Loading...
HomeMy WebLinkAboutAttachment 6.2 -Appendices D -Geotechnical Evaluation Geotechnical Evaluation Proposed Acadia San Diego Medical Facility 830 Showroom Place Chula Vista, California Acadia Health Care 6100 Tower Circle, Suite 1000 | Franklin, Tennessee 37067 March 6, 2019 | Project No. 108727001 Geotechnical | Environmental | Construction Inspection & Testing | Forensic Engineering & Expert Witness Geophysics | Engineering Geology | Laboratory Testing | Industrial Hygiene | Occupational Safety | Air Quality | GIS CONTENTS 1 INTRODUCTION 1 2 SCOPE OF SERVICES 1 3 SITE DESCRIPTION 1 4 PROPOSED CONSTRUCTION 2 5 SUBSURFACE EVALUATION AND LABORATORY TESTING 2 6 INFILTRATION TESTING 3 7 GEOLOGY AND SUBSURFACE CONDITIONS 4 7.1 Regional Geologic Setting 4 7.2 Site Geology 5 7.2.1 Fill 5 7.2.2 Otay Formation 5 7.3 Groundwater 6 8 GEOLOGIC HAZARDS 6 8.1 Faulting and Seismicity 6 8.2 Surface Fault Rupture 7 8.3 Ground Motion 7 8.4 Liquefaction and Seismically Induced Settlement 8 8.5 Landslides 8 8.5.2 Surficial Slope Stability Analysis 10 8.6 Flood and Dam Inundation Hazards 10 8.7 Tsunamis and Seiches 10 9 CONCLUSIONS 11 10 RECOMMENDATIONS 12 10.1 Earthwork 12 10.1.1 Construction Plan Review and Pre-Construction Conference 12 10.1.2 Site Preparation 13 10.1.3 Excavation Characteristics 13 10.1.4 Remedial Grading and Treatment of Near-Surface Soils 13 10.1.5 Temporary Excavations 14 10.1.6 Temporary Shoring 15 Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 i 10.1.7 Materials for Fill and Trench Backfill 16 10.1.8 Fill Placement and Compaction 17 10.1.9 Pipe Bedding 18 10.1.10 Lateral Pressures for Thrust Blocks 19 10.1.11 Modulus of Soil Reaction 19 10.2 Seismic Design Considerations 19 10.3 Site-Specific Ground Response Analysis 19 10.4 Foundations 21 10.4.1 Spread Footings 21 10.4.2 Lateral Resistance 21 10.4.3 Static Settlement 22 10.5 Slabs-On-Grade 22 10.6 Retaining Walls 22 10.7 Exterior Flatwork 23 10.8 Corrosion 23 10.9 Concrete 24 10.10 Preliminary Pavement Recommendations 24 10.11 Drainage 25 11 CONSTRUCTION OBSERVATION 26 12 LIMITATIONS 27 13 REFERENCES 29 TABLES 1 – Infiltration Test Results Summary 4 2 – Principal Active Faults 7 3 – Historical Earthquakes that Affected the Site 7 4 – Strength Parameters Used in Stability Evaluation 9 5 – Summary of Remedial Grading Recommendations 14 6 – Fill Material Criteria 17 7 – 2016 California Building Code Seismic Design Criteria 19 8 – Preliminary Pavement Recommendations 25 Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 ii FIGURES 1 – Site Location 2 – Exploration Locations - Aerial Plan 3 – Exploration Locations - Site Plan 4 – Fault Locations 5 – Regional Geology 6A-6C – Geologic Cross Sections A-A’ through C-C’ 7 – Lateral Earth Pressures for Temporary Cantilevered Shoring 8 – Thrust Block Lateral Earth Pressure Diagram 9 – Acceleration Response Spectra 10 – Lateral Earth Pressures for Yielding Retaining Walls 11 – Retaining Wall Drainage Detail APPENDICES A – Boring and Test Pit Logs B – Geotechnical Laboratory Testing C – Infiltration Testing Results D – Geotechnical Map (Geotechnics, 2003) E – Slope Stability Analyses F – Derivation of Pseudostatic Coefficient Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 iii 1 INTRODUCTION In accordance with your request and authorization, we have performed a geotechnical evaluation for the proposed Acadia San Diego Medical Facility located at 830 Showroom Place in Chula Vista, California (Figure 1). The purpose of our study was to evaluate the soil and geologic conditions at the site and to develop geotechnical recommendations regarding the design and construction of the proposed improvements. This report presents our findings, conclusions, and recommendations for the project based on our background review, site reconnaissance, subsurface evaluation, laboratory testing, and geotechnical analyses. 2 SCOPE OF SERVICES Our scope of services included the following: • Review of readily available background materials, including a previous geotechnical report for the site (Ninyo & Moore, 2006), published geologic maps, fault and seismic hazards maps, groundwater data, topographic maps, and stereoscopic aerial photographs. • Coordination and mobilization for subsurface exploration, including a geotechnical reconnaissance of the site to observe the existing site conditions, coordinate with site personnel, and mark the proposed boring locations for utility clearance. • Acquisition of a boring permit with the County of San Diego Department of Environmental Health for our subsurface exploration. • Subsurface exploration consisting of drilling, logging, and sampling 16 small-diameter, hollow-stem auger borings and the excavation, logging, and sampling of 14 test pits. The borings and test pits were logged by a representative from our firm and soil samples were collected at selected intervals for laboratory testing. • Field infiltration testing in general accordance with the City of Chula Vista BMP Design Manual (2017) • Laboratory testing of selected soil samples, including tests to evaluate in-situ moisture and dry density, gradation analysis, Atterberg limits, consolidation, expansion index, direct shear strength, Proctor density, R-value, and corrosivity. • Data compilation and engineering analysis of the information obtained from our background review, field reconnaissance, subsurface evaluation, and laboratory testing. • Preparation of this geotechnical report presenting our findings, conclusions, and recommendations for the design and construction of the proposed improvements at the site. 3 SITE DESCRIPTION The project site includes two contiguous, previously graded properties located at the northern terminus of Showroom Place in the Eastlake area of Chula Vista, California (Figures 1 and 2). The two properties are designated as Assessor’s Parcel Numbers 595-710-11 and 595-710-12 and were graded in 2002 and 2003 as part of the Eastlake Business Center II development Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 1 (Geotechnics, 2003). Current access to the site is afforded by Showroom Place, which abuts the southerly property line. The project site is currently vacant and is generally covered with sparse vegetation. An approximately 10- to 15-foot high stockpile of soil is situated within the east- central portion of the site, and two retention basins are located in the southern portion of the property that are up to approximately 10 feet in depth. Graded slopes up to approximately 90 feet in height descend from the northern and eastern property lines to residential developments which bound the property to the north and east. An approximately 25-foot high graded slope descends from the western property line to a commercial development. A boat and RV storage lot and a retail development bound the site to the south. The existing ground surface in the area where the proposed medical facility is to be constructed is relatively level with a gentle gradient down to the south. Ground surface elevations in the vicinity of the proposed facility building range from approximately 705 feet above mean sea level (MSL) to approximately 715 MSL. The global project site coordinates are approximately 32.6554°N latitude and 116.9553°W longitude 4 PROPOSED CONSTRUCTION We understand that the proposed Acadia San Diego Medical Facility will consist of an approximately 89,500 square-foot, single-story structure (SWA, 2018). The facility is anticipated to accommodate various administration and medical offices, nurse stations, patient rooms, treatment rooms, and a gymnasium. Additional site improvements will include a parking area south of the proposed building, an access road surrounding the perimeter of the proposed building, underground utilities, and landscaping. Four stormwater basins are also planned – one in the northeast corner of the site, one in the northwest corner, and two in the southern portion of the site. Site excavations are anticipated for subgrade preparation associated with shallow foundations for the new building, hardscape and pavement construction, and excavations for underground utility installation. 5 SUBSURFACE EVALUATION AND LABORATORY TESTING Our subsurface exploration was conducted January 28 through January 30, 2019 and consisted of drilling of sixteen small-diameter, hollow-stem auger borings (B-1 through B-8, and IT-1 through IT-8) and the excavation of 14 test pits (TP-1 through TP-14). The borings were drilled to depths of up to 46 feet using a truck-mounted drill rig equipped with hollow-stem augers. The test pits were excavated to depths of up to 8 feet using a rubber-tired backhoe. A representative from Ninyo & Moore logged the borings and test pits and obtained bulk and relatively Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2 undisturbed soil samples at selected depths for laboratory testing. The exploration locations are shown on Figures 2 and 3. The logs of the borings and test pits are presented in Appendix A. Geotechnical laboratory testing was performed on representative samples to evaluate the in-situ moisture and dry density, gradation analysis, Atterberg limits, consolidation, direct shear strength, expansion index, Proctor density, corrosivity, and R-value. In-situ moisture content and dry density test results are presented on the boring logs in Appendix A. The remaining laboratory test results are presented in Appendix B. 6 INFILTRATION TESTING Field infiltration testing was performed on January 29 and January 30, 2019 within the areas of the proposed infiltration basins. Eight infiltration test holes (IT-1 through IT-8) were excavated with a truck-mounted drill rig to depths of approximately 5 feet at the locations shown on Figures 2 and 3. Following the excavation of borings IT-1 through IT-8 on January 29, 2019, the locations were prepared for infiltration testing by placing approximately 2 inches of gravel on the bottom of each boring, installing a 2-inch diameter, perforated PVC pipe in the hole, and backfilling the annulus with pea gravel. As part of the test procedure, presoaking of each hole was performed to represent adverse conditions for infiltration. The presoak consisted of maintaining approximately 1 to 2 feet of water in each boring for approximately 4 hours. The water levels were then allowed to drop overnight. Infiltration testing was then performed on January 30, 2019 in general accordance with the City of Chula Vista BMP Design Manual (2017). The infiltration test holes were filled with approximately 1 to 2½ feet of water and the water depth was measured in 30-minute intervals during the duration of the tests. As necessary, the borings were refilled to maintain the water level until the infiltration rate stabilized. Infiltration rates were calculated from the field measurements using the Porchet method. Infiltration test measurements and calculations are included in Appendix C. The Suitability Assessment Safety Factor (SA) presented in Table 1 was calculated based on the guidelines presented in Appendix D of the City of Chula Vista BMP Design Manual (2017). Appendix C of this report also includes copies of the Categorization of Infiltration Feasibility worksheet (Worksheet C.4-1) and Factor of Safety and Design Infiltration Rate worksheet (Worksheet D.5-1) including responses to the suitability assessment questions. The rates presented in Table 1 are to be used for preliminary design purposes. The design safety factor shall be determined by the design engineer. