.000 135.000 135.100 149.900 150.000 465.000 636.000 855.000 855 .100 User Specified X-Origin User Specified Y-Origin y -1 (ft) 620.000 620.000 642.000 714.000 713. 000 715. 000 717.000 717.000 717. 000 713.000 713. 000 642.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 ( ft I 88.000 135.000 290.000 450.000 555.000 570.000 590.000 610.000 660.000 855.000 900.000 135.100 149.900 150.000 465.000 636.000 855.000 855.100 900.000 0.000(ft) 500.000(ft) y -2 (ft) 620.000 642.000 714.000 713.000 715.000 71 7. 000 71 7. 000 717.000 713. 000 713.000 713.000 637.000 637.000 643.000 670.000 708.000 708.000 712.000 712.000 Soil Type Below Bnd 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 Soil Number Moist Saturated Cohesion Friction Pore Pressure Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) 1 Otay 0 2 Fill C Formation 120.0 130.0 300.00 28.00 0.000 120.C 130.C 200.CC 30.00 o.ccc SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = C.374(g) Default Velocity= l.87C(ft) per seccnd Specified Horizontal Earthquake Coefficient (kh) = 0.20C0(g) Specified Vertical Earthquake Coefficient (kv) 0.C00(g) (NOTE:Input Velocity= 0.0 will result in default Peak Velocity 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search= 25.00(ft) Zone X -1 y -1 X -2 y -2 No. (ft) (ft) ( ft) (ft) 1 150.00 643.50 150.00 643.50 2 150.10 643.50 465.00 670.50 The Spencer Method Was Selected for FS Analysis. Selected fx function Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Height (ft) 0.10 0 .10 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor 5000.00 Maximum number of iterations 50 Allowable negative side force -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 0.0 c.c WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS Number of Trial Surfaces With Valid FS = 1242 37 58 Percentage of Trial Surfaces With Non-Converged and/or Water Surface No. 0 0 Non-Valid FS Solutions of the Total Attempted 75.2 % Statistical Data On All Valid FS Values: FS Max= 12.184 FS Min= 1.558 FS Ave 2.202 Standard Deviation= 1.194 Coefficient of Variation 54.25 % Critical Surface is Sequence Number 108 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE O1..:TPL:T FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS Ne. (deg) (Moment) (Force) (fx=l.0) Lambda 1 15.0000 0.000000 1. 518894 0.268 2 19.9500 0.886289 1.527130 0.363 3 23.5620 1.232911 1.533686 0. 436 4 26.7560 1. 380052 1. 539972 0.504 5 30.3816 1. 481424 1. 547796 0.586 6 32.9535 1. 5324 56 1. 5538 92 0.648 7 34 .1801 1.553046 1.556988 0.679 8 34.4565 1.557423 1.557704 0.686 9 34.4777 1. 5577 56 1. 557760 0.687 10 34.4780 1.557760 1. 557760 0.687 Factor Of Safety For The Preceding Specified Surface Theta (fx 1.0) 34.48 Deg Lambda= 0.687 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tclerance(radians) = 0.0001000 Delta FS 0.1518894E+0l 0.6408409E+00 0.3007755E+00 0.1599195E+00 0. 6637214E-01 0.2143612E-01 0.3941989E-02 0. 2811723E-03 0. 4007720E-05 0.7232433E-08 1.558 Minimum theta (deg) = -45. 00 ; Maximum theta (deg) 45. 00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth 0.0O0(ft) 5.774(ft) 0.000(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. 1 *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** X Coord. 145.80 y Coord. 64 6. 12 h/H 0.671 Side Force (lbs) 1801. 21 fx 1.000 Force Angle (Deg) 34. 4 8 Vert. Shear Force(lbs) 1019. 6 2 150.00 646.51 0.551 4735.02 1.000 34.48 2680.4 3 155.00 648.44 0.612 6112.47 1.000 34.48 3460.2 4 160.00 650.02 0.612 7619.60 1.000 34. 4 8 4313.4 5 165.00 651.37 0. 591 9256.41 1.000 34.48 5240.0 6 170. 00 652.54 0.562 11022.89 1.000 34.48 6239.9 7 175.00 653. 57 0.531 12919.05 1.000 34.48 7313.3 8 180.00 654.50 0. 501 14944.89 1.000 34.48 8460.1 9 185.00 655.34 0.472 17100.40 1.000 34.48 9680. 4 10 190.00 656.10 0.445 19385.59 1.000 34.48 10974.0 11 195.00 656.79 0.419 21800.46 1. 000 34. 4 8 12341.0 12 200.00 657. 4 4 C.396 24345.Cl l.OOC 34.48 13781.5 13 205.00 658.03 C.373 27Cl9. 23 l.OOC 34.48 152 95. 3 14 210.00 658.59 0.353 29823.14 1.000 34.48 16882.6 15 215.00 659.11 0.334 32756. 71 1. oco 34.48 18543.2 16 220.0C 659. 60 0.316 35819.97 l.COC 34.48 20277.3 17 225.0C 660.C6 0.299 39012.9C 1. ooc 34.48 22084.8 18 230.00 660.49 0.283 42335.51 1. 000 34.48 23965. 7 19 235.0C 66C.90 0.269 45787.80 1. ooc 34.48 2592C.C 20 240.00 661.30 0.255 49369. 77 1.000 34.48 27947.7 21 245.00 661. 67 0.242 53081.41 1.000 34.48 30048.8 22 250.00 662.C2 0.230 56922.73 1.000 34.48 32223.4 23 255.00 662.36 0.218 60893.72 1.000 34.48 34471. 3 24 260.00 662.69 0. 207 64994.40 1.000 34.48 36792.7 25 265.00 663.00 0 .197 69224.75 1.000 34.48 39187.4 26 270.00 663.30 0 .187 73584.78 1.000 34.48 41655.6 27 275.00 663.59 0.178 78074.48 1.000 34.48 44197.2 28 280.00 663.87 0.169 82693.86 1.000 34.48 46812.2 29 285.00 664.15 0.160 87442.93 1.000 34.48 49500. 5 30 290.00 664.41 0.152 92321.66 1. 000 34.48 52262.4 31 296.00 664.87 0.153 98229.06 1. 000 34.48 55606.5 32 302.00 665.59 0.158 104091. 20 1.000 34.48 58925.0 33 306.68 667.28 0 .162 97082.22 1.000 34.48 54957.3 34 311.37 668. 96 0.166 90315.66 1.000 34.48 51126.8 35 316.06 67 0. 65 0.171 83791.53 1.000 34. 4 8 47433.5 36 320.74 67 2. 34 0.176 77509.81 1.000 34.48 43877.5 37 325.43 67 4. 04 0.182 71470.52 1.000 34.48 40458.7 38 330.12 675.74 0.188 65673.65 1.000 34.48 37177.2 39 334. 80 67 7. 45 0 .194 60119.21 1.000 34.48 34032.9 40 339.49 67 9. 16 0.201 54807.19 1.000 34.48 31025.8 41 344.18 680.88 0.210 49737 .59 1.000 3 4. 4 8 28155.9 42 34 8. 87 682.61 0.219 44910.41 1. 000 34. 4 8 25423.3 43 353.55 684.35 0.229 40325.66 1.000 34.48 22827.9 44 358.24 68 6 .10 0.240 35983.33 1. 000 34.48 20369.8 45 362.93 687.87 0.253 31883.42 1. 000 34.48 18048.9 46 367.61 689.66 0.269 28025.93 1. 000 34.48 15865.2 47 372.30 691.47 0.286 24410.87 1.000 34.48 13818.7 48 376.99 693.31 0. 307 21038.23 1.000 34. 4 8 11909.5 49 381.67 695.19 0.332 17908.02 1. 000 34.48 10137. 5 50 386.36 697.12 0.363 15020.22 1.000 34.48 8502.8 51 391. 05 699 .13 0. 4 01 12374.85 1.000 3 4. 4 8 7005.3 52 3 95. 7 4 701.24 0. 450 9971.90 1.000 34.48 5645.0 53 400.42 703.50 0.515 7811.38 1.000 34.48 4 4 21. 9 54 4 05 .11 706.02 0. 607 5893.28 1.000 34. 4 8 3336.1 55 409.80 708.99 0.745 4217.60 1.000 34. 4 8 2387.5 56 414.48 712.87 0. 976 2784.34 1.000 34. 48 1576.2 57 419.17 719.09 1. 000+ 1593.51 1. 000 34.48 902.1 58 423.86 735.50 1. 000+ 645.10 1. 000 34.48 365.2 59 428.54 462.56 0.000--60.89 1. 000 34.48 -34.5 60 433.23 68 8. 01 0.000--524.45 1. 000 34.48 -296.9 61 4 37. 92 700.54 0.000--745.59 1. 000 34. 4 8 -422.1 62 442.61 706.11 0.000--724.31 1.000 34. 4 8 -410.0 63 446.30 709.34 0.000--627. 37 1.000 34.48 -355.1 64 450.00 711.78 0.000--303.10 1. 000 34.48 -1 71. 6 65 452.23 713.04 0.000 0.00 1.000 34.48 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 -Geometry Data on the 65 Slices*** Slice ltlidth Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft} (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.20 1. 37 143.70 644.68 646.04 -10.59 24.92 4. 27 2 4.20 4 .10 147.90 643.89 647.99 -10.59 24. 92 4. 27 3 5.00 6. 4 2 152.50 643.71 650.13 4.90 24.92 5.02 4 5.00 8.31 157. 50 644.14 652. 4 5 4.90 24. 92 5. 02 5 5.00 10.20 162.50 644.57 654. 77 4.90 24. 92 5. 02 6 5.0C 12.10 167.5C 645.00 657.10 4.90 24.92 5.02 7 5.00 13. 99 172.50 645.43 659.42 4.90 24. 92 5.02 8 5.00 15.89 177.50 645.85 661. 7 4 4.90 24.92 5.02 9 5.00 17.78 182.50 646.28 664.06 4. 90 24.92 5. 02 10 5.00 19.68 187. 50 646.71 666.39 4.90 24. 92 5.02 11 5.CC 21.57 192. 5C 647.14 668.71 4.90 24.92 5. 02 12 5.00 23.46 197. 50 647.57 671.03 4. 90 24.92 5.02 13 5.00 25.36 202.50 648.00 673.35 4. 90 24. 92 5.02 14 5.00 27. 25 207.50 648.42 675.68 4.90 24. 92 5. 02 15 5.00 29.15 212.50 648.85 678.00 4.90 24. 92 5.02 16 5.00 31.04 217.50 649.28 680.32 4.90 24.92 5.02 17 5.00 32. 94 222.50 649.71 682.65 4.90 24. 92 5.02 18 5.00 34.83 227.50 650.14 684.97 4.90 24. 92 5.02 19 5.00 36. 72 232.50 650.57 687.29 4.90 24. 92 5.02 20 5.00 38.62 237.50 650.99 689.61 4.90 24.92 5.02 21 5.00 40.51 242.50 651. 4 2 6 91. 94 4.90 24.92 5.02 22 5.00 42.41 247.50 651.85 694 .26 4.90 24. 92 5.02 23 5.00 44.30 252.50 652.28 696.58 4.90 24.92 5.02 24 5.00 46.20 257.50 652.71 698.90 4.90 24.92 5.02 25 5.00 48.09 262.50 653.14 7 01. 23 4.90 24.92 5.02 26 5.00 49.99 267.50 653.56 703.55 4.90 24. 92 5.02 27 5.00 51. 88 272.50 653.99 705.87 4.90 24. 92 5.02 28 5.00 53.77 277. 50 654. 4 2 708.19 4.90 24.92 5.02 29 5.00 55.67 282.50 654.85 710.52 4.90 24.92 5.02 30 5.00 57.56 287. 50 655.28 712. 84 4.90 24. 92 5.02 31 6.00 58.23 293.00 655.75 713. 98 4.90 -0.36 6.02 32 6.00 57.68 299.00 656.26 713. 94 4.90 -0.36 6.02 33 4. 69 56.52 304.34 657.39 713. 91 20.38 -0.36 5.00 34 4. 69 54. 7 5 309.03 65 9. 13 713. 88 20.38 -0.36 5.00 35 4. 69 52.98 313.71 660.87 713. 85 20.38 -0.36 5.00 36 4. 69 51. 21 318.40 662.61 713. 82 20.38 -0.36 5.00 37 4.69 4 9. 4 4 323.09 664.35 713.79 20.38 -0.36 5.00 38 4.69 47.67 327.77 666.09 713.76 20.38 -0.36 5.00 39 4.69 45. 90 332. 4 6 667.84 713.73 20.38 -0.36 5.00 40 4.69 4 4 .13 337 .15 669.58 713.71 20.38 -0.36 5.00 41 4.69 42.36 341.83 671. 32 713.68 20.38 -0.36 5.00 42 4.69 40.59 346.52 673.06 713.65 20.38 -0.36 5.00 43 4.69 38.82 351.21 674.80 713.62 20.38 -0.36 5.00 44 4.69 37.05 355.90 676.54 713.59 20.38 -0.36 5.00 45 4.69 35.27 360.58 678.28 713.56 20.38 -0.36 5.00 46 4. 69 33.50 365.27 680.03 713.53 20.38 -0.36 5.00 47 4.69 31. 7 3 369. 96 681.77 713.50 20.38 -0.36 5.00 48 4.69 29. 96 374.64 683.51 713.47 20.38 -0.36 5.00 49 4.69 28 .19 379.33 685.25 713.44 20.38 -0.36 5.00 50 4. 69 26.42 384.02 686.99 713.41 20.38 -0.36 5.00 51 4. 69 24.65 388.7C 688. 73 713.38 20.38 -0.36 5.00 52 4.69 22.88 393.39 690.47 713.35 20.38 -0.36 5.00 53 4. 69 21.11 3 98. 08 692.21 713.32 20.38 -0.36 5.00 54 4. 69 19. 34 402.77 693. 96 713.30 20.38 -0.36 5.00 55 4.69 17.57 407.45 6 95. 7 0 713.27 20.38 -0.36 5.00 56 4.69 15.80 412.14 697.44 713.24 20.38 -0.36 5.00 57 4. 69 14.03 416.83 699.18 713.21 20.38 -0.36 5.00 58 4. 69 12.26 4 21. 51 700.92 713.18 20.38 -0.36 5.00 59 4. 6 9 10. 4 9 426.20 702.66 713.15 20.38 -0.36 5.00 60 4.69 8. 7 2 430.89 704.40 713.12 20.38 -0.36 5.00 61 4.69 6. 95 435.57 7 06 .14 713.09 20.38 -0.36 5.00 62 4.69 5.17 440.26 7 07. 8 9 713.06 20.38 -0.36 5.00 63 3. 7 0 3.45 444.45 709.58 713.03 24.00 -0.36 4.05 64 3. 7 0 1. 7 9 448.15 711.23 713.01 24. 00 -0.36 4.05 65 2.23 0. 4 8 451.11 712.55 713.02 24.00 1. 09 2.44 +++Table 2A -Coordinates of Slice Points Defining the Slip Surface+*+ Point X-Ft Y-Pt No. (ft) (ft) 1 141. 606586 645.068866 2 145. 803293 644.284222 3 150.000000 643. 