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 3 Table 1 – Infiltration Test Results Summary Infiltration Test Approximate Test Depth (feet) Description (Geologic Unit) Observed Infiltration Rate (in/hr) Suitability Assessment Safety Factor, SA1 Design Safety Factor, SB2 SA Factored Infiltration Rate3 (in/hr) IT-1 5 Silty Sandstone (Otay Formation) 0.21 2.25 TBD 0.09 IT-2 5 Silty Sandstone (Otay Formation) 0.29 2.25 TBD 0.13 IT-3 5 Silty Sandstone (Otay Formation) 0.04 2.25 TBD 0.02 IT-4 5 Silty Sandstone (Otay Formation) 0.04 2.25 TBD 0.02 IT-5 5 Sandy Silt (Fill) 0.02 2.25 TBD 0.01 IT-6 5 Sandy Silt (Fill) 0.04 2.25 TBD 0.02 IT-7 5 Silty Sandstone (Otay Formation) 0.47 2.25 TBD 0.21 IT-8 5 Silty Sandstone (Otay Formation) 0.27 2.25 TBD 0.12 Notes: in/hr = inches per hour TBD = to be determined 1 Calculated in accordance with Appendix D of the City of Chula Vista BMP Design Manual (2017) 2 Design safety factor to be determined by the design engineer in accordance with Appendix D of the City of Chula Vista BMP Design Manual (2017) 3 Factored infiltration rate shall be divided by the design safety factor to obtain the design infiltration rate Other areas of the site not specifically tested may or may not accommodate partial infiltration of storm water. Additional infiltration testing would be needed in these other areas to evaluate whether infiltration in these areas/depths are feasible. 7 GEOLOGY AND SUBSURFACE CONDITIONS 7.1 Regional Geologic Setting The project area is situated in the western portion of the Peninsular Ranges Geomorphic Province. This geomorphic province encompasses an area that extends approximately 900 miles from the Transverse Ranges and the Los Angeles Basin south to the southern tip of Baja California (Norris and Webb, 1990; Harden, 2004). The province varies in width from approximately 30 to 100 miles and generally consists of rugged mountains underlain by Jurassic metavolcanic and metasedimentary rocks, and Cretaceous igneous rocks of the southern California batholith. The portion of the province in western San Diego County that includes the project area consists generally of uplifted and dissected coastal plain underlain by Upper Cretaceous-, Tertiary-, and Quaternary-age sedimentary rocks. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 4 The Peninsular Ranges Province is traversed by a group of sub-parallel faults and fault zones trending roughly northwest. Several of these faults are considered to be active. The active fault systems located in the vicinity of the project area include the Rose Canyon, Elsinore, San Jacinto, San Andreas, Coronado Bank, San Diego Trough, and San Clemente faults. The location of the site relative to these regional faults is shown on Figure 4. Major tectonic activity associated with these and other faults within this regional tectonic framework consists primarily of right-lateral, strike-slip movement. The Rose Canyon Fault Zone, the nearest active fault system, has been mapped approximately 12 miles west of the project site. 7.2 Site Geology Geologic units encountered during our field reconnaissance and subsurface exploration included fill and materials of the Otay Formation. Generalized descriptions of the earth units encountered during our subsurface exploration are provided below. The geology of the site vicinity is shown on Figure 5. Additional descriptions are provided on the boring and test pit logs in Appendix A. Geologic cross sections were prepared at the locations shown on Figure 3 and are shown on Figures 6A through 6C. 7.2.1 Fill Fill materials were encountered at the ground surface in each of our borings and test pits. The depth of fill materials encountered in our borings ranged from approximately 1 foot to approximately 43 feet. Fill depths up to approximately 65 feet are anticipated in the northeastern corner of the site, near the top of the slope that descends to the adjacent residential development. As encountered, the fill materials generally consisted of various shades of brown and gray, moist, stiff to hard, sandy silt, clayey silt, elastic silt, lean clay, and sandy clay, along with medium dense to very dense silty sand and clayey sand. With the exception of the stockpile in the in the east-central portion of the site, these fill materials were placed under the observation and testing of Geotechnics, Inc. (2003) and are considered to be engineered fill. A copy of the Geotechnical Map prepared by Geotechnics is included in Appendix D. 7.2.2 Otay Formation Materials comprising the Otay Formation (Todd, 2004), were encountered in each of our exploratory borings and test pits with the exception of IT-5 and IT-6. The Otay Formation was encountered underlying the fill and extending to the total depths explored. As encountered, the Otay Formation generally consisted of various shades of brown, light gray, and gray, Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 5 moist, moderately to strongly cemented, silty sandstone, and moderately to strongly indurated clayey siltstone and silty claystone. Scattered bentonite lenses were observed within the upper portions of the Otay Formation. Bentonite typically possesses a high expansion potential and poor strength characteristics when wetted or exposed to moisture. 7.3 Groundwater Groundwater was not encountered in our exploratory borings or test pits. Based on our review of available data, we estimate that the groundwater table is situated at depths greater than 60 feet below the site. Perched water and/or seepage due to the presence of clayey material and/or near the contact between the fill and the Otay Formation may be encountered during construction excavations. Fluctuations in the level of groundwater may occur due to variations in ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and other factors which may not have been evident at the time of our field evaluation. 8 GEOLOGIC HAZARDS In general, hazards associated with seismic activity include strong ground motion, ground surface rupture, and liquefaction. These considerations and other geologic hazards, such as landsliding and flooding, are discussed in the following sections. 8.1 Faulting and Seismicity Based on our review of the referenced geologic maps and stereoscopic aerial photographs, as well as on our geologic field mapping, the subject site is not underlain by known active or potentially active faults (i.e., faults that exhibit evidence of ground displacement in the last 11,000 years and 2,000,000 years, respectively). The site is not located within a State of California Earthquake Fault Zone (Hart and Bryant, 1997). However, like the majority of southern California, the site is located in a seismically active area and the potential for strong ground motion is considered significant during the design life of the proposed structures. The nearest known active fault is the Rose Canyon fault, located approximately 12 miles west of the site. Table 2 lists selected principal known active faults that may affect the subject site, including the approximate fault-to-site distances, and the maximum moment magnitudes (Mmax) as published by the USGS (2019). Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 6 Table 2 – Principal Active Faults Fault Approximate Fault-to-Site Distance miles (kilometers) Maximum Moment Magnitude (Mmax) Rose Canyon 12 (19) 6.9 Coronado Bank 21 (34) 7.4 Elsinore (Julian Segment) 37 (60) 7.4 Earthquake Valley 41 (66) 6.8 Elsinore (Coyote Mountain Segment) 42 (68) 6.9 Newport-Inglewood (Offshore) 44 (71) 7.0 Elsinore (Temecula) 47 (76) 7.1 San Jacinto (Coyote Creek) 57 (92) 7.0 San Jacinto (Borrego) 58 (93) 6.8 Principal seismic hazards evaluated at the subject site are surface ground rupture, ground shaking, seismically induced liquefaction, and various manifestations of liquefaction related hazards (e.g., dynamic settlement). A brief description of these and other hazards and the potential for their occurrences at the site are discussed below. 8.2 Surface Fault Rupture Surface fault rupture is the offset or rupturing of the ground surface by relative displacement across a fault during an earthquake. Based on our review of referenced geologic and fault hazard data, the project site is not transected by known active or potentially active faults. Therefore, the probability of damage from surface fault rupture is considered to be low. However, lurching or cracking of the ground surface as a result of nearby seismic events is possible. 