499579 4 155.000000 643.927823 5 160.000000 644.356067 6 165.000000 644.784311 7 170.000000 645.212555 8 175.000000 645.640799 9 180.000000 646.069043 10 185.000000 646.497287 11 190.000000 646.925531 12 195.000000 647.353775 13 200.000000 647. 782019 14 205.000000 648.210263 15 210.000000 648.638506 16 215.000000 649.066750 17 220.000000 649.494994 18 225.000000 649.923238 19 230.000000 650.351482 20 235.000000 650.779726 21 240.000000 651. 207 970 22 245.000000 651.636214 23 250.000000 652.064458 24 255.000000 652.492702 25 260.000000 652.920946 26 265.000000 653.349190 27 270.000000 653.777434 28 275.000000 654.205678 29 280.000000 654.633922 30 285.000000 655. 062166 31 290.000000 655.490410 32 295. 997714 656. 004107 33 301. 995428 656.517804 34 306.682421 658.259098 35 311.369413 660.000393 36 316.056405 661.741687 37 320.743397 663.482982 38 325.430389 665.224276 39 330.117382 666.965570 40 334.804374 668.706865 41 339. 4 91366 670. 448159 42 344.178358 672.189453 43 348.865350 673.930748 44 353.552342 675. 672042 45 358.239335 677.413337 46 362. 926327 679.154631 47 367.613319 680.895925 48 372. 300311 682. 637 220 49 376. 987303 684.378514 50 381. 674296 686.119809 51 386. 361288 687. 861103 52 391. 048280 689.602397 53 395.735272 691. 343692 54 400. 422264 693.084986 55 405.109256 694.826281 56 409. 796249 696.567575 57 414.483241 698.308869 58 419.170233 700.050164 59 423.857225 701. 791458 60 428.544217 703.532752 61 433.231210 705.274047 62 437.918202 707.015341 63 442.605194 708.756636 64 446. 302597 710. 403109 65 450.000000 712. 04 9581 66 452. 229681 713. 042470 ***Table 3 -Force and Pore Pressure Data On The 65 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 688.4 0.0 c.o o.c c.o 137.7 o.c o.oc 2 2065.3 0.0 0.0 0.0 o.c 413.l 0.0 0.00 3 3849.2 0.0 0.0 o.c 0.0 769. 8 0.0 o.oc 4 4985.8 o.c 0.0 0.0 o.c 997.2 o.c o.cc 5 6122.4 0.0 0.0 o.c o.c 1224.5 0.0 o.oc 6 7259.0 o.c 0.0 0.0 o.c 1451.8 0.0 0.00 7 8395.6 0.0 0.0 0.0 0.0 167 9 .1 0.0 o.oc 8 9532.2 0.0 0.0 0.0 o.c 1906. 4 o.c 0.00 9 10668.8 0.0 0.0 0.0 0.0 2133.8 0.0 0.00 10 118C5.4 0.0 O.G 0.0 o.c 2361.1 0.0 0.00 11 12942.0 0.0 0.0 0.0 0.0 2588.4 0.0 0.00 12 14078.6 0. 0 0.0 0.0 0.0 2815.7 0. 0 0.00 13 15215.2 0.0 0.0 0.0 0.0 3043.0 0.0 0.00 14 16351. 8 0.0 0.0 0.0 0.0 3270.4 0.0 0.00 15 17488.4 0.0 0.0 0.0 0.0 3497.7 0.0 0.00 16 18625.0 0.0 0.0 0.0 0.0 3725.0 0.0 0.00 17 19761. 6 0.0 0.0 0.0 0.0 3952.3 0.0 0.00 18 20898.2 0.0 0.0 0.0 0.0 4179.6 0.0 0.00 19 22034.8 0.0 0.0 0.0 0.0 4407.0 0.0 0.00 20 23171.4 0.0 0.0 0.0 0.0 4634.3 0.0 0.00 21 24308.0 0.0 0.0 0.0 0.0 4 8 61. 6 0.0 0.00 22 25444.6 0.0 0.0 0.0 o.o 5088.9 0.0 0.00 23 26581. 2 0.0 0.0 0.0 0.0 5316.2 0.0 0.00 24 27717.8 0.0 0.0 0.0 0.0 5543.6 0.0 0.00 25 28854.4 0.0 0.0 0.0 0.0 5770.9 0.0 0.00 26 29991.0 0.0 0.0 0.0 0.0 5998.2 0.0 0.00 27 31127. 6 0.0 0.0 0.0 0.0 6225.5 0.0 0.00 28 32264.2 0.0 0.0 0.0 0.0 6452.8 0.0 0.00 29 33400.9 0.0 0.0 0.0 0.0 6680.2 0.0 0.00 30 34537.5 0.0 0.0 0.0 0.0 6907.5 0.0 0.00 31 41912.5 0.0 0.0 0.0 0.0 8382.5 0.0 0.00 32 41515.8 0.0 0.0 0.0 0.0 8303.2 0.0 0.00 33 31790.1 0.0 0.0 0.0 0.0 6358.0 0.0 0.00 34 30794.3 0.0 0.0 0.0 J. 0 6158.9 0.0 0.00 35 29798.4 0.J 0.0 0.0 0.0 5959.7 J.0 0.00 36 28882.6 0.0 0.0 0.0 0.0 5760.5 0.0 J.00 37 27806.7 0.J 0.J 0.0 0.0 5561.3 0.0 0.00 38 26810.9 0.0 0.0 0.0 0.0 5362.2 J.0 0.00 39 25815.1 J.0 0.0 0.0 0.0 5163.0 0.0 0.00 40 24819.2 0.0 0.J 0.0 0.0 4 963. 8 0.0 0.00 41 23823.4 0.0 0.0 0.0 0.0 4764.7 0.0 0.00 42 22827.5 0.0 0.0 0.0 0.0 4565.5 0.0 0.00 43 21831. 7 0.0 0.0 0.0 0.0 4366.3 0.0 0.00 44 20835.8 0.0 0.0 0.0 0.0 4167.2 0.0 0.00 45 19840.0 0.0 0.0 0.0 0.0 3968. 0 0.0 0.00 46 18844.1 0.0 0.0 0.0 0.0 3768.8 0.0 0.00 47 17848.3 0.0 0.0 0.0 0.0 3569.7 0.0 0.00 48 16852.4 0.0 0.0 0.0 0.0 3370.5 0.0 0.00 49 15856.6 0.0 0.0 0.0 0.0 3171. 3 0.0 0.00 50 14860.7 0.0 0.0 0.0 0.0 2 97 2 .1 0.0 0.00 51 13864.9 0.0 0.0 0.0 0.0 2773.0 0.0 0.00 52 12869.0 0.0 0.0 0.0 0.0 2573.8 0.0 0.00 53 11873.2 0.0 0.0 0.0 0.0 2374.6 0.0 0.00 54 10877. 3 0.0 0.0 0.0 0.0 2175.5 0.0 0.00 55 98 81. 5 0.0 0.0 0.0 0.0 1976.3 0.0 0.00 56 8885.6 0.0 0.0 0.0 0.0 1777.1 J.0 0.JO 57 7889.8 0.0 0.0 0.0 0.0 1578.0 0.J 0. OJ 58 6893.9 0.0 0.0 0.J 0.J 1378.8 0.J 0.00 59 5898.1 J.0 J.0 0.0 0.0 1179.6 0.J J.00 60 4982.2 0.0 0.0 0.J 0.0 980. 4 0.0 J.00 61 3906.4 O.J J.0 0.J 0.0 781. 3 0.J 0.J0 62 2910.6 0.0 0.0 0.0 0.0 582.1 0.0 0.00 63 1532.9 0.0 0.0 0.0 0.0 306.6 0.0 0.00 64 7 92 .1 0.0 0.0 0.0 0.0 158.4 J.0 0.00 65 127.1 0.0 0.0 0.0 0.0 TOTAL WEIGHT OF SLIDING MASS 1146557.72(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 1146557.72(lbs) TOTAL AREA OF SLIDING MASS= 9554.65(ft2) 25. 4 H*TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 65 SLICES*** Slice Soil No. Type l 2 2 2 .5 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Cohesion (psf; 200.0C 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 200.00 Phi(Deg) 30.00 30.00 30.00 30.0C 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30. 00 30. 00 30.00 30.00 Options 0.0 0.00 60 61 62 63 64 65 2 2 2 2 2 2 200.00 200.00 200.00 200.00 200.00 200.00 30.00 30.00 30.00 30.00 30.00 30.00 SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F E'IBER-REINFORCED SOIL ( FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Seil Options (if any). '"**TABLE 5 -Total Base Stress Data on the 65 Slices*** Slice Alpha No. (deg) * 1 -10.59 2 -10.59 3 4. 90 4 4. 90 5 4. 90 6 4. 90 7 4.90 8 4.90 9 4.90 10 4.90 11 4. 90 12 4. 90 13 4.90 14 4.90 15 4.90 16 4.90 17 4.90 18 4.90 19 4.90 20 4.90 21 4.90 22 4.90 23 4.90 24 4.90 25 4. 90 26 4.90 27 4. 9 0 28 4.90 29 4.90 30 4.90 31 4.90 32 4.90 33 20.38 34 20.38 35 20. 38 36 20.38 37 20.38 38 20. 38 39 20. 38 40 20.38 41 20.38 42 20.38 43 20.38 44 20.38 45 20.38 46 20.38 47 20.38 48 20.38 49 20. 38 50 20.38 51 20.38 X-Cocrd. Slice Cntr (ft) 143.70 14 7. 90 152. 50 157.50 162.50 167.50 172.50 177.50 182.50 187.50 192.50 197. 50 202.50 207.50 212.50 217. 50 222.50 227.50 232.50 237.50 242.50 247.50 252.50 257.50 262.50 267.50 272.50 277 .50 282.50 287.50 293.00 299.00 304.34 309.03 313. 71 318. 4 0 323.09 327. 77 332.46 337.15 341.83 346.52 351.21 355.90 360.58 365.27 36 9. 96 37 4. 64 37 9. 33 384.02 388.70 Base Leng. (ft) 4.27 4.27 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02 6.02 6.02 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Total Normal Stress (psf) 4 63 .10 979.77 886.65 1121. 21 1355. 76 1590.32 1824.88 2059.43 2293.99 2528.55 2763.10 2997.66 3232.21 3466.77 37 01. 33 3935.88 4170.44 4405.00 4639.55 4874.11 5108.67 5343.22 5577.78 5812.34 6046.89 6281.45 6516.01 6750.56 6985.12 7219. 67 7302.83 7234.58 5175.73 5014.71 4853.69 4692.67 4531. 65 4370.63 4209.61 4048.59 3887.57 3726.55 3565.53 3404.51 3243.49 3082.47 2921.45 2760.43 2599.41 2438.40 2277.38 Total Vert. Stress (psf) 164. 04 492.13 769.84 997. 16 1224.48 1451.80 1679.12 1906. 44 2133.76 2361.08 2588.40 2815.72 3043.04 3270.36 3497.68 3725.00 3952.33 4179.65 4406. 97 4634.29 4861. 61 5088.93 5316.25 5543.57 5770.89 5998.21 6225.53 6452.85 6680.17 6907.49 6988.08 6921. 94 6782.63 6570.16 6357.69 6145.22 5932.75 5720. 28 5507.81 5295.34 5082.87 4870. 40 4657.93 4445.46 4232.98 4020. 51 3808.04 3595.57 3383.10 3170.63 2958.16 Total Normal/Vert. Stress Ratio 2.823 1. 991 1.152 1.124 1.107 1. 095 1. 087 1. 080 1. 07 5 1.071 1. 067 1. 065 1. 062 1. 060 1. 058 1. 057 1.055 1. 054 1. 053 1. 052 1.051 1.050 1. 04 9 1. 04 8 1. 04 8 1.047 1.047 1. 04 6 1. 04 6 1.045 1. 045 1.045 0. 7 63 0. 7 63 0. 7 63 0. 7 64 0. 7 64 0. 764 0. 764 0. 765 0. 7 65 0.765 0.765 0. 766 0. 766 0. 767 0. 767 0. 768 0.768 0. 769 0.770 52 20.38 393.39 5.00 2116.36 2745.69 0.771 53 20. 38 398.08 5.00 1955.34 2533.22 0.772 54 20. 38 4 02. 77 5,00 1794.32 2320.75 0. 773 55 20.38 407.45 5.00 1633.30 2108.28 0. 775 56 20.38 412.14 5.00 1472.28 1895.81 0.777 57 20.38 416.83 5.00 1311.26 1683.34 0. 77 9 58 20.38 421.51 5.00 1150.24 1470.87 0.782 59 20.38 426.20 5.00 989.22 1258.40 0.786 60 20.38 430.89 5.00 822.20 1045.93 0.792 61 20.38 435.57 5.0C 667.18 833. 4 6 C.800 62 20.38 440.26 5.00 506.16 620.99 C.815 63 24.CC 444.45 4.05 319.51 414. 57 C.771 64 24.0C 448.15 4. C5 177.42 214.23 C.828 65 24.CC 451 .11 2.44 65.93 57.03 1.156 ,-**TABLE 5A -Total Base Force Data on the 65 Slices*+* Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal /Ve rt. * ( ft) (ft) (lbs) (lbs) Force Ratio 1 -10.59 143.70 4. 27 1977 .19 688.45 2.872 2 -10.59 14 7 . 90 4. 27 4183.07 2065.35 2.025 3 4.90 152.50 5.02 4449.48 3849.20 1.156 4 4. 90 157.50 5.02 5626.56 4985.80 1.129 5 4. 90 162.50 5.02 6803.63 6122. 40 1.111 6 4. 90 167.50 5.02 7980.71 7259.00 1.099 7 4.90 172.50 5.02 9157. 78 8395.61 1.091 8 4.90 177.50 5.02 10334.86 9532.21 1. 084 9 4. 90 182.50 5.02 11511.94 10668.81 1. 07 9 10 4. 90 187.50 5.02 12689.01 11805.41 1.075 11 4.90 192.50 5.02 13866.09 12942.01 1. 071 12 4.90 197.50 5.02 15043.16 14078.62 1.069 13 4.90 202.50 5.02 16220.24 15215.22 1.066 14 4.90 207.50 5.02 17397.32 16351. 82 1.064 15 4.90 212.50 5.02 18574.39 17488.42 1.062 16 4.90 217.50 5.02 19751.47 18625.02 1.060 17 4.90 222.50 5.02 20928.55 19761.63 1.059 18 4.90 227.50 5.02 22105.62 20898.23 1.058 19 4.90 232.50 5.02 23282.70 22034.83 1.057 20 4.90 237.50 5.02 24459.77 23171.43 1.056 21 4.90 242.50 5.02 25636.85 24308.03 1.055 22 4.90 247.50 5.02 26813.93 25444.64 1.054 23 4.90 252.50 5.02 27991.00 26581.24 1. 053 24 4.90 257.50 5.02 29168.08 27717.84 1. 052 25 4.90 262.50 5.02 30345.15 28854.44 1. 052 26 4.90 267.50 5.02 31522.23 29991.04 1.051 27 4.90 272.50 5.02 32699.31 31127. 65 1. 050 28 4. 90 277. 50 5.02 33876.38 32264.25 1.050 29 4. 90 282.50 5.02 35053.46 33400.85 1. 049 30 4. 90 287.50 5.02 36230.53 34537.45 1. 049 31 4.90 293.00 6.02 43960. 64 41912.51 1. 04 9 32 4. 90 299.00 6.02 43549.81 41515.81 1. 049 33 20.38 304. 34 5.00 25878.63 31790.14 0.814 34 20.38 309.03 5.00 25073.54 30794.29 0.814 35 20.38 313. 71 5.00 24268.44 29798.45 0.814 36 20.38 318.40 5.00 23463.34 28802.60 0.815 37 20.38 323.09 5.00 22658.24 27806.75 0.815 38 20.38 327. 77 5.00 21853.15 26810.90 0.815 39 20.38 332.46 5.00 21048.05 25815.05 0.815 40 20.38 337.15 5.00 20242.95 24819.21 0.816 41 20.38 341.83 5.00 19437.85 23823.36 0.816 42 20.38 346.52 5.00 18632.76 22827 .51 0. 816 43 20.38 351.21 5.00 17827.66 21831.66 0.817 44 20. 38 355.90 5.00 17022.56 20835.81 0.817 45 20.38 360.58 5.00 16217.46 19839. 97 0.817 46 20.38 365.27 5.00 15412.37 18844.12 0.818 47 20.38 369. 96 5.00 14607.27 17848.27 0.818 48 20.38 37 4. 64 5.00 13802.17 16852.42 0.819 49 20.38 379.33 5.00 12997.07 15856.58 0.820 50 20.38 384.02 5.00 12191.98 14860.73 0.820 51 20.38 388.70 5.00 11386.88 13864.88 0.821 52 20.38 393.39 5.00 10581.78 12869.03 0.822 53 20.38 398.08 5.00 9776.68 11873.18 0.823 54 20.38 402.77 5.00 8971.59 10877.34 0.825 55 20.38 407.45 5.00 8166.49 9881.49 0.826 56 20.38 412.14 5.00 7361.39 8885. 