8.3 Ground Motion Based on our review of background information, data pertaining to the historical seismicity of the San Diego area are summarized in Table 3. This table presents historic earthquake data within a radius of approximately 62 miles of the site with a magnitude of 6.0 or greater, as obtained from the CGS Earthquake History and Catalogs website (CGS, 2018) and in-house proprietary data. Table 3 – Historical Earthquakes that Affected the Site Date Magnitude (M) Approximate Epicentral Distance miles (kilometers) October 23, 1894 6.1 14 (22) May 27, 1862 6.2 14 (22) November 22, 1800 6.3 52 (84) May 28, 1892 6.5 58 (93) April 9, 1968 6.6 61 (97) Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 7 The 2016 California Building Code (CBC) specifies that the Risk-Targeted, Maximum Considered Earthquake (MCER) ground motion response accelerations be used to evaluate seismic loads for design of buildings and other structures. The MCER ground motion response accelerations are based on the spectral response accelerations for 5 percent damping in the direction of maximum horizontal response and incorporate a target risk for structural collapse equivalent to 1 percent in 50 years with deterministic limits for near-source effects. The horizontal peak ground acceleration (PGA) that corresponds to the MCER for the site was calculated as 0.385g using a web - based seismic design tool (SEAOC/OSHPD, 2019). Spectral response acceleration parameters, consistent with the 2016 CBC, are also provided in the Recommendations section of this report for the evaluation of seismic loads on buildings and other structures. The 2016 CBC specifies that the potential for liquefaction and soil strength loss be evaluated, where applicable, for the Maximum Considered Earthquake Geometric Mean (MCEG) peak ground acceleration with adjustment for site class effects in accordance with the American Society of Civil Engineers (ASCE) 7-10 Standard. The MCEG peak ground acceleration is based on the geometric mean peak ground acceleration with a 2 percent probability of exceedance in 50 years. The MCEG peak ground acceleration with adjustment for site class effects (PGAM) was calculated as 0.374g using a web-based seismic design tool (SEAOC/OSHPD, 2019) that yielded a mapped MCEG peak ground acceleration of 0.316g for the site and a site coefficient (FPGA) of 1.171 for Site Class D. 8.4 Liquefaction and Seismically Induced Settlement Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes. Research and historical data indicate that loose granular soils and non-plastic silts that are saturated by a relatively shallow groundwater table are susceptible to liquefaction. Based on the relatively dense nature of the underlying formational materials and the anticipated depth of groundwater, it is our opinion that the potential for liquefaction and seismically induced settlement to occur at the site is not a design consideration. 8.5 Landslides Our review of referenced geologic maps, literature, topographic maps, and stereoscopic aerial photographs, no landslides or indications of deep-seated landsliding underlie the subject site (Todd, 2004; Tan, 1992). In addition, no indications of landsliding were observed during our site reconnaissance or subsurface exploration. As such, the potential for significant large-scale slope Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 8 instability at the site is not a design consideration. The slopes that descend from the project site were evaluated with regards to deep-seated and surficial slope stability, as discussed below. 8.5.1 Deep-Seated Slope Stability Analysis To evaluate the deep-seated stability of the slopes that descend from the east and west property lines, slope stability calculations were performed on geologic cross sections A-A’ and B-B’ developed at the locations shown on Figure 3. Our slope stability calculations focused on the stability fill that exists on the west property line and the large graded slope that descends from the northeast and east portions of the site. The cross sections were created using topographic survey data provided by K&S Engineering, Inc. (2019), as-graded geotechnical information reported by Geotechnics (2003), and the findings and results from our subsurface evaluation. A two -dimensional stability analysis program, Geostase (Gregory, 2019), was used for our slope stability calculations. Our evaluation utilized search routines that incorporate Spencer Method of Slices to define the most critical failure surface within potential block failures and potential rotational failures. Spencer’s Method of Slices was utilized in our analyses in order to satisfy force equilibrium and moment equilibrium conditions. For our analysis, the soil and formational materials were assigned with homogeneous, isotropic properties. The shear strength parameters for the fill materials and materials comprising the Otay Formation were selected based on our laboratory direct shear testing and our experience with similar materials. In keeping with standard practice, our slope stability calculations incorporated ultimate shear strengths for the formational materials and fill materials under static conditions, while peak shear strengths were used for these materials under static/pseudo-static. The relevant shear strength parameters used in our stability calculations for the different material types are presented in Table 4. Table 4 – Strength Parameters Used in Stability Evaluation Earth Material Unit Weight (pcf) Shear Strength Parameters Peak Ultimate Cohesion (psf) Friction Angle (degrees) Cohesion (psf) Friction Angle (degrees) Otay Formation 120 500 30 300 28 Artificial Fill 120 350 30 200 30 A factor of safety of at least 1.5 under static conditions is generally considered adequate as per the guidelines of Special Publication 117A (CGS, 2008a) and accepted engineering practices. Results of our slope stability analyses yielded factors of safety of 1.5 or more under static conditions for the existing slopes as shown on geologic cross sections A-A’ through B-B’ (Appendix E). Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 9 Our analyses of existing slopes also included an evaluation of the slopes’ stability when subjected to seismic loading. Our evaluation was performed utilizing a “screening analysis” to evaluate whether a more involved displacement analysis is warranted, as recommended by CGS Special Publication 117A (CGS, 2008). This procedure also incorporates a pseudo-static analysis that is based on site-specific ground motion parameters (Bray, et. al, 1998; Blake, et. al, 2002; Stewart, et. al, 2003). Calculations showing the derivation of the pseudo-static coefficient used in the screening analysis are presented in Appendix F. Results of our “screening analysis,” which incorporates a pseudo-static coefficient of 0.20, yielded pseudo-static factors of safety of 1.0 or more for each of the evaluated slopes (Appendix E), which CGS (2008a) considers to be adequate for seismic conditions. 8.5.2 Surficial Slope Stability Analysis We evaluated the shallow stability of the proposed cut and fill slopes at the site. Our evaluation was based on a slope inclination of 2:1 and assumed a 4-foot thick zone of seepage parallel to the slope face. Using the above shear strength parameters for the onsite materials, our analyses indicate a factor of safety of at least 1.50 with respect to shallow slope stability for the proposed slopes (Appendix E). 8.6 Flood and Dam Inundation Hazards Based on review of the Federal Emergency Management Agency Flood Insurance Rate Map ([FIRM], FEMA, 2012), the site and immediate surrounding areas are mapped as lying outside of 100- and 500-year flood zones. Accordingly, the potential for flooding of the site is considered low. We have also a reviewed dam inundation map of the area (Chula Vista, 2005). Based on the review, the site is mapped as lying outside of dam failure inundation zones. 8.7 Tsunamis and Seiches Tsunamis are long wavelength seismic sea waves (long compared to the ocean depth) generated by sudden movements of the ocean bottom during submarine earthquakes, landslides, or volcanic activity. Seiches are similar oscillating waves on inland or enclosed bodies of water. Based on the inland location and elevation of the site, and the relative distance to nearby lakes or reservoirs, the potential for a tsunami or seiche to affect the site is not a design consideration. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 10 9 CONCLUSIONS Based on our geotechnical evaluation, it is our opinion that the proposed project is feasible from a geotechnical standpoint provided that the following recommendations are incorporated into the design and construction of the project. In general, the following conclusions were made: • Based on our recent subsurface exploration, the site is underlain by fill soils and materials of the Otay Formation. The upper portions of the fill soils are considered to be potentially compressible and are not suitable for the proposed improvements in their present condition. Recommendations for remedial grading are presented in the following sections • A significant cut-fill transition between the fill soils and the Otay Formation exists below the proposed building pad area. Recommendations to mitigate differential settlement across this cut-fill transition are provided in the following sections of this report. • The existing fill soils and materials of the Otay Formation encountered on the site should be generally excavatable with heavy-duty earth moving equipment in good working condition. However, portions of the Otay Formation can be expected to contain moderately to strongly cemented zones. Because of this, additional efforts including heavy ripping should be anticipated. Disposal, crushing, pulverizing, or special processing of the resulting oversize material generated from excavations should be anticipated. • Groundwater was not encountered during our subsurface evaluation. Depth to groundwater may vary due ground surface topography, subsurface stratification, seasonal rainfall, irrigation, and other factors which may not have been evident at the time of our field evaluation. • Results of our laboratory testing indicate that the onsite fill and materials of the Otay Formation are expansive. • Results of our slope stability analyses (Appendix E) indicate that the existing slopes that descend from the eastern, northeastern, and western portion of the site possess adequate factors of safety with respect to static and seismic conditions. • In general, on-site excavations are anticipated to generate soils with a high expansion potential. These materials are not considered suitable for reuse beneath the proposed building or the upper 2 feet of subgrade soils beneath flatwork. Therefore, we anticipate that imported material will be needed for use as fill. • Excavations performed within the on-site materials are anticipated to generate oversized materials that are not suitable for reuse within the engineered fill soils. Cemented materials and cobbles should be crushed, screened and processed prior to their reuse as fill. The contractor should anticipate disposing of the oversized materials generated during excavation. • The subject site is not located within a State of California Earthquake Fault Zone. The probability of surface fault rupture at the site is considered to be low. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 11 • Although potential infiltration rates of the onsite soils may be suitable for partial infiltration, we do not recommend infiltration for this site from a geotechnical standpoint. Based on our geotechnical laboratory testing, the onsite fill materials and materials derived from the Otay Formation are clayey in nature and possess a high potential for expansion. In addition, infiltration within 50 feet of the top of a slope is anticipated to induce seepage on the slope face and increase the risk of slope failures in these areas. • Our limited laboratory corrosion testing indicates that the onsite soils are corrosive based on California Department of Transportation (Caltrans, 2018) corrosion guidelines. As such, we recommend that a corrosion engineer be consulted for further evaluation of these soils. 10 RECOMMENDATIONS The recommendations presented in the following sections provide general geotechnical criteria regarding the design and construction of the proposed Acadia San Diego Medical Facility and associated improvements. The recommendations are based on the results of our subsurface evaluation, laboratory testing, review of referenced geologic materials, experience in the general vicinity of the project area, and geotechnical analyses. The proposed work should be performed in conformance with the recommendations presented in this report, project specifications, and appropriate agency standards. 10.1 Earthwork Earthwork at the site is anticipated to include foundation excavations, trenching and backfilling for new utilities, pavement construction, and finish grading for establishment of site drainage. Earthwork should be performed in accordance with the requirements of applicable governing agencies and the recommendations presented in the following sections. 10.1.1 Construction Plan Review and Pre-Construction Conference We recommend that the grading and foundation plans, and project specifications, be submitted to Ninyo & Moore for review to evaluate for conformance to the recommendations provided in this report. We further recommend that a pre-construction conference be held. The owner and/or their representative, the governing agencies’ representatives, the civil engineer, the geotechnical engineer, and the contractor should be in attendance to discuss the work plan and project schedule. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 12 10.1.2 Site Preparation Prior to commencing earthwork operations, the project areas for the new improvements should be cleared of existing structures and improvements, vegetation, utility lines, asphalt, concrete, and other deleterious debris from areas to be graded. The existing stockpile of soil within the east-central portion of the site should be removed to accommodate construction of the proposed improvements. Tree stumps and roots should be removed to such a depth that organic material is generally not present. Clearing and grubbing should extend to the outside of the proposed excavation and fill areas. The debris and unsuitable material generated during clearing and grubbing should be removed from areas to be graded and disposed of at a legal dumpsite away from the project area. 10.1.3 Excavation Characteristics The results of our field exploration program indicate that the project site, as presently proposed, is underlain by fill soils and materials comprising the Otay Formation. These soils should be generally excavatable with heavy-duty earth working equipment. Moderately- to strongly-cemented formational materials may be encountered and additional efforts including heavy ripping should be anticipated. 10.1.4 Remedial Grading and Treatment of Near-Surface Soils As noted, based on the results of our subsurface and laboratory evaluation, the existing fill and upper portions of the Otay Formation are considered to be potentially compressible, expansive, and corrosive. As such, we do not consider these upper soils to be suitable for structural support of buildings and improvements in their present condition. In addition, a significant cut-fill transition between the fill soils and Otay Formation is present beneath the proposed building pad, which could result in considerable differential settlements across the building. Consequently, we recommend that the existing fill and upper portions of the Otay Formation be removed to a depth of 8 feet below the bottoms of the proposed foundations within planned building pads. For the purposes of this report, the building pad is defined as the structural footprint plus a horizontal distance of 5 feet or the depth of the excavation below pad grade, whichever is greater. Depths of these recommended removals will vary, but should extend to a sufficient depth in order to provide 10 feet or more of fill soils, with the upper 5 feet or more possessing a very low to low expansion potential beneath the building pad. The extent and depths of removals should be evaluated by Ninyo & Moore’s representative in the field based on the materials exposed. Based on our field representative’s observations, deeper removals in some areas may be recommended. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 13 Near-horizontal benching of the removal surface should be performed where the surface gradient exceeds 3:1 (horizontal:vertical). The existing fills may be reused as compacted fill materials provided they meet with the criteria for fill materials. Where flatwork, concrete pavement, or segmental concrete pavers are proposed, the upper 1 foot of subgrade materials should be removed and replaced with compacted fill material exhibiting a very low to low expansion potential. Remedial grading for site pavements and should consist of scarifying and moisture conditioning the upper 1 foot of subgrade materials. Our recommendations for removals and placement of structural backfill are summarized on Table 5. Table 5 – Summary of Remedial Grading Recommendations Improvement Type Estimated Depth1,2 of Remedial Grading Fill Material Building Improvements 8 feet below bottoms of foundations Select Fill3 in upper 3 ft4 On-site Material beneath 3 ft4 Retaining Walls 3 feet below bottom of footing Select Fill3 Flatwork, Concrete Pavement and Pavers 1 foot below subgrade Select Fill3 Asphalt Concrete Pavement Scarify and moisture condition the upper 1 foot of subgrade On-site Materials Notes: 1 Actual depth to be evaluated during grading by the geotechnical representative. 2 Lateral extent of remedial grading removals equal to 5 feet or the depth of the excavation below pad grade, whichever is greater. 3 Select Fill is granular and exhibits a very low expansion potential and properties as defined in Fill Materials. 4 Below bottom of foundation Existing underground utilities may be present within the project site that that could impact the recommended remedial grading. The presence of underground utilities located under or adjacent to the proposed building pads, which cannot be relocated, may hinder the performance of the recommended remedial grading operations. Ninyo & Moore should be contacted for additional recommendations regarding such conflicts on a case-by-case basis. 10.1.5 Temporary Excavations For temporary excavations, we recommend that the following Occupational Safety and Health Administration (OSHA) soil classifications be used: Fill Type C Otay Formation Type B Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 14 Upon making the excavations, the soil classifications and excavation performance should be evaluated in the field by the geotechnical consultant in accordance with the OSHA regulations. Temporary excavations should be constructed in accordance with OSHA recommendations. For trenches or other excavations, OSHA requirements regarding personnel safety should be met using appropriate shoring (including trench boxes) or by laying back the slopes to no steeper than 1.5:1 (horizontal to vertical) in fill and 1:1 for Otay Formation materials. Temporary excavations that encounter seepage may be shored or stabilized by placing sandbags or gravel along the base of the seepage zone. Excavations encountering seepage should be evaluated on a case-by-case basis. On-site safety of personnel is the responsibility of the contractor. 