64 0.828 57 20.38 416.83 5.00 6556.29 7889. 79 0.831 58 20.38 421.51 5.00 5751.20 6893.94 0.834 59 20.38 426.20 5.00 4946.lC 5898.10 0.839 60 20.38 430.89 5.00 4141.00 4902.25 0.845 61 20.38 435.57 5.00 3335.90 39C6.40 0.854 62 20.38 440.26 5.00 2530.81 2910.55 0.87C 63 24.00 444.45 4. C5 1293.20 1532.85 0.844 64 24.00 448.15 4.05 718.08 792.08 0.9C7 65 24.00 451.11 2.44 160.91 127.15 1. 266 +**TABLE 6 -Effective and Base Shear Stress Cata en the 65 Sli.ce.s*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * ( ft) (ft) (psf) (psf) (psf) 1 -10.59 143.70 4. 27 4 63 .10 4 67. 37 300.03 2 -10.59 147.90 4. 27 97 9. 7 7 7 65. 67 4 91. 52 3 4.90 152.50 5.02 886.65 711. 91 4 5 7 . 01 4 4.90 157.50 5.02 1121.21 84 7. 33 543. 94 5 4.90 162.50 5.02 1355.76 982.75 630.87 6 4.90 167.50 5.02 1590.32 1118.17 717.81 7 4.90 172.50 5.02 1824.88 1253.59 804.74 8 4.90 177.50 5.02 2059.43 1389. 01 8 91. 67 9 4.90 182.50 5.02 2293.99 1524.43 978.61 10 4. 90 187.50 5.02 2528.55 1659.86 1065.54 11 4. 90 192.50 5.02 2763.10 1795.28 1152.47 12 4.90 197.50 5.02 2997.66 1930.70 1239.41 13 4.90 202.50 5.02 3232.21 2066.12 1326.34 14 4.90 207.50 5.02 3466.77 2201.54 1413.27 15 4.90 212.50 5.02 37 01. 33 2336. 96 1500.21 16 4.90 217.50 5.02 3935.88 2472.38 1587.14 17 4.90 222.50 5.02 4170.44 2607.80 1674.07 18 4.90 227.50 5.02 4405.0J 2743.23 17 61. 01 19 4.90 232.50 5.02 4639.55 2878.65 1847.94 20 4.90 237.50 5.02 4874 .11 3014. 07 1934.87 21 4.90 242.50 5.02 5108.67 3149.49 2021.81 22 4.90 247.50 5.02 5343.22 3284.91 2108.74 23 4.90 252.50 5.02 5577.78 3420.33 2195.67 24 4.90 257.50 5.02 5812.34 3555.75 2282.61 25 4.90 262.50 5.02 6046.89 3691.17 2369.54 26 4.90 267.50 5.02 6281.45 3826.60 2456.47 27 4.90 272.50 5.02 6516.01 3962. 02 2543.41 28 4.90 277.50 5.02 6750.56 4097.44 2630.34 29 4. 90 282.50 5.02 6985.12 4232.86 271 7. 27 30 4.90 287.50 5.02 7219.67 4368.28 2804.21 31 4.90 293.00 6.02 7302.83 4416.29 2835.03 32 4. 90 299.00 6.02 7234.58 4376. 89 2809.73 33 20.38 304.34 5.00 5175.73 3188.21 2046.66 34 20.38 30 9. 03 5.00 5014.71 3095.24 1986.98 35 20.38 313.71 5.00 4853.69 3002.28 1927.30 36 20.38 318.40 5.00 4692.67 2909.31 1867.63 37 20.38 323.09 5.00 4 531. 65 2816.35 1807.95 38 20.38 327.77 5.00 4370.63 2723.38 1748.27 39 20.38 332.46 5.00 4209.61 2630. 42 1688.59 40 20.38 337.15 5.00 4048.59 2537.45 1628.91 41 20.38 341.83 5.00 3887.57 2444.49 1569.23 42 20.38 346.52 5.00 3726.55 2351.53 1589.56 43 20.38 351. 21 5.00 3565.53 2258.56 1449.88 44 20.38 355.90 5.00 3404.51 2165. 60 1390.20 45 20.38 360.58 5.00 3243.49 2072. 63 1330. 52 46 20.38 365.27 5.00 3082.47 197 9. 67 1270.84 47 20.38 369.96 5.00 2921.45 1886.70 1211.16 48 20.38 374 .64 5.00 2760.43 1793.74 1151.48 4 9 20.38 379.33 5.00 2599.41 1700.77 1091.81 50 20.38 384.02 5.00 2438.40 1607.81 1032.13 51 20.38 388.70 5.00 2277.38 1514.84 97 2. 4 5 52 20.38 393.39 5.00 2116.36 1421.88 912.77 53 20.38 398.08 5.00 1955.34 1328.91 853.09 54 20.38 4 02. 77 5.00 1794.32 1235.95 7 93. 41 55 20.38 4 07. 4 5 5.00 1633.30 1142.98 733.74 56 20.38 412.14 5.00 1472.28 1050.02 67 4. 06 57 20.38 416.83 5.00 1311.26 957.06 614.38 58 20.38 421.51 5.00 1150.24 864.09 554.70 59 20.38 426.20 5.00 989.22 771. 13 4 95. 02 60 20.38 430.89 5.00 828.20 67 8. 16 435.34 61 20.38 435.57 5.00 667.18 585.20 375.67 62 20.38 440.26 5.00 506 .16 492.23 315.99 63 24. 00 444.45 4.05 319.51 384.47 246.81 64 24.00 448.15 4.05 177.42 302.43 194 .15 65 24.00 4 51 .11 2.44 65.93 238.06 152.82 ***TABLE 6A -Effective and Base Shear Force Data on the 65 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -10.59 143. 70 4.27 1977 .19 1995.41 1280.95 2 -10.59 147.90 4.27 4183.07 3268.98 2098.51 3 4. 90 152.50 5.02 4449.48 3572.57 2293.40 4 4.90 157.50 5.02 5626.56 4252.15 2729.66 5 4.90 162.50 5.02 6803.63 4931.74 3165.92 6 4.90 167.50 5.02 7980. 71 5611. 33 3602.17 7 4.90 172.50 5.02 9157.78 6290.91 4038.43 8 4.90 177.50 5.02 10334.86 6970.50 4474.69 9 4.90 182.50 5.02 11511. 94 7650. 08 4910.95 10 4.90 187.50 5.02 12689.01 8329.67 5347.21 11 4. 90 192.50 5.02 13866.09 9009.25 5783.46 12 4.90 197. 50 5.02 15043.16 9688. 84 6219.72 13 4.90 202.50 5.02 16220.24 10368.42 6655.98 14 4.90 2 07. 50 5. 02 17397.32 11048.01 7092. 24 15 4.90 212.50 5. 02 18574.39 11727.59 7528.49 16 4.90 217.50 5.02 19751.47 12407.18 7964.75 17 4.90 222.50 5.02 20928.55 13086. 76 8401.01 18 4.90 227.50 5.02 22105.62 13766.35 8837.27 19 4.90 232.50 5.02 23282.70 14 4 4 5. 93 9273.53 20 4.90 237.50 5.02 24459.77 15125.52 9709.78 21 4.90 242.50 5.02 25636.85 15805.10 10146.04 22 4.90 247.50 5.02 26813.93 16484.69 10582.30 23 4.90 252.50 5.02 27991.00 17164.27 11018. 56 24 4. 90 257.50 5.02 29168.08 17843.86 11454.81 25 4.90 262.50 5.02 30345.15 18523.44 11891.07 26 4. 90 267.50 5.02 31522.23 19203.03 12327.33 27 4.90 272.50 5.02 32699.31 19882.61 12763.59 28 4. 90 277.50 5.02 33876.38 20562.20 13199.85 29 4.90 282.50 5.02 35053. 46 21241. 78 13636.10 30 4. 90 287.50 5.02 36230.53 21921.37 14072.36 31 4. 90 293.00 6.02 43960. 64 2 658 4. 62 17065. 92 32 4.90 299.00 6. 02 43549.81 26347.43 16913.66 33 20.38 304.34 5.00 25878.63 15941.04 10233.30 34 20.38 30 9. 03 5.00 25073.54 15476.21 9934. 91 35 20.38 313. 71 5.00 24268.44 15011.39 9636.52 -36 20.38 318. 4 0 5.00 23463.34 14546.57 9338.13 37 20.38 323.09 5.00 22658.24 14081.74 9039.74 38 20.38 327.77 5.00 21853.15 13616. 92 8741.34 39 20.38 332. 4 6 5.00 21048.05 13152.10 8442.95 40 20.38 337.15 5.00 20242.95 12687.27 8144.56 41 20.38 341.83 5.00 19437.85 12222.45 7846.17 42 20.38 346.52 5.00 18632.76 11757.63 7547.78 43 20. 38 351.21 5.00 17827.66 11292. 80 7249.38 44 20.38 355.90 5.00 17022.56 10827. 98 6950.99 45 20.38 360.58 5.00 16217.46 10363.16 6652.60 46 20.38 365.27 5.00 15412.37 9898.33 6354.21 47 20.38 369.96 5.00 14607.27 9433.51 6055.82 48 20.38 37 4. 64 5.00 13802.17 8968.69 5757.42 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 20.38 379.33 5.00 12997.07 20.38 384.02 5.00 12191. 98 20.38 388.70 5.00 11386.88 20.38 393.39 5.00 10581.78 20.38 398.08 5.00 9776.68 20.38 402.77 5.00 8971.59 20.38 407.45 5.00 8166.49 20.38 412.14 5.00 7361.39 20.38 416.83 5.0C 6556.29 20.38 4 21. 51 5.0C 5751.20 20.38 426.20 5.0C 4946.10 20.38 430.89 5.00 4141.00 20.38 435.57 5.CO 3335.90 20.38 440.26 5.CO 2530.81 24. cc 444.45 4. 05 1293.20 24.00 448.15 4.05 718.08 24.00 451.11 2.44 160.91 Average Effective Normal Stress= 3393.703B(psf) Average Available Shear Strength= 2159.3558(psf) Total Length of railure Surface= 321.6264(ft) 8503.86 5459.03 8039.04 5160.64 7574.22 4862.25 7109.39 4563.86 6644.57 4265. 46 6179.75 3967. 07 5714.92 3668.68 5250.10 3370.29 4785.28 3071. 90 4320. 45 2773.50 3855.63 2475.11 3390.81 2176.72 2925. 98 1878.33 2461.16 1579.94 1556.12 998.94 1224.07 7 85. 7 9 581.05 373.01 SUM Or MOMENTS -0.3594218-02 (ft/lbs);Imbalance (traction of Total Weight) 0.31347848-08 ll SUM Or rORCES = 0.1538468-05 (lbs);Irnbalance (traction of Total Weight)= 0.1341808E- Sum of Available Shear rorces Sum of Mobilized Shear rorces rS Balance Check: rS = 1.557760 694505.78(lbs) 445836.05(lbs) The rS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END Or GEOSTASE OUTPUT**** Ninyo & Moore/ WRM Acadia Medical Facility, Chula Vista, CA Section 8-8' Easterly Slope -Circular (Seismic) 1B-B' East Slope Circular Seismic.gsd 1O62.----N-o.-F-S--,----------------------------=---,--------,--,--.---------, Soil Moist Wt Sat Wt Phi Peons! Piez Surf Soil 1062 C ru ~ 950 837 1 1.098 2 1.099 3 1.107 4 1.107 5 1.108 6 1.109 7 1.113 8 1.115 9 1.117 10 1.120 725 ....... .. GEOSTASE. Slopo Stability Analvsis No. 01 Olay Formation 1112 Fill 112 225 (pcf) (pcf) (psi) (deg) (ratio) (psi) 120.0 130.0 300.0 28.0 0.000 0,0 120.0 130.0 200.0 30.0 0.000 0,0 337 450 562 GEOSTASE FS = 1.098 Spencer Method GEOSTASE® by GREGORY GEOTECH~CAL SOFTWARE No. Options 0 .... · 950 .... 837 ...... 725 675 787 PLATE E-8 *** GEOSTASE(R) '"* GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbt.:, er General Eqt.:ilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Leads Applied Forces, Fiber-Reinforced Seil (FRS), Distributed Leads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdo~m 2-or 3-Stage Pseudo-Static & Simplified Newrnark Seismic Analyses. **********************************************~'********************************** Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Circular Seismic.gsd Calcs\B-B'\Stability Fill\B-B' Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Circular Seismic.OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope -Circular (Seismic) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Boundaries X -1 (ft) 0.000 30.000 57.000 155.000 205.000 828.000 876. 000 57. 000 57.100 71. 900 72.000 245.000 371.000 700.000 700.100 813.000 861. 000 User Specified X-Origin User Specified Y-Origin y -1 (ft) 640.000 643.000 657. 000 708.000 710.000 710.000 686.000 657. 000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 30.000 57.000 155.000 205.000 828.000 876.000 900.000 57.100 71. 900 72.000 245.000 371.000 700.000 700.100 813.000 861.000 876.000 0.000(ft) 500.000(ft) y -2 (ft) 643.000 657.000 708.000 710. 000 710. 000 686.000 686.000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 686.000 Soil Number Moist Saturated Cohesion Friction Pore Soil Type Below Bnd 1 1 2 2 2 2 l l 1 l 1 1 1 1 1 1 1 Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay 0 2 Fill 0 Formation 120.0 130.0 300.00 28.00 0.000 120.0 130.0 200.00 30.00 0.000 SEISMIC (EARTHQUAKE) CATA Specified Peak Grcund Acceleration Ccefficient (PGA) 0.374(g) Default Velccity l.870(ft) per seccnd Specified Hcrizcntal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.0O0(g) (NOTE:Input Velocity= 0.0 will result in default Peak Velocity= 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA 0.0 0.0 Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 0 0 5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the Start Range Along The Specified Surface Between X and X 0.00(ft) 80.00(ft) Each Surface Enters within a Range Between and X X 130.00(ft) 600.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y 500.00(ft) Specified Maximum Radius= 5000.000(ft) 20.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient= 1.00 Specified Tension Crack Water Depth Factor 0.000 Total Nuwber of Trial Surfaces Attempted 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 1231 Number of Trial Surfaces With Valid FS = 3769 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 24.6 % Statistical Data On All Valid FS Values: FS Max= 3.375 FS Min= 1.098 FS Ave 2.168 Standard Deviation = 0.529 Coefficient of Variation 24.3E % Critical Surface is Sequence Number 908 of Those Analyzed. +*+**BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 158.753135(ft) 43.988802(ft) ; Y = 798.171438(ft); and Radius Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 17.107 641. 711 2 36.993 639.573 3 56.989 639.952 4 76.779 642.842 5 96. 049 6 4 8. 197 6 114.492 655.933 7 131.817 665.926 8 147.747 678.018 9 162.031 692.018 10 174.441 707.702 11 175 .107 708.804 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=l.O) Lambda 1 15.0000 1. 261973 1.042377 :).268 2 19.9500 1. 240119 1. 057185 :). 363 3 44.6444 0.000000 1.185282 0.988 4 23.2510 1.216857 1.068154 0.430 5 25. 6396 1.192798 1. 076774 :). 4 80 6 34 .1183 0.946170 1.113848 0.678 7 29.1064 1.138970 1.090539 0.557 8 30.2304 1.113536 1. 095376 0.583 9 30.9045 1.095345 1.098376 0.599 10 30.8081 1.098107 1.097942 0. 596 11 30.8131 1.097966 1.097965 0. 596 Factor Of Safety For The Preceding Specified Surface Theta (fx = 1.0) 30.81 Deg Lambda= 0.596 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Delta FS 0.21959S9E+OO 0.1829341E+OO 0.1185282E+Ol 0.1487032E+OO 0.1160239E+OO 0.1676778E+OO 0.4843103E-01 0.1815981E-01 0.3031443E-02 0.1647498E-03 0.8357895E-06 1.098 Minimum theta(deg) -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factcr = C.000 Depth of Tensicn Crack (zo) at Side of Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth 0.0OC(ft) 5.7741ft) 0.0001ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** X Coo rd. 21. 4 0 25.70 30.00 33.50 36.99 41. 99 4 6. 99 51. 99 56. 99 57.00 57 .10 62.03 66. 97 71. 90 72.00 76.78 81.60 86.41 91. 23 96. 05 100.66 105.27 109.88 114.49 120.27 126.04 131.82 132.98 137. 91 142.83 147.75 151. 37 155.00 158.52 162.03 168.24 174.44 175.11 y Coord. 642.76 643. 69 644.56 645.13 645.51 64 6. 67 647.65 648.52 64 9. 32 64 9. 32 649.35 650.79 652.15 653. 43 653. 4 5 654.63 656. 41 658.13 659.80 661.41 663.50 665.56 667. 57 669.55 672.71 675.85 67 8. 94 67 9. 7 2 683.04 686.40 68 9. 50 692.15 694. 66 696. 98 699.21 706.73 708.21 708.80 h/H 1.000+ 1.000+ 1.000+ 1.000+ 0.842 0. 733 0.655 0. 596 0.550 0.550 0.549 0.534 0.517 0.499 0.499 0.482 0. 4 77 0.471 0. 4 63 0.454 0.452 0. 4 4 9 0.445 0.439 0.439 0. 437 0. 434 0.434 0. 437 0.443 0.438 0. 431 0. 417 0.430 0.442 0. 7 92 0.471 0.000 Side Force (lbs) 2505.56 5373.16 8602.77 11739.05 15598.23 19861. 04 24752.03 30271.22 36418.59 36426.30 36497. 74 40114.77 43913.59 47894.18 47976. 75 52009.97 53299.45 54572.94 55830.44 57071. 95 55698.15 54279.06 52814.69 51305.04 46646.32 42056.24 37534.81 36171.81 30558.17 25213.84 19705.21 15026.67 10807.61 7288.71 4469.11 577. 07 34.22 242.55 fx 1.000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1. 000 1.000 1.000 1.000 1.000 1.000 1. 000 1. 000 1.000 1. 000 0.866 0. 7 51 0.636 0.525 0.414 0. 217 0.021 0.000 Force Angle (Deg) 30.81 30.81 30. 81 30.81 30. 81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 30.81 27.31 24.13 20.78 17.39 13.86 7.39 0. 7 2 0.00 Vert. Shear Force(lbs) 1283.4 27 52. 3 4406.7 6013.2 7990.0 10173.6 12679.0 15506.1 18655.0 18659.0 18695.6 20548.4 22494.3 24533.3 24575.6 26641. 5 27302.1 27954.4 28598.5 29234.5 28530.8 27803.9 27053.8 26280.5 23894.1 21542.9 19226.8 18528.6 15653.1 12915.5 9041.4 6143.1 3834.7 2178. 2 1070.9 74.2 0.4 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 -Geometry Data on the 38 Slices*.,i,* Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) ( ft) l 4.30 0.45 19. 26 641. 48 641. 93 -6.14 5. 71 4. 32 2 4.30 1. 34 23.55 641. 02 642.36 -6.14 5.71 4. 32 3 4.30 2.23 27.85 640.56 642.79 -6.14 5. 71 4. 32 4 3.50 3.77 31. 75 640.14 643.91 -6.14 27.41 3.52 5 3.50 5. 96 35.24 639.76 645.72 -6.14 27. 41 3.52 6 5.00 8. 30 39.49 639.62 647.92 1.09 27.41 5.00 7 5.00 10.80 4 4. 4 9 639.71 650.51 1.09 27.41 5.00 8 5.00 13.30 4 9. 4 9 639.81 653.11 1.09 27.41 5.00 9 5.00 15. 7 9 54. 4 9 639.90 655. 7 0 1. 09 27.41 5.00 10 0.01 17.04 56.99 639.95 657.00 8.31 27.41 0.01 11 0.10 17.07 57.05 63 9. 96 657.03 8.31 27.49 0.10 12 4. 93 18.01 59.57 640.33 658.34 8.31 27. 4 9 4. 99 13 4.93 19.85 64. 50 641. 05 660.90 8.31 27. 4 9 4. 99 14 4. 93 21. 70 69.43 641. 7 7 663.47 8.31 27. 4 9 4. 99 15 0.10 22.64 71.95 642.14 664.78 8.31 27. 4 9 0.10 16 4. 7 8 23.56 74.39 642.49 666.05 8.31 27. 4 9 4.83 17 4.82 25.04 79.19 643.51 668.55 15.53 27. 4 9 5.00 18 4.82 26. 2 0 84. 01 644.85 671.05 15.53 27. 4 9 5.00 19 4.82 27.37 88.82 646.19 673.56 15.53 27. 4 9 5.00 20 4.82 28.54 93. 64 647.53 67 6. 07 15.53 27. 4 9 5.00 21 4. 61 29. 36 98.35 649.16 678.52 22. 7 5 27. 4 9 5.00 22 4. 61 29.82 102. 97 651. 10 680.92 22. 7 5 27. 4 9 5.00 23 4.61 30. 29 107. 58 653.03 683.32 22.75 27. 4 9 5.00 24 4. 61 30. 7 5 112.19 654.97 685.72 22.75 27.49 5.00 25 5.77 30. 82 11 7. 38 657.60 688.42 29.98 27. 4 9 6. 67 26 5.77 30. 50 123.15 660.93 6 91. 4 3 29.98 27. 4 9 6. 67 27 5.77 30 .1 7 128.93 664.26 694.43 29.98 27. 4 9 6. 67 28 1.1 7 29.87 132. 4 0 666.37 696. 24 37. 20 27. 4 9 1. 47 29 4. 92 29.14 135.45 668.68 697.82 37. 20 27. 4 9 6.18 30 4. 92 27. 97 140.37 672.42 700.38 37. 20 27. 4 9 6.18 31 4. 92 26. 7 9 145. 2 9 676.15 702.95 37. 20 27.49 6.18 32 3.63 25.37 149.56 67 9. 8 0 7 05 .1 7 4 4. 4 2 27. 4 9 5.08 33 3.63 23. 71 153.19 683.35 707.06 4 4. 4 2 27. 4 9 5.08 34 3.52 21. 22 156.76 686.85 708.07 4 4. 4 2 2.29 4. 92 35 3.52 17.92 160.27 690.29 708.21 44.42 2.29 4. 92 36 6.21 12.47 165.13 695.94 708.41 51.65 2.29 10.00 37 6.21 4.87 171.34 7 03. 7 8 708.65 51.65 2.29 10. 00 38 0.67 0.54 174.77 708.25 7 08. 7 9 58.87 2.29 1. 29 *"*Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. ( ft) (ft) 1 17 .107421 641. 710742 2 21.404948 641. 248642 3 25.702474 640.786543 4 30.000000 640.324443 5 33. 4 96397 639.948486 6 36.992794 639.572529 7 41. 991896 639. 667273 B 46.990999 639. 762017 9 51.990101 639.856760 10 56. 989203 639.951504 11 57. 000000 639.953081 12 57.100000 639. 967685 13 62.033333 640.688150 14 66.966667 641. 408615 15 71. 900000 642.129080 16 72.000000 642.143684 17 76. 779278 642.841651 18 81.596689 644.180514 19 86.414100 645.519376 20 91.231510 646.858238 21 96. 048921 648.197101 2~ L 100.659765 650.131039 23 105.270610 652. 064 977 24 109.881454 653.998915 25 114. 492298 655.932853 26 120.267093 659. 2 6394 6 27 126.041889 662.595039 28 131.816685 665.926132 29 132.984845 666.812839 30 137. 905603 670.548002 31 142.826361 674.283166 32 147.747119 678.018330 33 151.373560 681.572552 34 155.000COO 685.126774 35 158.515382 688.572150 36 162. 030764 692.017526 37 168.235841 699.859530 38 174.440917 707.701534 39 175.106928 708.804277 ***Table 3 -Force and Pore Pressure Data On The 38 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 230.0 0.0 0.0 0.0 0.0 46.0 0.0 0.00 2 689. 9 0.0 0.0 0.0 0.0 138.0 0.0 0.00 3 1149.8 0.0 0.0 0.0 0.0 230.0 0.0 0.00 4 1581. 8 0.0 0.0 0.0 0.0 316. 4 0.0 0.00 5 2500.2 0.0 0.0 0.0 0.0 500.0 0.0 0.00 6 4 98 0. 3 0.0 0.0 0.0 0.0 996.1 0.0 0.00 7 6478.5 0.0 0. 0 0.0 0.0 1295.7 0.0 0.00 8 7 97 6. 7 0.0 0.0 0.0 0.0 1595.3 0.0 0.00 9 9474.8 0.0 0.0 0.0 0.0 1895.0 0.0 0.00 10 22.1 0.0 0. 0 0.0 0.0 4. 4 0.0 0.00 11 204.8 0.0 0.0 0.0 0.0 41. 0 0.0 0.00 12 10660.6 0.0 0.0 0.0 0.0 2132 .1 0.0 0.00 13 11754.0 0.0 0.0 0.0 0.0 2350.8 0.0 0.00 14 12847.3 0.0 0.0 0.0 0.0 2569.5 0.0 0.00 15 271.7 0.0 0.0 0.0 0.0 54. 3 0.0 0.00 16 13510.3 0.0 0.0 0.0 0.0 2702.1 0.0 0.00 17 14472.9 0. 0 0.0 0.0 0.0 2894.6 0.0 0.00 18 15148.2 0.0 0.0 0.0 0.0 3029.6 0.0 0.00 19 15823.5 0.0 0.0 0.0 0.0 3164. 7 0.0 0.00 20 16498.8 0.0 0.0 0.0 0.0 3299.8 0.0 0.00 21 16243.3 0.0 0.0 0.0 0.0 3248.7 0.0 0.00 22 16500.9 0.0 0.0 0.0 0.0 3300.2 0.0 0.00 23 16758.5 0.0 0.0 0.0 0.0 3351.7 0.0 0.00 24 17016.1 0.0 0.0 0.0 0.0 3403.2 0.0 0.00 25 21360.1 0.0 0.0 0.0 0.0 4272.0 0.0 0.00 26 21134. 3 0.0 0.0 0.0 0.0 4226.9 0.0 0.00 27 20908.5 0.0 0.0 0.0 0.0 4181.7 0.0 0.00 28 4187.1 0.0 0.0 0.0 0.0 837.4 0.0 0.00 29 17208.7 0.0 0.0 0.0 0.0 3441. 7 0.0 0.00 30 16515.3 0.0 0.0 0.0 0.0 3303.1 0.0 0.00 31 15821. 8 0.0 0.0 0.0 0.0 3164.4 0.0 0.00 32 11042.0 0.0 0. 0 0.0 0.0 2208.4 0.0 0.00 33 10316.5 0.0 0.0 0.0 0.0 2063.3 0.0 0.00 34 8 951. 9 0.0 0.0 0.0 0.0 1790. 4 0.0 0.00 35 7557.8 0.0 0.0 0.0 0.0 1511. 6 0.0 0.00 36 9282.9 0.0 0.0 0.0 0.0 1856.6 0.0 0.00 37 3628.5 0.0 0.0 0.0 0.0 725. 7 0.0 0.00 38 43.0 0.0 0.0 0.0 0.0 8.6 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS 380753.31(1bs) EFFECTIVE WEIGHT OF SLIDING MASS= 380753.31(1bs) TOTAL AREA Or SLIDING MASS 3172.94(ft2) ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 38 SLICES*+"' Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 2E.OO 9 1 300.00 28.00 10 1 300.00 28.CO 11 1 300.00 28.CO 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28. 00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 1 300.00 28.00 24 1 300.00 28.00 25 1 300.00 28.00 26 1 300.00 28.00 27 1 300.00 28.00 28 1 300.00 28.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 SOIL OPTIONS: A= ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), t = tIBER-REINE'ORCED SOIL (E'RS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING {SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 -Total Base Stress Data on the 38 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * ( ft) (ft) (psf) (psf) Stress Ratio 1 -6.14 19.26 4. 32 402.50 53.51 7.522 2 -6.14 23.55 4. 32 560.92 160.53 3.494 3 -6.14 27. 85 4.32 719.34 267.56 2.689 4 -6.14 31.75 3.52 992.97 452. 4 0 2.195 5 -6.14 35.24 3.52 1381.79 715.07 1.932 6 1.09 39.49 5.00 1414.88 996.25 1. 420 7 1.09 4 4. 4 9 5.00 1775.62 1295.93 1. 37 0 8 1.09 4 9. 4 9 5.00 2136.36 1595.62 1. 339 9 1.09 54. 4 9 5.00 2497.11 1895.30 1. 318 10 8.31 56.99 0.01 2214.59 2045.39 1. 083 11 8.31 57.05 0 .10 2217.11 2047.88 1.083 12 8.31 59. 57 4.99 2331.69 2160.94 1. 079 13 8.31 64.50 4. 9 9 2556.31 2382.56 1. 07 3 14 8.31 69.43 4. 9 9 2780.92 2604.19 1. 068 15 8.31 71.95 0.10 2895.51 2717.25 1.066 16 8.31 74.39 4. 83 3006.59 2826.85 1. 064 17 15.53 79.19 5.00 27 01. 83 3004.29 0.899 18 15.53 84.01 5.00 2823.88 3144.47 0.898 19 15.53 88.82 5.00 2945.93 3284.64 0.897 20 15.53 93. 64 5.00 3067. 98 3424.82 0. 896 21 22. 75 98.35 5.00 2705. 99 3522.85 0.768 22 22. 75 102. 97 5.00 2748.25 3578.72 0.768 23 22. 75 107. 58 5.00 2790.50 3634.59 0.768 24 22.75 112.19 5.00 2832.76 3690.46 0.768 25 2 9. 98 117. 38 6. 67 2445.00 3698.84 0.661 26 29. 98 123.15 6.67 2419.20 3659. 74 0.661 27 29. 98 128.93 6.67 2393.39 3620.64 0.661 28 37.20 132. 4 0 1. 4 7 2032.25 3584.36 0.567 29 37. 