10.1.6 Temporary Shoring Based on our understanding of the proposed construction, the proposed structure will not include a subterranean level. If deep excavations are planned where temporary sloping of the walls of the excavation is not feasible, it may be necessary to install a temporary shoring system. The shoring plans should clearly depict the site constraints and the shoring system. The shoring plans should be signed and stamped by a professional engineer registered in the State of California experienced in the design the shoring systems. Ninyo & Moore should be given the opportunity to review the project plans to check its compliance with design and construction recommendations presented herein. A cantilever shoring system consisting of soldier piles and lagging can be utilized to facilitate construction staging (Figure 7). The soldier piles may be comprised of structural concrete below the bottom of the excavation and lean concrete slurry backfill above the bottom. H-piles inserted in the drilled shafts, during the placement of concrete, are to act as reinforcement below the bottom of the excavation. Lagging spans the distance between the H-piles, transferring the soil lateral pressure to the H-piles. Lateral earth pressures exerted on cantilever shoring are indicated on Figure 7. These lateral earth pressures should be evaluated by a structural engineer for the design of the temporary shoring system. These design earth pressures assume that spoils from the excavations, or other surcharge loads, will not be placed above the excavations within a 1:1 plane extending up and back from the base of the excavation. For shoring subjected to surcharge loads, such as soil stockpiles or construction materials/equipment, an additional horizontal uniform pressure of 0.5q may be applied to the full height of the excavation, where “q” is the vertical surcharge pressure. Street traffic or construction traffic may be Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 15 assumed to induce a surcharge pressure “q” of 240 pounds per square foot (psf). If a braced shoring system is planned for the site, we would be pleased to provide recommendations for their design and construction upon request. 10.1.7 Materials for Fill and Trench Backfill Material for fill may be obtained from on-site excavations, may be processed from on-site excavations, or may be import materials. On-site soils (other than plastic clays) with an organic content of less than approximately 3 percent by volume (or 1 percent by weight) are suitable for reuse as general fill material in building areas (at depths of more than 3 feet below foundations), in non-structural areas, and in areas where asphalt concrete pavements are proposed. Fill material should not contain rocks or lumps over approximately 3 inches in diameter, and not more than approximately 30 percent larger than ¾ inch. Oversize materials, if encountered, should be crushed, screened, processed, or separated from material to be used for compacted fill and removed from the site. Moisture conditioning (including drying) of existing on-site materials is anticipated if reused as fill. As recommended in Section 10.1.4, the upper soils (within 3 feet of the bottom of proposed foundations) in the proposed building area, and in areas to receive retaining walls, flatwork, concrete pavement, and pavers, should be overexcavated, exported, and backfilled with imported select fill. Select fill and imported fill materials should generally be granular soils with very low to low expansion potential (i.e., an expansion index of 50 or less as evaluated by ASTM International [ASTM] Test Method D 4829). Select fill and imported fill material should also be tested for corrosive potential and exhibit a minimum resistivity value greater than 1,100 ohm-centimeters, chloride content of less than 500 parts per million (ppm), a sulfate content of less than 1,000 ppm and pH greater than 5.5. The contractor should be responsible for the uniformity of import material brought to the site. We recommend that materials proposed for use as select fill be evaluated from a contractor’s stockpile rather than in place materials. Once an evaluation of a stockpile is requested, three days should be anticipated for results of the material evaluation. Utility trench backfill material should not contain rocks or lumps over approximately 3 inches in general. In general, soils classified as silts or clays should not be used for backfill in the pipe zone. Larger chunks, if generated during excavation, may be broken into acceptably sized pieces or disposed of offsite. A summary of the recommended fill material criteria is presented in Table 6. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 16 Table 6 – Fill Material Criteria Fill Material Criteria General Site Fill <3 inches <30 percent retained on ¾ inch sieve Select Fill <3 inches <30 percent retained on ¾ inch sieve Expansion Index <50, considered non-corrosive Trench Backfill <3 inches <30 percent retained on ¾ inch sieve Additionally, concrete and AC materials generated from the demolition of the existing improvements may be crushed and reused within the fill materials. These materials are considered suitable, provided they are processed and mixed with onsite soils to meet the gradation recommendations provided above. However, AC materials may not be reused within the engineered fills placed beneath a building pad. Retaining wall backfill material should also consist of select fill soils as defined in Table 6. To reduce the potential of importing contaminated materials to the site, prior to delivery, soil materials obtained from off-site sources shall be sampled and tested in compliance with California EPA Department of Toxic Substances Control “Information Advisory, Clean Imported Fill Material”, dated October 2001. Do not import soils that exhibit a known risk to human health, the environment, or both. 10.1.8 Fill Placement and Compaction Prior to placement of compacted fill, the contractor should request an evaluation of the exposed ground surface by Ninyo & Moore. Unless otherwise recommended, the exposed ground surface should then be scarified to a depth of approximately 8 inches and watered or dried, as needed, to achieve moisture contents generally above the optimum moisture content. The scarified materials should then be compacted to a relative compaction of 90 percent as evaluated in accordance with ASTM D 1557. The evaluation of compaction by the geotechnical consultant should not be considered to preclude any requirements for observation or approval by governing agencies. It is the contractor's responsibility to notify this office and the appropriate governing agency when project areas are ready for observation, and to provide reasonable time for that review. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 17 Fill materials should be moisture conditioned to generally above the laboratory optimum moisture content prior to placement. The optimum moisture content will vary with material type and other factors. Moisture conditioning of fill soils should be generally consistent within the soil mass. Prior to placement of additional compacted fill material following a delay in the grading operations, the exposed surface of previously compacted fill should be prepared to receive fill. Preparation may include scarification, moisture conditioning, and recompaction. Compacted fill should be placed in horizontal lifts of approximately 8 inches in loose thickness. Prior to compaction, each lift should be watered or dried as needed to achieve a moisture content generally above the laboratory optimum, mixed, and then compacted by mechanical methods, to a relative compaction of 90 percent as evaluated by ASTM D 1557. Successive lifts should be treated in a like manner until the desired finished grades are achieved. The upper 12 inches of the subgrade and aggregate base materials underneath the pavements should be compacted to a relative compaction of 95 percent relative density as evaluated by the current version of ASTM D 1557. 10.1.9 Pipe Bedding Pipe bedding should be constructed in general accordance with the “Greenbook” Standard Specifications. We recommend that utility lines be supported 6 inches or more of granular bedding material such as sand with a sand equivalent value of 30 or more in accordance with ASTM D 2419. Bedding material should be placed and compacted around the pipe, and 12 inches or more above the top of the pipe. We do not recommend the use of crushed rock for bedding material. It has been our experience that the voids within a crushed rock material are sufficiently large enough to allow fines to migrate into the voids, thereby creating the potential for sinkholes and depressions to develop at the ground surface. Special care should be taken not to allow voids beneath and around the pipe. Bedding material and compaction requirements should be in accordance with the recommendations of this report, the project specifications, and applicable requirements of the appropriate agencies. Compaction of the bedding material and backfill should proceed evenly up both sides of the pipe and be compacted to 90 percent or more relative compaction as evaluated by ASTM D 1557. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 18 10.1.10 Lateral Pressures for Thrust Blocks Thrust restraint for buried pipelines may be achieved by transferring the thrust force to the soil outside the pipe through a thrust block. Thrust blocks may be designed using the magnitude and distribution of passive lateral earth pressures presented on Figure 8. Thrust blocks should be backfilled with granular backfill material and compacted following the recommendations presented in this report. 10.1.11 Modulus of Soil Reaction The modulus of soil reaction is used to characterize the stiffness of soil backfill placed at the sides of buried pipelines for the purpose of evaluating deflection caused by the weight of the backfill above the pipe. A soil reaction modulus of 1,000 pounds per square inch (psi) may be used for excavation depths up to 5 feet and 1,400 psi may be used for excavation depths more than 5 feet and backfilled with granular soil and compacted to 90 percent based on ASTM D 1557. 10.2 Seismic Design Considerations Design of the proposed improvements should be performed in accordance with the requirements of governing jurisdictions and applicable building codes. Table 7 presents the seismic design parameters for the sites in accordance with CBC (2016) guidelines and adjusted MCER spectral response acceleration parameters (SEAOC/OSHPD, 2019). Table 7 – 2016 California Building Code Seismic Design Criteria Site Coefficients and Spectral Response Acceleration Parameters Values Site Class D Site Coefficient, Fa 1.171 Site Coefficient, Fv 1.762 Mapped Spectral Response Acceleration at 0.2-second Period, Ss 0.822g Mapped Spectral Response Acceleration at 1.0-second Period, S1 0.319g Spectral Response Acceleration at 0.2-second Period Adjusted for Site Class, SMs 0.963g Spectral Response Acceleration at 1.0-second Period Adjusted for Site Class, SM1 0.562g Design Spectral Response Acceleration at 0.2-second Period, SDs 0.642g Design Spectral Response Acceleration at 1.0-second Period, SD1 0.375g 10.3 Site-Specific Ground Response Analysis We have performed a site-specific ground response analysis in accordance with Section 1616A.1.3 of the California Building Code (CBC, 2016) and Section 21 of American Society of Civil Engineers (ASCE) Standard 7-10 (ASCE, 2010). The analysis consisted of a review of available seismologic information for nearby faults and performance of probabilistic and deterministic seismic hazard analyses to provide an acceleration response spectrum (ARS) to model building response to seismic ground shaking for design of the proposed structure. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 19 We conducted a probabilistic seismic hazard analysis to evaluate the horizontal ground motion with a recurrence interval of approximately 2,500 years or a 2 percent probability of exceedance in 50 years, also known as the ground motion associated with the Maximum Considered Earthquake (MCE). We conducted our analysis using the hazard spectrum calculator program OpenSHA (Field, et al., 2003) and the online database of fault locations, rupture areas, and recurrence intervals (Cao, et al., 2003). We considered several attenuation relationships in our analysis to model spectral response acceleration at the site and selected the relationships by Chiou & Young (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) in evaluating the probabilistic MCE ARS. We conducted a deterministic seismic hazard analysis to evaluate ground shaking wherein we computed the 5 percent damped, median ARS for characteristic earthquakes acting individually on known active faults within the region. In our analysis, we used the National Seismic Hazard Maps - Fault Parameters tool (USGS, 2019) to evaluate the fault to site distance for the database of fault locations and magnitude published by the USGS/CGS (Cao et al., 2003). We found that the ARS at the site for a moment magnitude 6.8 earthquake event on the Rose Canyon fault (approximately 17.5 kilometers southwest of the site) exceeds the ARS at the site due to seismic events on other regional faults using published estimates of earthquake magnitude (Cao et al., 2003). We considered several attenuation relationships and modeled the MCE ground motion for a magnitude 6.8 event on the Rose Canyon fault. In accordance with Section 21.2.2 of ASCE 7-10, we constructed the deterministic MCE ground motion from the largest scaled median spectral response acceleration at each period evaluated and the lower limit specified in Section 21.2.2. The site-specific design ARS is presented on Figure 9. In accordance with Section 21.2.3 of ASCE 7-10, the site-specific design ARS is the lesser of the probabilistic and deterministic MCE ARS at each period evaluated reduced by a factor of one-third. The design ARS for a Site Class D computed in accordance with Section 1613A of the CBC and Section 11.4.5 of ASCE 7-10 is presented on Figure 9 for comparison. The site-specific design ARS presented on Figure 9 meets or exceeds 80 percent of the design ARS for a Site Class D in accordance with Section 21.3 of ASCE 7-10. The spectral ordinates for the site-specific design ARS are tabulated on Figure 9. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 20 10.4 Foundations Based on our understanding that the proposed Acadia San Diego Medical Facility building will be a single-story structure of slab-on-grade construction, we are providing the following preliminary foundation recommendations. The proposed building may be supported on shallow, spread, or continuous footings bearing on compacted fill prepared, observed, and tested in accordance with the recommendations presented in this report. Foundations should be designed in accordance with structural considerations and the following recommendations. In addition, requirements of the appropriate governing jurisdictions and applicable building codes should be considered in the design of the structures. 10.4.1 Spread Footings Shallow, spread, or continuous footings, bearing on 3 feet of compacted select fill materials may be designed using an allowable bearing capacity of 2,500 pounds per square foot (psf). The allowable bearing capacity may be increased by one-third when considering loads of short duration such as wind or seismic forces. The allowable bearing capacity is based on a factor of safety of roughly three. Spread footings should be founded 24 inches below the lowest adjacent grade. Continuous footings should have a width of 15 inches and isolated footings should be 24 inches in width. The allowable bearing capacity recommended above can also be increased by 450 psf for each additional foot of embedment and 150 psf for each additional foot of width to a value of up to 3,500 psf for footings bearing within compacted fill. The spread footings should be reinforced in accordance with the recommendations of the project structural engineer. 10.4.2 Lateral Resistance For resistance of footings to lateral loads, bearing on compacted fill, we recommend an allowable passive pressure of 300 psf of depth be used with a value of up to 3,000 psf. This value assumes that the ground is horizontal for a distance of 10 feet, or three times the height generating the passive pressure, whichever is greater. We recommend that the upper 1 foot of soil not protected by pavement or a concrete slab be neglected when cal- culating passive resistance. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 21 For frictional resistance to lateral loads, we recommend a coefficient of friction of 0.35 be used between soil and concrete. The allowable lateral resistance can be taken as the sum of the frictional resistance and passive resistance provided the passive resistance does not exceed one-half of the total allowable resistance. The passive resistance values may be increased by one-third when considering loads of short duration such as wind or seismic forces. 10.4.3 Static Settlement We estimate that the proposed structures, designed and constructed as recommended herein, and founded in compacted fill will undergo total settlement on the order of 1 inch. Differential settlement on the order of ½ inch over a horizontal span of 40 feet should be expected. 10.5 Slabs-On-Grade We recommend that conventional, slab-on-grade floors, underlain by 5 feet or more of compacted fill materials of very low to low expansion potential, be 5 inches in thickness and be reinforced with No. 4 reinforcing bars spaced 18 inches on center each way. The reinforcing bars should be placed near the middle of the slab. As a means to help reduce shrinkage cracks, we recommend that the slabs be provided with control joints at intervals of approximately 12 feet each way. The slab reinforcement and expansion joint spacing should be designed by the project structural engineer. If moisture sensitive floor coverings are to be used, we recommend that slabs be underlain by a vapor retarder and capillary break system consisting of a 15-mil polyethylene (or equivalent) membrane (installed per the manufacturers recommendations) placed over 4 inches of medium to coarse, clean sand or pea gravel. The exposed subgrade should be moistened just prior to the placement of concrete. 10.6 Retaining Walls We understand that retaining walls may be constructed as part of the project. For the design of a yielding retaining wall that is not restrained against movement by rigid corners or structural connections, an active pressure represented by an equivalent fluid weight of 75 pounds per cubic foot (pcf) may be assumed for 2:1 (horizontal to vertical) backfill and 45 pcf for level backfill as shown on Figure 10. Restrained walls (non-yielding) may be designed for at-rest pressure represented by an equivalent fluid weight of 95 pcf for 2:1 (horizontal to vertical) backfill and 65 pcf for level backfill. Should dynamic earth pressures be considered in the design, a triangular pressure distribution with a magnitude of 17H pcf may be used. These Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 22 pressures do not include surcharge loads. The designer should evaluate the surcharge pressures from the buildings, traffic, and other structures. These pressures assume low- expansive, granular retaining wall backfill material as defined in the Materials for Fill section of this report. Wall backfill should be moisture conditioned and compacted to a relative compaction of 90 percent at a moisture content near the optimum as evaluated by ASTM D 1557. A drain should be provided behind the wall as shown on Figure 11. The drain should be connected to an appropriate outlet. 10.7 Exterior Flatwork Exterior concrete flatwork should be 5 inches in thickness and should be reinforced with No. 3 reinforcing bars placed at 24 inches on-center both ways. Exterior slabs should be underlain by 4 inches of clean sand, which is in turn underlain by a 1-foot thickness of select fill (as discussed in Section 10.1.4). A vapor retarder is not needed for exterior flatwork. To reduce the potential manifestation of distress to exterior concrete flatwork due to movement of the underlying soil, we recommend that such flatwork be installed with crack-control joints at appropriate spacing as designed by the structural engineer. Before placement of concrete, the subgrade soils should be scarified to a depth of 8 inches, moisture conditioned to generally above the laboratory optimum moisture content, and compacted to a relative compaction of 90 percent as evaluated by ASTM D 1557. Positive drainage should be established and maintained adjacent to flatwork. 