20 135.45 6.18 1983.03 3497.17 0.567 30 37.20 140.37 6.18 1902.34 3356.25 0.567 31 37.20 145.29 6.18 1868.31 3215.33 0.581 32 4 4. 4 2 149.56 5.08 1556.35 3044.85 0. 511 33 44.42 153.19 5.08 1492.80 2844.81 0.525 34 4 4. 4 2 156.76 4. 92 1366.74 2546.50 0.537 35 4 4. 4 2 160. 27 4. 92 1173.74 2149.93 0.546 36 51.65 165.13 10.00 710.48 1496.02 0. 4 7 5 37 51. 65 1 71. 34 10.00 212.31 584.76 0.363 38 58.87 174.77 1. 29 -126.71 64. 57 -1. 963 ***TABLE SA -Total Base Force Data on the 38 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -6.14 19.26 4.32 1739.72 22 9. 97 7.565 2 -6.14 23.55 4.32 2424.47 689.90 3.514 3 -6.14 27.85 4.32 3109.22 1149.83 2. 704 4 -6.14 31.75 3.52 34 91. 82 1581. 77 2.208 5 -6.14 35.24 3.52 4859.14 2500.17 1. 94 4 6 1. 09 39. 4 9 5.00 7074 .38 4980.34 1. 420 7 1. 09 4 4. 4 9 5.00 8878.10 6478.50 1. 370 8 1. Q9 4 9. 4 9 5.00 10681.81 7976. 66 1. 339 9 1. 09 54. 4 9 5.00 12485.53 9474.82 1. 318 10 8.31 56.99 0.01 24 .16 22.QB 1. 094 11 8.31 57.05 0.10 224.06 204.79 1. 094 12 8.31 59. 57 4.99 11625.Q5 18660.62 1. Q90 13 8.31 64.50 4.99 12744.90 11 753. 97 1.084 14 8.31 69. 43 4.99 13864.75 12847.32 1. 07 9 15 8.31 71. 95 0.10 292.62 271.72 1.077 16 8.31 74.39 4. 83 14521. 73 13510.28 1. 07 5 17 15.53 79.19 5.00 13509.13 14472.88 0.933 18 15.53 84. 01 5.00 14119.39 15148.18 0.932 19 15.53 88.82 5.00 14729.65 15823.48 0.931 20 15.53 93.64 5.00 15339.91 16498.78 0.930 21 22.75 98.35 5.00 13529. 94 16243.30 0.833 22 22.75 102. 97 5.00 13741.23 16500. 91 0.833 23 22.75 107.58 5.00 13952. 51 16758.52 0.833 24 22.75 112.19 5.00 14163. 79 17016.13 0.832 25 29. 98 11 7. 38 6.67 16300.01 21360.06 0. 7 63 26 29.98 123.15 6.67 16127.98 21134. 26 0. 7 63 27 29.98 128. 93 6.67 15955.95 20908.46 0. 763 28 37.20 132.40 1. 4 7 2980. 45 4187.11 0. 712 29 37.20 135.45 6 .18 12250. 77 17208.75 0. 712 30 37.20 14 0. 37 6.18 11752.32 16515.3Q 0.712 31 37.2Q 145.29 6.18 11542.85 15821. 85 0.730 32 44.42 149.56 5. QB 7902.75 11041.95 0. 716 33 44.42 153.19 5.08 7580.08 10316.52 0. 735 34 44.42 156.76 4. 92 6727.42 8951. 93 0.752 35 44.42 160.27 4. 92 5777.45 7557.83 0. 764 36 51.65 165 .13 10.00 7104.79 9282.90 0. 765 37 51. 65 1 71. 34 10.00 2123.10 3628.48 0.585 38 58.87 174.77 1. 29 -163.24 43.00 -3.796 Slice No. 1 2 3 5 6 7 E 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ***TABLE 6 -Effective and Base Shear Stress Data on the 38 Slices*** Alpha (deg) -6.14 -6.14 -6.14 -6.14 -6.14 1. 09 1. 09 1. 09 1. 09 8.31 8.31 8.31 8.31 8.31 8.31 8.31 15.53 15.53 15.53 15.53 22.75 22.75 22.75 22.75 29.98 29.98 29.98 37. 20 37. 20 37. 20 37. 20 44. 4 2 4 4. 4 2 4 4. 4 2 4 4. 4 2 51. 65 51.65 58. 87 X-Coord. Slice Cntr ( ft) 19. 26 23.55 27.85 31. 75 35.24 39. 4 9 44.49 4 9. 4 9 54.49 56.99 57.05 59. 57 64.50 69. 43 71.95 7 4. 39 7 9 .19 84.01 88.82 93.64 98.35 102. 97 107.58 112.19 117.38 123.15 128.93 132. 4 0 135. 4 5 140.37 145.29 14 9. 56 153.19 156.76 160.27 165.13 171.34 174.77 Base Leng. (ft) 4.32 4.32 4.32 3.52 3.52 5.00 5.00 5.00 5.00 0.01 0.10 4. 9 9 4. 9 9 4. 9 9 0.10 4. 83 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 6.67 6.67 6.67 1. 4 7 6.18 6.18 6.18 5.08 5.08 4.92 4.92 10.00 10.00 1. 2 9 Effective Normal Stress (psf) 402.50 560.92 719.34 992.97 1381.79 1414.88 1775.62 2136.36 2497 .11 2214.59 2217 .11 2331.69 2556.31 2780.92 2895.51 3006.59 27 01. 83 2823.88 2945.93 3067. 98 2705.99 2748.25 2790.50 2832.76 2445.00 2419.20 2393.39 2032.25 1983.03 1902.34 1868.31 1556.35 1492.80 1366.74 1173.74 710.48 212.31 0.00 Available Shear Strength (psf) 514. 01 598.25 682.48 827. 97 1034.71 1052.30 1244.11 1435.92 1627.73 1477.52 1478.86 1539.78 1659. 21 1778.64 1839.57 1898.63 1736.59 1801.48 1866.38 1931. 27 1738.80 1761.27 1783.74 1806.20 1600. 03 1586.31 1572.59 1380.57 1344.90 1298.32 1278.67 1098.56 1061.87 989.09 877. 66 610.20 322.58 0.00 Mobilized Shear Stress (psf) 462.15 544.87 621. 59 754.09 942.39 958.41 1133.11 1307.80 1482.50 1345.69 1346.91 1402.40 1511.1 7 1619.95 1675. 43 1729.23 1581.64 1640.75 1699.85 1758.96 1583.66 1604.12 1624.58 1645.05 1457.27 1444.77 1432.28 1257.39 1224.90 1182.48 1164. 58 1000.54 967 .12 900.84 799.35 555. 7 5 293.80 0.00 ***TABLE 6A -Effective and Base Shear Force Data on the 38 Slices*** Alpha (deg) -6.14 -6.14 -6.14 -6.14 -6.14 1.09 1.09 1.09 1.09 8.31 8.31 8.31 8.31 8.31 8.31 8.31 15.53 15.53 X-Coord. Slice Cntr ( ft) 19.26 23.55 27.85 31. 75 35. 24 3 9. 4 9 44.49 4 9. 4 9 54.49 56.99 57.05 59. 57 64.50 6 9. 43 71.95 74.39 7 9 .19 84.01 Base Leng. (ft) 4.32 4.32 4.32 3.52 3.52 5.00 5.00 5.00 5.00 0.01 0.10 4. 99 4. 99 4.99 0 .10 4.83 5.00 5.00 Effective Normal Force (lbs) 1739.72 2424.47 3109.22 3491.82 4859.14 7074.38 8878.10 10681.81 12485.53 24.16 224.06 11625.05 12744.90 13864.75 292.62 14521. 73 13509.13 14119.39 Available Shear Force (lbs) 2221.71 2585.80 2949.89 2 911. 60 3638.61 5261.52 6220.57 7179.62 8138. 67 16.12 149.45 7676. 85 8272.28 8867.72 185. 91 9170.33 8682.93 9007.41 Mobilized Shear Force (lbs) 2023.48 2355.09 2686.69 2651.81 3313. 96 4792.06 5665.54 6539.02 7412.51 14.68 136.12 6991.88 7534.19 8076.50 169.32 8352.12 7908.20 8203. 73 19 20 21 22 23 24 25 26 27 28 29 30· 31 32 33 34 35 36 37 38 15.53 88.82 5.00 14729.65 15.53 93.64 5.00 15339.91 22.75 98.35 5.00 13529. 94 22. 7 5 102. 97 5.00 13741.23 22.75 107.58 5.00 13952. 51 22.75 112.19 5.00 14163. 79 29.98 117.38 6.67 16300.01 29.98 123.15 6.67 16127.98 29.98 128.93 6.67 15955.95 37.20 132. 4 0 1. 4 7 2980. 45 37. 20 135. 4 5 6.18 12250.77 37. 20 140.37 6.18 11752.32 37. 20 145.29 6.18 11542.05 4 4. 4 2 149.56 5.08 7902.75 44.42 153.19 5.08 7580.06 4 4. 4 2 156. 76 4. 92 6727.42 4 4. 4 2 160. 27 4. 92 5777.45 51. 65 165.13 10.00 7104.79 51.65 l 71. 34 10.00 2123.10 58.87 174.77 1. 29 0.00 Average Effective Normal Stress= 1903.5370(psf) Average Available Shear Strength= 1296.5061(psf) Total Length of Failure Surface= 181.2883(ft) 9331.89 8499.26 9656. 37 8794.79 8694.00 7918.28 8806.34 8020.60 8918.68 8122.92 9031.02 8225.23 10666.87 9715.12 10575. 40 9631.82 10483.93 9548.51 2024.71 1844.05 8308.55 7567.22 8020. 76 7305.12 7899.37 7194.55 5578.21 5080.49 5391. 91 4910.82 4868.53 4434.14 4320.06 3934.61 6101. 95 5557.51 3225.77 2937. 96 0.00 0.00 SUM OF MOMENTS = -0. 4 86694 E-01 (ft/lbs); Imbalance ( Fraction of Total Weight) 0.1278241E-06 SUM OF FORCES= 0.412015E-02 (lbs);Imbalance (Fraction of Total Weight)= 07 Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS 1.097965 235041. 34 (lbs) 214069.92(lbs) The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT**** 0.1082104E- Acadia Medical Facility, Chula Vista, CA Section B-B' Easterly Slope -Block (Seismic) Ninyo & Moore/ WRM \B-B' East Slope Block Seismic.gsd 1062~No ___ F_S~-S-o-il-------M-ois_t_Wt_S_a_tWt ___ c __ P_h_i--ru--P-c-on-~-Pi-ez-S-urt--S-oi_l_~-----4~; 1062 1 1.377 No. (pc0 (pc0 (ps0 (deg) (ratio) (Ps0 No. Options 950 837 725 GEOSTASE I S!op,St>bilify wt,,,i, 2 1.377 01 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 3 1.377 11112 Fill 120.0 130.0 200.0 30.0 0,000 0.0 0 4 1.377 5 1.377 6 1.377 7 1.377 8 1.377 9 1.377 10 1.377 112 225 337 450 562 GEOSTASE FS = 1.377 Spencer Method GEOSTASB9 by GREGORY GEOTECHNCAL SOFTWARE ...... 950 · ...... 837 725 12 675 787 PLATE E-9 *** GEOSTASE(R) ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Optior,s. (Spencer, Mcrgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Fcrces, Fiber-Reinfcrced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotrcpic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-or 3-Stage Pseudc-Static & Simplified Newmark Seismic Analyses. *+******************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Block Seismic.gsd Calcs\B-B'\Stability Fill\B-B' Unit System: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability East Slope Block Seismic.OUT English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope -Block (Seismic) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 X -l (ft) 0.000 30.000 57.000 155.000 205.000 828.000 876. 000 57.000 57.100 71.900 72.000 245.000 371. 000 700.000 700.100 813.000 861.000 User Specified X-Origin User Specified Y-Origin y '-1 (ft) 640.000 643.000 657.000 708.000 710.000 710.000 686.000 657.000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined X -2 (ft) 30.000 57.000 155.000 205.000 828.000 876.000 900.000 57.100 71. 900 72. 000 245.000 371.000 700.000 700.100 813. 000 861.000 876. 000 O.OOO(ft) 500.000(ft) y -2 ( ft) 643.000 657.000 708.000 710.000 710.000 686.000 686.000 652.000 652.000 658.000 683.000 705.000 705.000 709.000 709.000 686.000 686.000 Soil Number Moist Saturated Cohesion Friction Pore Soil Type Below Bnd 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) 1 Otay 0 2 Fill 0 Formation 120.0 130.0 300.00 28.00 0.000 120.0 130.0 200.00 30.00 0.000 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleraticn Coefficient (PGA) 0.374(g) Default Velocity= l.870(ft) per second Specified Horizcntal Earthquake Coefficient (kr.) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.OO0(g) (NOTE:Input Velocity= 0.0 will result in default Peak Velocity 2 times(PGA) times 2.5 fps er 0.762 mps) Specified Seismic Pore-Pressure Factor 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search= 25.00(ft) Zone Ne. 1 2 X -1 (ft) 72.00 72.10 y -1 (ft) 658.50 658.50 X -2 y -2 (ft) (ft) 72.00 658.50 370.00 704.50 The Spencer Method Was Selected for FS Analysis. Selected fx function= Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta toleranoe(radians) = 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) Theta convergence Step Factor 5000.00 Maximum number of iterations 50 Allowable negative side force -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 Height (ft) 0.10 0.10 45.00 0.0 0.0 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS Number of Trial Surfaces With Valid FS = 1360 3640 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted= 72.8 % Surface No. 0 0 Statistical Data On All Valid FS Values: FS Max 18. 439 FS Min = 1. 377 FS Ave = 2 .223 Standard Deviation = 1. 621 Coefficient of Variation 7 2. 91 % Critical Surface is Sequence Number 32 of Those Analyzed. *"***BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH*"*** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=l.0) Larr.bda 1 15.0000 1. 439362 1.213403 0.268 2 19. 9500 1.435144 1.249919 0.363 3 42.4547 0.000000 1.131334 0.915 4 23 .1155 1.428559 1. 277321 0.427 5 25.3994 1. 420794 1. 299971 0. 4 7 5 6 34.4702 1. 307135 1. 437779 0.687 7 29.7568 1.393295 1.353420 0.572 8 30.8597 1.381702 1.369990 0.598 9 31.3183 1. 375972 1. 377357 0.608 10 31.2698 1.376608 1.376564 0.607 11 31.2713 1.376588 1.376588 0.607 Factor Of Safety For The Preceding Specified Surface Theta (fx = 1.0) 31.27 Deg Lambda= 0.607 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tJlerance(radians) = 0.0001000 Delta FS 0.2259582E+00 0.1852253E+00 0 .1131334E+0l 0.1512379E+00 0.1208233E+00 0.1306439E+00 0.3987502E-01 0 .11 71238E-01 0.1385114E-02 0.4374176E-04 0.1028740E-06 1. 377 Minimum theta(deg) -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number JI iterations= 50 Maximum force imbalance 100.000000(lbs) Maximum mJment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda CJefficient 1.00 TensiJn Crack Water Force 0.00(lbs) Specified Tension Crack Water Depth Factor= 0.000 Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth 0.000(ft) 5.774(ft) 0.000(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) Jr on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. Slice No. 1 *** Table 1 -Line of Thrust(if applicable) and Slice Force Data*** X Coord. 68.86 y CoJrd. 661.74 h/H 0.544 Side Force (lbs) 4577.35 fx 1.000 Force Angle (Deg) 31.27 Vert. Shear Force (lbs) 2376.1 2 72.00 661. 35 0.449 13158.97 1.000 31. 27 6830.7 3 77. 09 663.83 0.555 14438.51 1.000 31.27 7 4 94. 9 4 82.17 666.06 0.596 15795.63 1. 000 31.27 8199. 4 5 87.26 668.06 0.605 17230.35 1.000 31.27 8944.l 6 92. 34 669.85 0. 597 18742. 66 1.000 31. 27 97 2 9. 2 7 97. 43 671. 46 0.578 20332.55 1.000 31.27 10554.5 8 102. 51 672.89 0.553 22000.03 1.000 31. 27 11420.0 9 107. 60 674.16 0.526 23745.11 1.000 31.27 12325.9 10 112.68 675.30 0. 4 96 25567.77 1.000 31.27 13272.0 11 117.77 67 6. 31 0.466 27468.01 1.000 31.27 14258.4 12 122.85 67 7. 21 0.436 29445.85 1.000 31.27 15285.1 13 127. 94 678.00 0.406 31501. 28 1. coo 31.27 16352.0 14 133.64 683.09 0.417 22354.62 1.000 31.27 11604 .1 15 139.33 688.49 C. 4 47 14474.49 0. 996 31.18 7493.6 16 14 5. 03 693.64 0. 4 73 7810.98 0. 687 22.63 3005.9 17 150.01 699.77 G. 4 93 2511.13 0.415 14.16 614.3 18 155.00 67 6. 4 9 0.000--9.54 0.144 5.01 -0.8 19 157. 22 707.66 0.510 24.43 0.023 0.81 0.3 20 157.65 708 .11 0.000 178.38 0.000 0.00 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. **.-Table 2 -Geometry Data on the 20 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 3.14 1. 57 67. 2 9 660.79 662.35 -25.54 27. 4 9 3.48 2 3.14 4.70 70. 43 659.28 663.99 -25.54 27. 4 9 3.48 3 5.09 7. 20 74.54 658.92 666.13 8.75 27. 4 9 5.15 4 5.09 9.07 79.63 659.71 668.78 8.75 27. 4 9 5.15 5 5.09 10.93 84.71 660.49 671. 4 2 8.75 27. 4 9 5.15 6 5.09 12.80 89.80 661. 27 674.07 8.75 27.49 5.15 7 5.09 14.66 94.88 662.05 676.72 8.75 27. 4 9 5.15 8 5.09 16.53 99.97 662.84 67 9. 36 8.75 27. 4 9 5.15 9 5.09 18.39 105.05 663.62 682.01 8.75 27. 4 9 5.15 10 5.09 20.25 110.14 664.40 684.65 8. 75 27. 4 9 5.15 11 5.09 22.12 115. 22 665.18 687.30 8. 7 5 27. 4 9 5.15 12 5.09 23. 98 120.31 665.97 689.95 8.75 27. 4 9 5.15 13 5.09 25.85 125. 4 0 666.75 692.59 8. 7 5 27. 4 9 5.15 14 5. 70 25.22 130.79 670.18 695.40 46.87 27. 4 9 8.33 15 5. 70 22.10 136.48 676.26 698.36 46.87 27. 4 9 8.33 16 5.70 18. 99 142.18 682.34 7 01. 33 46.87 27. 4 9 8.33 17 4. 9 9 14. 26 147.52 689.85 704.11 60.81 27. 4 9 10.22 18 4. 9 9 7.93 152.51 698. 77 706.70 60.81 27. 4 9 10.22 19 2.22 2.83 156.11 705.22 708.04 60.81 2.29 4. 56 20 0. 43 0.44 157.44 707.66 708.10 64. 39 2.29 1.00 ++*Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 65. 715803 661. 53577 5 2 68.857901 660.034571 3 72.000000 658.533368 4 77.085279 659.315708 5 82.170558 660.098047 6 87. 255837 660.880387 7 92.341116 661. 662727 8 97.426394 662.445067 9 102.511673 663.227406 10 107. 596952 664.009746 11 112. 682231 664. 7 92086 12 117. 767510 665.574426 13 122. 852789 666.356765 14 127.938068 667.139105 15 133.635309 673.220708 16 139.332550 679. 302310 17 145. 029792 685.383913 18 150. 014896 694.306946 19 155.000000 703.229978 20 157.222909 707.208851 21 157.652988 708.106120 **+Table 3 -Force and Pore Pressure Data On The 20 Slices (Excluding Reinforcement)*** \Jbeta \Jbeta \Jalpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 591. 3 0.0 o.o 0.0 c.o 118.3 0.0 o.oc 2 1773.9 0.0 o.o 0.0 0.0 354. 8 0.0 0.00 3 4396. 6 0.0 o.o 0.0 0.0 87 9. 3 0.0 0.00 4 5534.1 0.0 0.0 0.0 0.0 1106.8 0.0 0.00 5 6671. 7 0.0 0.0 0.0 0.0 1334.3 0.0 0.00 6 7809.2 0.0 0.0 0.0 0.0 1561. 8 0.0 0.00 7 8946.7 0.0 0.0 0.0 0.0 1789.3 0.0 0.00 8 10084.2 0.0 0.0 0.0 0.0 2016.8 0.0 0.00 9 11221. 8 0.0 0.0 0.0 0.0 2244.4 0. 0 0.00 10 12359.3 0.0 0.0 0.0 0.0 24 71. 9 0.0 0.00 11 13496.8 0.0 o.o 0.0 0.0 2699.4 0.0 0.00 12 14634.3 0.0 o.o 0.0 0.0 2926.9 0.0 0.00 13 15771. 9 0.0 0.0 0.0 0.0 3154.4 0.0 0.00 14 17241.6 0.0 o.o 0.0 0.0 3448.3 0.0 0.00 15 15110. 8 0.0 o.o 0.0 0.0 3022.2 0.0 0.00 16 12980.0 0.0 o.o 0.0 0.0 25 96. 0 0.0 0.00 17 8532.4 0.0 o.o 0.0 0.0 1706.5 0.0 0.00 18 4746.5 0.0 o.o 0.0 0.0 94 9. 3 0.0 0.00 19 753.6 0.0 0.0 0.0 0.0 150.7 0.0 0.00 20 22.7 0.0 o.o 0.0 0.0 4.5 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS 172679.35(lbs) EFFECTIVE WEIGHT OF SLIDING MASS= 172679.35(lbs) TOTAL AREA OF SLIDING MASS 1438.99(ft2) ***TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 20 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 SOIL OPTIONS: A= ANISOTROPIC, C CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPI DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Ph and C in Table 4 are modified values based on speoified Soil Opt ons (if any). ***TABLE 5 -Total Base Stress Data on the 20 Slioes*** Slice Alpha No. (deg) * l -25.54 2 -25.54 3 8. 75 4 8.75 5 8. 7 5 6 8. 7 5 7 8. 7 5 8 8. 7 5 9 8. 7 5 10 8. 75 11 8. 75 12 8. 7 5 13 8. 7 5 14 46. 87 15 46. 87 16 46. 87 17 60.81 18 60.81 19 60.81 20 64.39 X-Coord. Slice Cntr ( ft) 67.29 7 0. 43 74.54 7 9. 63 84. 71 89.80 94.88 99. 97 105.05 110.14 115.22 120.31 125. 4 0 130.79 13 6. 4 8 142.18 147.52 152.51 156 .11 157.44 Base Leng. ( fc:) 3.48 3. 4 8 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 8.33 8.33 8.33 10.22 10.22 4.56 1.00 Total Ncrmal Stress (psf) 1267.85 2565.83 913.87 1131.44 1349.01 1566.58 1784.16 2001.73 2219.30 2436.87 2654.44 2872.01 3089.58 1407.64 1230.62 1160.61 668.65 367.82 45.22 -133.50 Total Vert. Stress (psf) 188.18 564.55 864.58 1088.27 1311. 95 1535.64 1759.33 1983.02 2206.71 2430.40 2654.09 2877.78 3101. 4 7 3026. 31 2652.31 2278.30 1 711. 58 952 .13 33 9. 01 52.80 ***TABLE 5A -Total Base Force Data on the 20 Slices*** Slice Alpha No. (deg) * 1 -25.54 2 -25.54 3 8.75 4 8.75 5 8.75 6 8.75 7 8. 7 5 8 8.75 9 8.75 10 8. 7 5 11 8. 75 12 8. 7 5 13 8. 7 5 14 46. 87 15 46. 87 16 46. 87 17 60.81 18 60.81 19 60.81 20 64.39 X-Coord. Slice Cntr ( ft) 67.29 7 0. 43 74.54 7 9. 63 84. 71 89.80 94. 88 99. 97 105.05 110.14 115. 22 120.31 125.40 13 0. 7 9 136.48 142.18 147.52 152.51 156 .11 157.44 Base Leng. (ft) 3. 4 8 3. 48 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 8.33 8.33 8.33 10.22 10.22 4.56 1.00 Total Normal Force (lbs) 4415.04 8934.99 4701. 96 5821.39 6940.81 8060.24 9179.67 10299.10 11418 .52 12537.95 13657.38 14776.81 15896.23 11730.37 10255.13 9671.74 6834.42 3759.53 206.11 -132. 83 Total Vert. Force (lbs) 591. 29 1 77 3. 87 4396.61 5534. 13 6671. 66 7809.18 8946. 71 10084.23 11221. 7 5 12359.28 13496. 80 14634.33 15771.85 17241.64 15110. 85 12980.05 8532.39 4746.45 753.58 22.71 Total Normal/Vert. Stress Ra.tic 6.737 4.545 1. 057 1. 04 0 1.028 1. 020 1.014 1.009 1.006 1.003 1. 000 0.998 0. 996 0.465 0. 4 64 0.509 0.391 0.386 0.133 -2.528 Total Normal/Vert. Force Ratio 7.467 5.037 1. 069 1.052 1. 04 0 1. 032 1. 026 1.021 1. 018 1.014 1. 012 1. 010 1.008 0.680 0.679 0.745 0.801 0. 7 92 0.274 -5.849 ***TABLE 6 -Effective and Base Shear Stress Data on the 20 Slices*** Slice No. * l 2 3 4 Alpha (deg) -25.54 -25.54 8. 7 5 8. 7 5 X-Coord. Slice Cntr ( ft) 67.29 7 0. 4 3 7 4. 54 79.63 Base Leng. (ft) 3.48 3.48 5.15 5.15 Effective Normal Stress (psf) 1267.85 2565.83 913.87 1131.44 Available Shear Strength (psf) 931. 99 1681. 38 727.62 853.24 Mobilized Shear Stress (psf) 677. 03 1221.41 528.57 619.82 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 8.75 B. 7 5 8.75 8.75 8.75 8.75 8.75 8. 7 5 8.75 46.87 46.87 46.87 60.81 60.81 60.81 64. 39 84.71 89.80 94.88 9 9. 97 105.05 110.14 115.22 120.31 125. 40 130. 79 136.48 142.18 147.52 152.51 156.11 157.44 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5. 15 5.15 8.33 8.33 2.33 10.22 10.22 4.56 1.00 1349.01 1566.58 1784.16 2001.73 2219.30 2436.87 2654.44 2872.01 3089.58 1407.64 1230.62 1160. 61 668.65 367.82 45.22 0.00 97 8. 85 1104.47 1230.08 1355.70 1481.31 1606. 93 1732. 54 1858.16 1983. 77 1012.70 910. 50 87C.C8 586.05 412.36 226.11 0.00 711. 07 802.32 8 93. 57 984.82 1076.07 1167. 33 1258.58 1349.83 1441. CB 735.66 661. 4 2 632.05 4 25. 7 2 299.55 164.25 0.00 ***TABLE 6A -Effective and Base Shear Force Data on the 20 Slices*+* Slice No. Alpha (deg) X-Coord. Slice Cntr (ft) Base Leng. Effective Normal Force (lbs) * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -25.54 -25.54 8.75 8. 7 5 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 8.75 46.87 46.87 46.87 60.81 60.81 60.81 64.39 67.29 7 0. 4 3 7 4. 54 7 9. 63 84.71 8 9. 80 94.88 9 9. 97 105.05 110.14 115.22 12 0. 31 125. 40 130. 79 136.48 142.18 147.52 152.51 156 .11 157.44 (ft) 3.48 3.48 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15 8.33 8.33 8.33 10.22 l:J.22 4.56 1.00 4415.04 8934.99 4701. 96 5821.39 6940.81 8060.24 9179.67 10299.10 11418.52 12537.95 13657. 38 14776.81 15896.23 11730.37 10255.13 9671. 74 6834.42 3759.53 206 .11 0.0:J Average Effective Normal Stress= 1474.9544(psf) Average Available Shear Strength= 1050.4976{psf) Total Length of Failure Surface 114.5558(ft) Available Shear Force (lbs) 3245.48 5855.08 3743.70 4390.00 5036.30 5682.60 6328. 91 6975.21 7 621. 51 8267.81 8914.11 9560.41 10206.72 8439.20 7587.47 7250.65 5990.08 4214.79 1030.54 0.00 Mobilized Shear Force (lbs) 2357.63 4253.33 2719.55 3189.04 3658.54 4128.03 4597.53 5067.02 5536.52 6006.02 6475.51 6945.01 7414.50 6130.52 5511. 7 9 5267 .11 4351. 40 3061.77 748.62 J.J0 SUM OF MOMENTS= -0.550249E-04 (ft/lbs);Imbalance (Fraction of Total Weight) 0.3186534E-09 06 SUM OF FORCES= -.188141E-01 (lbs);Imbalance (Fraction of Total Weight)= Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.376588 120340.57(lbs) 87419.43(lbs) The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT**** -0.1089538E- Ninyo & Moore/ WRM Acadia Medical Facility, Chula Vista, CA Section B-B' Stability Fill (Seismic) \B-B' Stability Fill Seismic.gsd 775~N-o.-F-S~~So-il _______ M_oi-st-Wt--Sa_t_Wt __ c __ P_h_i --ru--P-c-on-st-Pi-ez_S_u_rf __ S_oi-1 -~------775 1 1.504 No. (pcf) (pcf) (psi) (deg) (ratio) (psi) No. Options ~ 2 1.510 01 OtayFormation 120.0 130.0 300.0 28.0 0.000 0.0 0 3 1.513 11112 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 750 725 700 · 4 1.524 5 1.530 6 1.531 7 1.532 8 1.533 9 1.533 10 1.534 GEOSTASE. Slope Stability Analvsis 25 so 75 100 125 GEOSTASE FS = 1.504 Spencer Method GEOSTASE@by GREGORY GEOTECHNCAL SOflWARE 750 725 700 675 150 175 PLATE E-10 GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STFBILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Re inf creed Soil ( FRS), Distributed Leads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisctropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2-er 3-Stage Pseudo-Static & Simplified Nevm.ark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore/ WRM Input File Name: Calcs\B-B'\Stability Fill\B-B' Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Stability Fill Seismic.gsd G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Stability Fill Seismic.OUT Calcs\B-B'\Stability Fill\B-B' Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Stability Fill (Seismic) BOUNDARY DATA 3 Surface Boundaries 6 Total Boundaries Boundary X -1 No. (ft) 1 0.000 2 24.000 3 72.000 4 24.000 3 39.000 6 87.000 y -i X -2 (ft) (ft) 686.000 24.000 686.000 72.000 710.000 200.000 686.000 39.000 686.000 87.000 709.000 200.000 User Specified X-Origin 0.000(ft) User Specified Y-Origin MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined 650.000(ft) Soil Number Moist Saturated Cohesion Water and Unit Wt. Unit Wt. Intercept Option Description (pcf) (pcf) (psf) 1 Otay Formation 120.0 130. 0 300.00 0 2 Fill 120.0 130.0 200.00 0 SEISMIC (EARTHQUAKE) DATA y -2 Soil Type (ft) Below Bnd 686.000 1 710.000 2 710.000 2 686.000 1 709.000 1 709.000 1 Friction Pore Pressure Angle Pressure Constant (deg) Ratio(ru) (psf) 28.00 0.000 0.0 30.00 0.000 0.0 Water Surface No. 0 0 Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity= l.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity= 0.0 will result in default Peak Velocity 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor 0.000 Horizcntal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Randcm Prccedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments cf 0.0360(in) Equally Spaced Within the Start Range Along The Specified Surface Between X and X 15.00(ft) 30.00(ft) Each Surface Enters within a Range Between and X X 65.00(ft) 200.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 650.00(ft) Specified Maximum Radius= 5000.000(ft) 8.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function= Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00; Maximum theta(deg) Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Allowable negative side force= -1000.0(lbs) Maximum force imbalance 100.000000(lbs) Maximum moment imbalance= 100.000000 (ft/lbs) Selected Lambda Coefficient= 1.00 Specified Tension Crack Water Depth Factor Total Number of Trial Surfaces Attempted= 5000 0.000 45.00 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS 973 Number of Trial Surfaces ~Jith Valid FS = 4027 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted 19.5 % Statistical Data On All Valid FS Values: FSMax= 3.230 FSMin 1.504 FSAve 2.301 Standard Deviation 0.421 Coefficient of Variation 18.31 % Critical Surface is Sequence Number 2355 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 56.571786(ft) 34.835Cl5(ft); Y 741.325658(ft); and Radius Circular Trial Failure Surface Generated With 10 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 23.027 686.000 2 30.949 684.888 3 38.949 684. 904 4 4 6. 8 67 686.048 5 54.544 688.298 6 61.827 691.608 7 68.570 695.913 8 74.638 701.126 9 79. 911 707.142 10 81.776 710.000 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=l.0) Lambda 1 15.0000 1. 775816 1. 427048 0.268 2 19.9500 1. 737002 1.449784 0.363 3 43.0444 0.000000 1.616067 0.934 23.4344 1.690233 1.467403 0.433 5 25.8141 1.641901 1.480397 0.484 6 32. 07 98 1. 337240 1. 519496 0.627 7 28.7573 1.548547 1.497772 0.549 8 29.4817 1. 516229 1.502302 0.565 9 29.7555 1.502619 1. 504042 0.572 10 29.7302 1. 503916 1.503880 0.571 11 29. 7308 1.503884 1.503884 0. 571 Factor Of Safety For The Preceding Specified Surface Theta (fx = 1.0) 29.73 Deg Laml::da = 0.571 The Spencer Method Has Been Selected For FS Analysis. Selected fx function Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance= 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Del ta FS 0.3487675E+00 0.2872182E+00 0.1616067E+0l 0.2228301E+00 0.1615036E+00 0.1822560E+00 0. 5077 562E-01 0.1392772E-01 0.1422601E-02 0.3635844E-04 0.1797223E-06 1. 504 Minimum theta(deg) = -45.00; Maximum theta(deg) 45.00 Theta convergence Step Factor= 5000.00 Maximum number of iterations= 50 Maximum force imbalance= 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient 1.00 Tension Crack Water Force= 0.00(lbs) Specified Tension Crack Water Depth Factor 0.000 Slice No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Depth of Tension Crack (zo) at Side of Last Slice Depth of Water in Tension Crack Theoretical Tension Crack Depth 0.000(ft) 5.774(ft) 0.000(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) er on the last slice (left facing slope), the ''side force'' in the tension crack is set equal to the water pressure resultant. Slice No. 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 **+ Table 1 -Line of Thrust(if applicable) and Slice Fcrce Cata +++ X Coard. 24.C0 27.47 30.95 34. 95 38. 95 39.00 42. 93 46.87 50.71 54. 54 58.19 61. 83 65. 20 68.57 72. 00 74.64 77. 59 79. 91 81.78 y Coard. 686.21 686.87 687.29 688.15 688.88 688.89 690.03 691. 06 692.49 693.85 695.57 697. 24 699.26 701. 28 703.82 705.59 7 07. 64 708.49 710. 00 h/H 1.000+ 0.632 0.523 0. 4 95 0. 4 63 0. 4 63 0. 455 0. 4 40 0. 437 0.428 0.427 0.423 0.428 0.434 0.445 0.503 0.572 0.470 0.000 Side Force (lbs) 345.41 1836.18 3812.84 5545.59 7486.72 7499.51 8483.00 9465.51 9424.46 9320.26 8352.33 7361.61 5822.08 4365. 51 2522.84 1434. 88 593.04 278.16 522.85 fx 1.000 1.000 1.000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1. 000 1.000 1.000 0.832 0.607 0. 357 0.159 0.000 Force Angle (Deg) 29. 7 3 29.73 2 9. 73 29.73 29. 73 2 9. 73 29.73 29.73 2 9. 73 29. 7 3 29.73 29.73 29.73 29.73 25.41 19.13 11. 51 5.18 0.00 Vert. Shear Force(lbs) 171. 3 910.6 1890.9 2750.2 3712.9 3719. 2 4206.9 4694.2 4 67 3. 8 4622.2 4142.1 3650.8 2887.3 2165.0 1082.7 470.3 118. 3 25.1 0.0 NOTE: A value of 0.000-for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. Width {ft) 0. 97 3.47 3.47 4.00 4.00 0.05 3. 93 3. 93 3. 84 3. 84 3.64 3.64 3.37 3.37 3.43 2.64 2.95 2.32 1. 86 ***Table 2 -Geometry Cata on the Height (ft) 0.07 1. 25 3. 4 7 5.58 7.57 8.58 9. 2 9 10.69 11. 7 8 12.58 13.06 13.22 13.07 12.61 11. 76 10.01 7 .19 4.18 1. 43 X-Cntr (ft) 23.51 25.74 29.21 32.95 36.95 38. 97 40. 97 44. 90 48.79 52. 62 56.36 60.01 63.51 66.88 70.28 73.32 76.11 78.75 80.84 Y-Cntr-Base (ft) 685.93 685.62 685.13 684.89 684.90 684.91 685.20 685.76 686.61 687.74 689.13 690.78 692.68 694.84 697.39 699.99 702.81 7 05. 82 708.57 19 Slices*** Y-Cntr-Top (ft) 686.00 686.87 688.61 690.47 692.47 693.49 694.48 696.45 698.39 700.31 7 02 .18 704.00 7 05. 7 6 707.44 709.14 710.00 710.00 710.00 710.00 Alpha (deg) -7. 99 -7. 99 -7. 99 0.12 0.12 8.22 8.22 8.22 16.33 16.33 24.44 24.44 32.55 32.55 40.66 40.66 48.77 48.77 56.88 Beta (deg) 0.00 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 26.57 0.00 0.00 0.00 0.00 Base Length (ft) 0.98 3.51 3.51 4.00 4.00 0.05 3. 97 3. 97 4.00 4.00 4.00 4.00 4.00 4.00 4. 52 3.48 4. 4 7 3.53 3.41 ***Table 2A -Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. ( ft) (ft) 1 23.026605 686.000000 2 24.000000 685.863310 3 27.474438 685.375409 4 30.948875 684.887507 5 34. 948867 684.895577 6 38.948859 684.903648 7 39.COOCOO 684. 911040 8 42.933288 685.479569 9 46.866575 686.048099 lC 50.705131 687.173037 11 54.543688 682.297975 12 58.185180 689.953129 13 61.826672 691.608283 14 65.198279 693.760554 15 68.569885 695.912824 16 72.000000 698.859164 17 74.638478 701.125518 18 77. 586267 704.489253 19 79.911093 707.142123 20 81.775568 710. 000000 **+Table 3 -Force and Pore Pressure Data On The 19 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 8.0 0.0 0.0 0.0 0.0 1. 6 0.0 0.00 2 520.9 0.0 0.0 0.0 0.0 104.2 0. 0 0.00 3 1448.6 0.0 0.0 0.0 0.0 289.7 0. 0 0.00 4 267 9. 8 0.0 0.0 0.0 0.0 536.0 0.0 0.00 5 3635.9 0.0 0.0 0.0 0.0 727.2 0.0 0.00 6 52.7 0.0 0.0 0.0 0.0 10.5 0. 0 0.00 7 4383.9 0.0 0.0 0.0 0.0 876.8 0.0 0.00 8 5043.8 0.0 0.0 0.0 0.0 1008.8 0.0 0.00 9 5427.3 0.0 :) . 0 0.0 0. 0 1085.5 0.0 0.00 10 5793.2 0.0 0.0 0.0 0. 0 1158.6 0.0 0.00 11 5705.5 0.0 0.0 0.0 0.0 1141.1 0.0 0.00 12 5777.8 0.0 0.0 0.0 0. 0 1155. 6 0.0 0.00 13 5288.8 0.0 0.0 0.0 0.0 1 :)57. 8 0.0 o. ::io 14 5100.0 0.0 0.0 0.0 0.0 102 0. 0 0.0 o. ::io 15 4839.1 0.0 0.0 0.0 0.0 967. 8 0.0 0.00 16 3168.6 0.0 0.0 0. 0 0.0 633.7 0.0 0.00 17 2544.3 0.0 0.0 0.0 0.0 508.9 0.0 0.00 18 1167.3 0.0 0.0 0.0 0.0 233.5 0. 0 0.00 19 319. 7 0.0 0.0 0.0 0.0 63.9 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS 62905.06(1bs) EFFECTIVE WEIGHT OF SLIDING MASS 62905.06(lbs) TOTAL AREA OF SLIDING MASS 524.21(ft2) '"**TABLE 4 -SOIL STRENGTH & SOIL OPTIONS DATA ON THE 19 SLICES*** Slice Soil Cohesion Phi ( Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 11 12 13 14 15 16 17 18 1 1 1 1 1 1 1 l 2 2 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 200.CO 200.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 28.00 30.0C 30.00 SOIL OPTIONS: A = ANISOTROPIC, C CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F FIBER-REINFORCED SOIL ( FRS), N NONLINEAR UNDRAINED SHEAR STRENGTH, R RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based en specified Seil Options (if any). Slice No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Slice No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ***TABLE 5 -Total Base Stress Data on the 19 Slices*** Alpha (deg) -7.99 -7.99 -7.99 0.12 0.12 8.22 8.22 8.22 16.33 16.33 24.44 2 4. 4 4 32.55 32.55 40.66 40.66 4 8. 77 4 8. 77 56.88 X-Coord. Slice Cntr ( ft) 23.51 25.74 2 9. 21 32.95 36. 95 38. 97 4 0. 97 44.90 48.79 52.62 56.36 60.01 63.51 66.88 70.28 73.32 76 .11 79. 75 80.94 Base Leng. (ft) 0.98 3.51 3.51 4.00 4.00 0.05 3.97 3.97 4.00 4.00 4.00 4.00 4.00 4.00 4.52 3.48 4. 4 7 3.53 3. 41 Total Normal Stress (psf) 223.28 411.12 765.06 883.74 1148.42 1070.13 1150.91 1310. 41 1223.36 1302.34 1158.19 1172. 63 991.14 955. 4 2 777 .38 686.57 409.87 234.50 -20.38 Total Vert. Stress (psf) 8.20 14 9. 91 416. 92 669.95 908.98 1029.58 1114. 56 1282.34 1413.88 1509.20 1566.80 1586.67 1568.62 1512.64 1410. 78 1200.92 863. 11 502.12 171.47 ***TABLE 5A -Total Base Force Data on the 19 Slices*** Alpha (deg) -7.99 -7.99 -7.99 0.12 0.12 8.22 8.22 8.22 16.33 16.33 24. 4 4 24.44 32.55 32.55 40.66 40.66 48. 77 48. 77 56.88 X-Coord. Slice Cntr ( ft) 23.51 25.74 2 9. 21 32. 95 36.95 38. 97 4 0. 97 4 4 • 90 48.79 52.62 56.36 60. 01 63.51 66. 88 70.28 73.32 76 .11 78.75 80. 84 Base Leng. (ft) 0. 98 3.51 3.51 4.00 4.00 0.05 3.97 3. 97 4. 00 4.00 4.00 4.00 4.00 4.00 4. 52 3.48 4. 4 7 3.53 3.41 Total Normal Force (lbs) 219.47 1442.43 2684 .24 3534.97 4593.69 55.30 4573.92 5207.79 4893.44 5209.36 4632.75 4690.53 3964. 55 3821.69 3515.16 2388.04 1833.17 827.16 -69.54 Total Vert. Force (lbs) 7.98 520.85 1448.58 2679. 78 3635.91 52.65 4383.89 5043.80 5427.27 5793.16 5705.49 5777.85 5288.76 5100.03 4839.13 3168.60 2544.28 1167. 34 319. 71 Total Normal/Vert. Stress Ratio 27.224 2.742 1.835 1. 319 1. 263 1.039 1.033 1.022 0.865 0.863 0. 7 39 0. 739 0.632 0.632 0.551 0.572 0. 4 7 5 0.467 -0.119 Total Normal/Vert. Force Ratio 27.492 2. 7 69 1. 853 1. 319 1. 263 1.050 1. 043 1.033 0. 902 0. 899 0.812 0.812 0. 7 50 0. 7 4 9 0. 7 26 0.754 0. 7 21 0. 709 -0.218 ***TABLE 6 -Effective and Base Shear Stress Data on the 19 Slices**.,j., Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) 1 -7.99 23.51 0.98 223.28 2 -7.99 25.74 3.51 411.12 3 -7. 99 29.21 3.51 765.06 0.12 32.95 4. oc 883.74 5 0.12 36.95 4.00 1148.42 6 8.22 3EL 97 0.05 1070.13 7 8.22 4 0. 97 3. 97 1150.91 8 8.22 44.90 3. 97 1310.41 9 16.33 4 8. 7 9 4.00 1223.36 10 16.33 52.62 4.00 1302.34 11 24.44 56.36 4.0C 1158.19 12 24. 4 4 60.01 4.00 1172. 63 13 32.55 63.51 4.00 991.14 14 32.55 66. 88 4. 00 955. 4 2 15 40.66 7 0. 28 4.52 777.38 16 40.66 73.32 3. 4 8 686.57 17 48.77 76.11 4.47 409.87 18 48. 77 7 8. 7 5 3.53 234.50 19 56.88 80.84 3.41 0.00 ***TABLE 6A -Effective and Base Shear Force Data Slice Alpha X-Coord. Base Effective No. * 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 (deg) Slice Cntr Leng. Normal Force (ft) ( ft) (lbs) -7. 99 23.51 0.98 219.47 -7. 99 25. 7 4 3.51 1442.43 -7.99 2 9. 21 3.51 2684.24 0.12 32.95 4.00 3534.97 0.12 36.95 4.00 4593.69 8.22 38.97 0.05 55.30 8.22 4 0. 97 3. 97 4573.92 8.22 44.90 3. 97 5207.79 16.33 48.79 4.00 4893.44 16.33 52.62 4.00 5209.36 24.44 56.36 4.00 4632.75 24. 44 60.01 4.00 4690.53 32.55 63.51 4.00 3964.55 32.55 66.88 4.00 3821.69 40.66 70.28 4.52 3515.16 40.66 73.32 3.48 2388.04 48.77 76.11 4. 4 7 1833.17 48. 77 7 8. 7 5 3.53 827.16 56.88 80.84 3. 41 0.00 Average Effective Normal Stress= 860.6457(psf) Average Available Shear Strength= 738.3039(psf) Total Length of Failure Surface= 67.4123(ft) (psf) (psf) 418.72 27 8. 4 3 518.60 344.84 706.79 4 69. 98 769.89 511. 94 910. 63 605.52 869.00 577. 84 911. 95 606. 4 0 996.76 662. 7 9 950. 4 7 632.01 992.47 659.94 915.82 608.97 923. 50 614.08 827.00 549.91 808.01 537. 2 8 713. 34 474.33 665.06 442.23 51 7. 93 34 4. 3 9 335.39 223.01 0.00 0.00 on the 19 Slices*** Available Mobilized Shear Force Shear Force (lbs) (lbs) 411. 58 273.68 1819. 51 1209. 87 2479. 79 1648.93 3079.58 2047.75 3642.51 2422.07 44.90 29.86 3624.25 2409.92 3961. 28 2634.03 3801.89 2528.05 3969.86 2639.74 3663.28 2435.88 3694.00 2456.31 3307. 99 2199.63 3232.03 2149.12 3225.58 2144.83 2313.20 1538.15 2316.49 1540.34 1183.04 786.66 0.00 0.00 SUM OF MOMENTS 0.1206416E-07 -0.758897E-03 (ft/lbs);Irnbalance (Fraction of Total Weight)= SUM OF FORCES 09 -. 116 901E-04 (lbs); Imbalance ( Fraction of Total Weight) = Sum of Available Shear Forces Sum of Mobilized Shear Forces FS Balance Check: FS = 1.503884 49770.76(lbs) 33094.Bl(lbs) The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. -0.1858371E- **** END OF GEOSTASE OUTPUT**** Problem Description: Surficial Stability of Existing Cut Slopes Acadia San Diego Medical Facility, Chula Vista, CA Parameters Depth of Saturation (ft), z Buoyant Unit Weight of Soil (pcf), Yb Total Unit Weight of Soil (pcf), Y1 Slope Angle, a Angle of Internal Friction, CD Cohesion (psf), c Driving Force Acting in Downslope Direction F 0 = (1/2) z.Y1.sin2a = 4.0 = 67.6 = 130 = 26.6 = 28.0 = 300.0 = 208.19 lb/ft Resisting Force Acting in Upslope Direction FR= z.Yb.cos 2a.tanCD + c Factor of Safety. F.S. F.S. = = 414.95 lb/ft 2.z.Ybcos2 a.tanCD +2c z.Y1.sin2a =1 1.99 1fln9o&l(toore SURFICIAL SLOPE STABILITY ANALYSIS Project Name: Acadia San Diego Medical Project No: 108727001 Designed/Checked: WRM/KHM Problem Description: Surficial Stability of Existing Fill Slopes Acadia San Diego Medical Facility, Chula Vista, CA Parameters Depth of Saturation (ft), z Buoyant Unit Weight of Soil (pcf), Yb Total Unit Weight of Soil (pcf), Y1 Slope Angle, a Angle of Internal Friction, ¢> Cohesion (psf), c Driving Force Acting in Downslope Direction F0 = (1/2) z.Y 1.sin2a = 4.0 = 67.6 = 130 = 26.6 = 30.0 = 200.0 = 208.19 lb/ft Resisting Force Acting in Upslope Direction FR= z.Yb.cos 2a.tan¢> + c Factor of Safety. F.S. F.S. = = 324.82 lb/ft 2.z.Yb_cos 2 a.tan¢+ 2c z.Y1.sin2a =i 1.s6 SURFICIAL SLOPE STABILITY ANALYSIS Project Name: Acadia San Diego Medical Project No: 108727001 Designed/Checked: WRM/KHM Nin yo & Moore I 830 Showroom Place, Chula Vista, California I 108727001 I March 6, 2019 DETERMINATION OF PSEUDOSTATIC PARAMETER FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY References: Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models, report prepared for Brookhaven National Laboratory, New York, NY, 144 p. Blake, T.F., Hollingsworth, RA. and Stewart, J.P., 2002, Recommended Procedures for Implementation of DMG Special Publication 117-Guidelines for Analyzing and Mitigating Landslide Hazards in California: Committee Organized Through the ASCE, Los Angeles Section Geotechnical Group, Document Published by the Southern California Earthquake Center, }Olp. Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified Seismic Design Procedure for Geosynthetic-Lined Solid Waste Landfills: Geosynthetics International, V.5, No. 1-2, pp. 203-235. Stewart, J.P., Blake, T.F. and Hollingsworth, RA., 2003, A Screen Analysis Procedure for Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp. 697-712. Given: Modal Magnitude, M = 6. 69 Modal Distance, r = 17.5 km Screening Threshold, u = 5 cm Design Ground Acceleration (rock), MHA = 0.37 g Duration (D5_95) For r > 10 km ln(D. )=lnexM.5.204+0.851-M-6 /10 +0.063-(r-10) +0.8664 [ ( J ( )] 1.5M+l605yl/3 ] ,_95 15.7 X 106 For r < 10 km ln(D ) = 1n[(exp[5.204 + 0.851 • (M -6)]11ouM+1605 )-113] + 0.8664 S-95 }5.7 X }0 6 ln(D 5.95 ) = 2.4858 (D 5_95 ) = 12.01 sec DETERMINATION OF PSEUDOSTATIC PARAMETER FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY Non-Linear Response Factor (NRF) NRF ~ 0.6225+0.9196-exp(-MHAI0.4449) NRF::::: 1.0192 Seismicity Factor ifeq) feq=(NRF/3.477)x[l.87-log 10 [ u ]] (MHA) · (NRF) · (Ds-9s) feq = 0.54 Seismic Coefficient (k) k=J. -MHA eq 3/5/2019 Unified Hazard Tool U.S. Geological Survey-Earthquake Hazards Program Unified Hazard Tool Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the U.S. Seismic Design Ma12s web tools (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical. A Input Edition Spectral Period ._I _o_y_n_a_m_i_c:_c_o_n_t_e_rm_in_o_u_s_u_._s_. 2_o_o_s_(_v_3._3_. _ ___.I I Peak ground acceleration Latitude Time Horizon Decimal degrees Return period in years L-l _3_2._6s_s_3_9 ___________ ___.I I 2475 Longitude Decimal degrees, negative values for western longitudes I -116.95575 Site Class 760 m/s (B/C boundary) https://earthquake.usgs.gov/hazards/interactive/ 1/5 3/5/2019 Unified Hazard Tool A Hazard Curve Please select "Edition", "Location" & "Site Class" above to compute a hazard curve. Compute Hazard Curve https://earthquake.usgs.gov/hazards/interactive/ 2/5 3/5/2019 Unified Hazard Tool " Deaggregation Component Total https://earthquake.usgs.gov/hazards/interactive/ . . Ill E = (-00 •• -2.5) E = [-2.5 .. -2) E = [-2 .. -1.5) E= [-1.5 .. -1) □ E= [-1 .. -0.5) □ E= [-0.5 .. 0) 0 E= [0 .. 0.5) □ E= [0.5 .. 1) E= [1 .. 1.5) E=[l.5 .. 2) Ill E = [2 .. 2.5) Ill E = [2.5 .. +00 ) 3/5 3/5/2019 Unified Hazard Tool Summary statistics for, Deaggregation: Total Deaggregation targets Return period: 2475 yrs Exceed a nee rate: 0.0004040404 y,1 PGAground motion: 0.30518296 g Totals Binned: 100 % Residual: 0 % Trace: 0.06 % Mode (largest r-m bin) r: 17.48 km m: 6.69 £0: 1.16 a Contribution: 9.85 % Discretization r: min= 0.0, max= 1000.0, t:,. = 20.0 km m: min= 4.4, max= 9.4, t:,. = 0.2 £: min= -3.0, max= 3.0, t:,. = 0.5 a https://earthquake.usgs.gov/hazards/interactive/ Recovered targets Return period: 2722.9266 yrs Exceedance rate: 0.00036725191 y,1 Mean (for all sources) r: 18.03 km m: 6.39 £u: 1.12 a Mode (largest Eo bin) r: 19.14 km m: 6.71 £0: 1.35 a Contribution: 6.32 % Epsilon keys £0: [-oo .. -2.5) £1: [-2.5 .. -2.0) £2: [-2.0 .. -1.5) £3: [-1.5 .. -1.0) £4: [-1.0 .. -0.5) £5: [-0.5 .. 0.0) £6: [0.0 .. 0.5) £7: [0.5 .. 1.0) £8: [1.0 .. 1.5) £9: [1.5 .. 2.0) £10: [2.0 .. 2.5) £11: [2.5 .. +00] 4/5 3/5/2019 Unified Hazard Tool Deaggregation Contributors Source Set 4 Source Type r m ~o Ion lat az % bFault.ch Fault 22.76 Rose Canyon 19.13 6.79 1.33 117.151 °W 32.603°N 252.43 9.45 Coronado Bank 33.91 7.37 1.64 117.298°W 32.552°N 250.35 3.62 Palos Verdes Connected 33.91 7.72 1.37 117.298°W 32.552°N 250.35 3.57 Newport Inglewood Connected alt 2 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.07 Newport Inglewood Connected alt 1 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.05 CAmap.21.ch.in (opt) Grid 20.28 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.97 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46 PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70 PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41 PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38 CAmap.24.ch.in (opt) Grid 20.27 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.96 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46 PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70 PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41 PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38 bFault.gr Fault 14.00 Rose Canyon 19.55 6.66 1.44 117.151 °W 32.603°N 252.43 6.33 Corona do Bank 34.27 7.00 1.91 117.298°W 32.552°N 250.35 2.92 Palos Verdes Connected 34.58 7.30 1.70 117.298°W 32.552°N 250.35 2.64 Newport Inglewood Connected alt 2 22.65 7.12 1.27 117.151°W 32.603°N 252.43 1.06 Newport Inglewood Connected alt 1 22.66 7.12 1.27 117.151°W 32.603°N 252.43 1.05 CAmap.24.gr.in (opt) Grid 9.98 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23 CAmap.21.gr.in (opt) Grid 9.98 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23 https://earthquake.usgs.gov/hazards/interaclive/ 5/5 - Geotechnlcal & Environmental Sciences Consultants