10.8 Corrosion The corrosion potential of the site soils was evaluated based on laboratory testing of a representative sample of the upper soils obtained from our exploratory boring B-6 and test pits TP-2 and TP-9. Laboratory testing was performed to evaluate pH, electrical resistivity, chloride, and sulfate content. The soil pH and minimum resistivity tests were performed in accordance with California Test Method (CT) 643. The test for chloride content of the soils was performed using CT 422. Sulfate testing was performed in general accordance with CT 417. The laboratory results are presented in Appendix B. The soil pH was measured to range from approximately 8.3 to 9.0 and the electrical resistivity ranged from approximately 700 to 1,000 ohm-cm. The chloride contents of the samples ranged from approximately 30 parts per million (ppm) to 1035 ppm. The sulfate contents of the tested samples ranged from approximately 0.001 to 0.004 (10 to 40 ppm). Based on the laboratory test results and Caltrans (2018) corrosion criteria, the onsite samples would be classified as Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 23 corrosive, which is defined as having earth materials with more than 500 ppm chlorides, more than 0.15 percent sulfates (i.e., 1,500 ppm), an electrical resistivity of 1,100 ohm-cm or less, or a pH of 5.5 or less. If corrosion susceptible improvements are planned on site, we recommend that a corrosion engineer be consulted for further evaluation and recommendations. 10.9 Concrete Concrete in contact with soil or water that contains high concentrations of soluble sulfates can be subject to chemical deterioration. Laboratory testing indicated the sulfate contents of the samples tested were approximately 0.001 to 0.004 percent. Based on ACI 318 criteria, the potential for sulfate attack is negligible for water-soluble sulfate contents in soils ranging from about 0.00 to 0.10 percent by weight. Therefore, the site soils may be considered to have a negligible potential for sulfate attack. However, due to the potential variability of site soils, consideration should be given to using Type II/V cement for normal weight concrete in contact with soil. In order to reduce the potential for shrinkage cracks in the concrete during curing, we recommend that the concrete for the proposed improvements be placed with a slump of 4 inches based on ASTM C 143. The slump should be checked periodically at the site prior to concrete placement. We further recommend that concrete cover over reinforcing steel for foundations be provided in accordance with CBC (2016). The structural engineer should be consulted for additional concrete specifications. 10.10 Preliminary Pavement Recommendations We understand that new pavements will be constructed on site. New pavement sections were evaluated based on the encountered subgrade soil conditions and our laboratory testing. Laboratory testing of representative soil samples were performed and indicated R-values ranging from approximately 35 and 39 for the on-site subgrade soils. For preliminary design purposes, an R-value of 30 was used for the evaluation of preliminary pavement structural sections. Actual pavement recommendations should be based on R value tests performed on bulk samples of the soils exposed at the finished subgrade elevations once grading operations have been performed. It is anticipated that traffic conditions will consist of relatively light passenger vehicles, maintenance/service vehicles, as well as occasional emergency vehicles. As such, our evaluation of pavement structural sections utilized assumed Traffic Ind ices (TIs) of 5, 6, and 7. Our pavement analysis was performed using the methodology outlined by the Highway Design Manual (Caltrans, 2017). The analysis assumes an approximate 20-year design life for new Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 24 pavements. Based on the design R value and assumed TIs, our calculated pavement structural section is provided in Table 7. Table 8 – Preliminary Pavement Recommendations Traffic Index Design R-Value Asphalt Concrete (inches) Caltrans 2 Aggregate Base (inches) 5 30 3.0 6.0 6 30 3.5 7.5 7 30 4.0 9.5 As indicated, the above pavement structural sections assume traffic indices of 7.0 or less for site pavements. If traffic loads are different from those assumed, the pavement design should be re-evaluated. In addition, we recommend that the upper 12 inches of the subgrade and aggregate base materials be compacted to a relative compaction of 95 percent as evaluated by the current version of ASTM D 1557. We suggest that consideration be given to using Portland cement concrete pavements in areas where dumpsters will be stored and where refuse trucks will stop and load. Experience indicates that refuse truck traffic can significantly shorten the useful life of asphalt concrete sections. We recommend that in these areas, 6 inches of 600 psi flexural strength Portland cement concrete reinforced with No. 3 bars, 18 inches on center, be placed over 6 inches or more of Class 2 aggregate base compacted to a relative compaction of 95 percent (based on ASTM D 1557), placed over 1 or more feet of very low to low expansion potential fill materials compacted to the recommendations presented herein. The above section may also be used for fire lane PCC pavements. For light duty vehicle pavements, we recommend 5 inches of PCC over 4 inches of aggregate base. 10.11 Drainage Roof, pad, and slope drainage should be conveyed such that runoff water is diverted away from slopes and structures to suitable discharge areas by nonerodible devices (e.g., gutters, downspouts, concrete swales, etc.). Positive drainage adjacent to structures should be established and maintained. Positive drainage may be accomplished by providing drainage away from the foundations of the structure at a gradient of 2 percent or steeper for a distance of 5 feet or more outside building perimeters, and further maintained by a graded swale leading to an appropriate outlet, in accordance with the recommendations of the project civil engineer and/or landscape architect. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 25 Surface drainage on the site should be provided so that water is not permitted to pond. A gradient of 2 percent or steeper should be maintained over the pad area and drainage patterns should be established to divert and remove water from the site to appropriate outlets. Care should be taken by the contractor during grading to preserve any berms, drainage terraces, interceptor swales or other drainage devices of a permanent nature on or adjacent to the property. Drainage patterns established at the time of grading should be maintained for the life of the project. The property owner and the maintenance personnel should be made aware that altering drainage patterns might be detrimental to foundation performance. 11 CONSTRUCTION OBSERVATION The recommendations provided in this report are based on our understanding of the proposed project and our evaluation of the data collected based on subsurface conditions observed in our exploratory borings. It is imperative that the geotechnical consultant checks the subsurface conditions during construction. During construction, we recommend that the duties of the geotechnical consultant include, but not be limited to: • Observing clearing, grubbing, and removals. • Observing excavation bottoms and the placement and compaction of fill, including trench backfill. • Evaluating imported materials, if any, prior to their use as fill. • Performing field tests to evaluate fill compaction. • Observing foundation excavations for bearing materials and cleaning prior to placement of reinforcing steel or concrete. • Performing material testing services including concrete compressive strength and steel tensile strength tests and inspections. The recommendations provided in this report are based on the assumption that Ninyo & Moore will provide geotechnical observation and testing services during construction. In the event that the services of Ninyo & Moore are not utilized during construction, we request that the selected consultant provide the owner with a letter (with a copy to Ninyo & Moore) indicating that they fully understand Ninyo & Moore’s recommendations, and that they are in full agreement with the design parameters and recommendations contained in this report. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 26 12 LIMITATIONS The field evaluation, laboratory testing, and geotechnical analyses presented in this geotechnical report have been conducted in general accordance with current practice and the standard of care exercised by geotechnical consultants performing similar tasks in the project area. No warranty, expressed or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be encountered during construction. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface evaluation will be performed upon request. Please also note that our evaluation was limited to assessment of the geotechnical aspects of the project, and did not include evaluation of structural issues, environmental concerns, or the presence of hazardous materials. This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended for design purposes only. It does not provide sufficient data to prepare an accurate bid by contractors. It is suggested that the bidders and their geotechnical consultant perform an independent evaluation of the subsurface conditions in the project areas. The independent evaluations may include, but not be limited to, review of other geotechnical reports prepared for the adjacent areas, site reconnaissance, and additional exploration and laboratory testing. Our conclusions, recommendations, and opinions are based on an analysis of the observed site conditions. If geotechnical conditions different from those described in this report are encountered, our office should be notified, and additional recommendations, if warranted, will be provided upon request. It should be understood that the conditions of a site could change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 27 This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties’ sole risk. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 28 13 REFERENCES Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models, report prepared for Brookhaven National Laboratory, New York, NY, 144 p. American Concrete Institute (ACI), 2016, ACI Manual of Concrete Practice. American Society of Civil Engineers (ASCE), 2010, Minimum Design Loads for Building and other Structures, Standard ASCE/SEI 7-10. ASTM International (ASTM), 2016, Annual Book of ASTM Standards, West Conshohocken, Pennsylvania. Atik, Linda L. and Sitar, N., 2010, Seismic Earth Pressures on Cantilever Retaining Structures, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 10: dated October 1. Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., 2002, Recommended Procedures for Implementation of DMG Special Publication 117-Guidelines for Analyzing and Mitigating Landslide Hazards in California: Committee Organized Through the ASCE, Los Angeles Section Geotechnical Group, Document Published by the Southern California Earthquake Center, 101p. Bowles, J.E., 1996, Foundation Analysis and Design, Fifth Edition, The McGraw-Hill Companies, Inc. Boore, D. M., Atkinson, G. M., 2008, Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s, Earthquake Spectra, Volume 24, Issue 1. Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified Seismic Design Procedure for Geosynthetic-Lined Solid Waste Landfills: Geosynthetics International, V.5, No. 1-2, pp. 203-235. Building News, 2018, “Greenbook,” Standard Specifications for Public Works Construction: BNI Publications. Building Seismic Safety Council, 2009, National Earthquake Hazards Reduction Program (NEHRP) Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P -750). California Building Standards Commission, 2016, California Building Code (CBC): California Code of Regulations. California Department of Transportation (Caltrans), 2017, Highway Design Manual, Chapter 630-Flexible Pavement: dated November 20. California Department of Transportation (Caltrans), 2018, Corrosion Guidelines (Version 3.0), Division of Engineering and Testing Services, Corrosion Technology Branch: dated March. California Geological Survey (CGS), 2008a, Guidelines for Evaluating and Mitigating Seismic Hazards in California, CGS Special Publication 117A. California Geological Survey (CGS), 2008b (revised), Earthquake Shaking Potential for California: Map Sheet 48. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 29 California Geological Survey (CGS), 2018, California Earthquake History and Catalogs – Downloadable California Earthquake Catalogs, http://www.conservation.ca.gov/cgs/rghm/quakes: accessed in March. Campbell, K.W., 1997, Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo- Absolute Acceleration Response Spectra, Seismological Research Letters, Volume 68, Number 1, pp. 154-179. Campbell, K.W., and Bozorgnia, Y., 2008, NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10 s, Earthquake Spectra Volume 24, Issue 1, pp. 139-172: dated February. Cao, T., Bryant, W. A., Rowshandel, B., Branum, D., and Willis, C. J., 2003, The Revised 2002 California Probabilistic Seismic Hazards Maps: California Geological Survey: dated June. Chiou, B. S.-J., and Youngs, R.R., 2008, An NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra, Earthquake Spectra Volume 24, Issue 1, pp. 173-216: dated February. City of Chula Vista, 2005, General Plan, Chapter 9 – Environmental Element: updated December 13. City of Chula Vista, 2017, BMP Design Manual, For Permanent Site Design, Storm Water Treatment and Hydromodification Management: updated May. Geotechnics Incorporated, 2003, As-Graded Geotechnical Report, Eastlake Business Center (Phase 2), Chula Vista Tract No. 00-02, Chula Vista, California: dated March 10. Google Earth, 2019, http://earth.google.com. Gregory, G.H., 2019, Geostase, Slope Stability Analyses Software, Version 2.7: dated January. Harden, D.R., 2004, California Geology, Second Edition: Prentice Hall, Inc. Hart, E.W., and Bryant, W.A., 1997, Fault-Rupture Hazard Zones in California, Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zones Maps: California Department of Conservation, California Geological Survey, Special Publication 42, with Supplement 1 added in 2012, Supplement 2 added in 2014, Supplement 3 added in 2015, and Supplement 4 added in 2016. Historical Aerials, 2019, Website for Viewing Aerial Photographs, www.historicaerials.com. Ishihara, K. (1985). “Stability of natural deposits during earthquakes,” Proceedings of the 11th Int. Conference of Soil Mechanics and Foundation Engineering, San Francisco, CA, Vol. 1, 321-376. Jennings, C.W., and Bryant, W.A., 2010, Fault Activity Map: California Geological Survey, California Geologic Data Map Series, Map No. 6, Scale 1:750,000. Mononobe, N. and Matsuo, H., 1929, On the Determination of Earth Pressure during Earthquakes, Proceedings of the World Engineering Conference, No. 9. Ninyo & Moore, 2006, Geotechnical Evaluation, Eastlake Design Center II, Showroom Place and Fenton Street, Chula Vista, California, Project 105627001: dated February 24, revised August 28. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 30 Ninyo & Moore, 2018, Proposal for Geotechnical Evaluation, Proposed Acadia San Diego Medical Facility, 830 Showroom Place, Chula Vista, California: dated November 15. Norris, R.M., and Webb, R.W., 1990, Geology of California, Second Edition: John Wiley & Sons. Okabe, S., 1926, General Theory of Earth Pressures, Journal of Japan Society of Civil Engineering, Vol. 12, No. 1. SEAOC/OSHPD, 2019, Seismic Design Maps, https://seismicmaps.org/: accessed February. Stewart, J.P., Blake, T.F. and Hollingsworth, R.A., 2003, A Screen Analysis Procedure for Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp. 697-712. SWA Architects, 2018, Site Plan, Acadia San Diego, Chula Vista, California 91914, Sheet No. T.001: dated August 13. Tan, S.S., 1992, Landslide Hazards in the Jamul Mountains Quadrangle, San Diego County, California, California Geologic Survey Open File Report 92-12, Scale 1:24,000. Todd, V.R., 2004, Preliminary Geologic Map of the El Cajon 30’ X 60’ Quadrangle, Southern California, Version 1.0, United States Geologic Survey, Open File Report 2004-1361. United States Department of Agriculture (USDA), Aerial Photographs, Date 4-14-53, Flight AXN-9M, Numbers 59 and 60, Scale 1:20,000. United States Federal Emergency Management Agency (FEMA), 2012, Flood Insurance Rate Map (FIRM), No. 06073C1939G: dated May 16. United States Geological Survey (USGS), 2018, Jamul Mountains, California Quadrangle Map, 7.5-Minute Series: Scale 1:24,000. United States Geological Survey (USGS), 2019, 2008 National Seismic Hazard Maps - Fault Parameters website, https://earthquake.usgs.gov/cfusion/hazfaults_2008_search/query_main.cfm. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H., II., 2001, Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils, Journal of Geotechnical and Geoenvironmental Engineering: American Society of Civil Engineering 124(10), pp. 817-833. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 31 Appendix A Photographic Documentation FIGURES Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 SITE "!o 0 1,500 3,000 FEET MAP INDEX S a n D i e g oCounty 1_108727001_SL.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. | SOURCE: ESRI WORLD TOPO, 2017 SITE LOCATION PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE 1ShowroomPl ED ED ED ED ED ED ED ED ED ED ED ED ED ED @A @A @A @A @A @A @A @A @?@? @?@? @? @?@? @? LEGEND SITE BOUNDARY 2_108727001_EL.mxd 3/6/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. | SOURCE: GOOGLE EARTH, 2017 EXPLORATION LOCATIONS - AERIAL PLAN FIGURE 2 !o 0 150 300 FEET @A B-8TD=15.4 BORINGTD=TOTAL DEPTH IN FEET @?IT-8TD=5.0 TP-14TD=3.0 TEST PITTD=TOTAL DEPTH IN FEETED INFILTRATION TESTTD=TOTAL DEPTH IN FEET 108727001 | 3/19 TP-14TD=3.0 B-8TD=15.4 IT-8TD=5.0 TP-13TD=3.0 TP-12TD=7.0 TP-11TD=6.0 TP-10TD=6.0 TP-9TD=5.0 TP-8TD=6.0 TP-7TD=6.0 TP-6TD=6.0 TP-5TD=6.0 TP-4TD=5.0 TP-3TD=5.0 TP-2TD=7.0 TP-1TD=8.0 IT-7TD=5.0 IT-1TD=5.0 IT-2TD=5.0 IT-4TD=5.0 IT-3TD=5.0 IT-6TD=5.0 IT-5TD=5.0 B-7TD=15.8 B-6TD=25.8 B-5TD=25.3 B-4TD=25.4 B-3TD=35.8 B-2TD=35.3 B-1TD=46.0 PROPOSED BUILDING FOOTPRINT PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA BUILDING LOADING DOCK SIDEWALK B B' A A' C C' EXPLORATION LOCATIONS - SITE PLAN FIGURE 3 NOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0 FEET 150 300 N B-8 TD=15.4 BORING TD=TOTAL DEPTH IN FEET LEGEND 3 108727001 ELSP.DWG AOBPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 Geotechnical & Environmental Sciences Consultants IT-8 TD=5.0 BORING TD=TOTAL DEPTH IN FEET TP-14 TD=3.0 BORING TD=TOTAL DEPTH IN FEET IT-4 TD=5.0 B-1 TD=46.0 B-2 TD=35.3 B-3 TD=35.8 B-4 TD=25.4 B-5 TD=25.3 B-6 TD=25.8 B-7 TD=15.8 B-8 TD=15.4 IT-1 TD=5.0 IT-2 TD=5.0 IT-3 TD=5.0 IT-5 TD=5.0 IT-6 TD=5.0 IT-7 TD=5.0 IT-8 TD=5.0 TP-1 TD=8.0 TP-2 TD=7.0 TP-3 TD=5.0 TP-4 TD=5.0 TP-5 TD=6.0 TP-6 TD=6.0 TP-7 TD=6.0TP-8 TD=6.0 TP-9 TD=5.0 TP-10 TD=6.0 TP-11 TD=6.0 TP-12 TD=7.0 TP-13 TD=3.0 TP-14 TD=3.0 SITE BOUNDARY GEOLOGIC CROSS SECTIONCC' SITE BOUNDARY PROPOSED BUILDING FOOTPRINT M E X I C OUSA P a c i f i c O c e a n NEVADA CALIFORNIA S A N JACINTO ELSIN O RE I M P E R I A L WHITTIER N E W P O RT-INGLE W OOD C O R O N A D O B A N K S A N D I E G O T R O U G H S A N CLE M E NTE S A N T A C R UZ-SANTACATALINARIDGE P A L O S VERDES OFFSHORE ZONE OF DEFOR MATIONGARLOCKCLEARWATER S A N GABRIEL SIERRAMADRE B AN NING MISSION CREEK B L A C K W A T E RHARPER LOCKHART L E N W O O D CAMP R OC K C ALIC O LUDLOW P I S GAHBULLIO N M O U N T A I N J O H N S O N VALLEY E M E R S O N P IN T O M O U N TA INMANIX MIRAGEVALLEY NORTHHELE N D ALE FRONTAL C HIN O S A N J O S ECUCAMO N G A MALIBU C O A S T SA N T A M ONICA SA NCAYETANO SANTASUSAN ASANTA R O S A N O R T H R ID G E C H A R N O C K S A W P IT C A N Y O N SUPERSTITION HIL L S R O S E C ANYONPINEMOUNTAIN W HITEW OLFSAN ANDREAS FAULT ZONEPLEITOWHEELER POSO CREEK B L UE C U T S A L T O N C R E E K SAN ANDREAS FAULT ZONECOYOTE CREEK CLARK GLEN IVY EARTHQUAKE VALLEY ELMORERANCHLA G U N A S A LA D ABRAWLEY SEI SMI CZ ONES a n B e r n a r d i n o C o u n t y K e r n C o u n t y R i v e r s i d e C o u n t y S a n D i e g o C o u n t y I m p e r i a l C o u n t y L o s A n g e l e s C o u n t y I n y o C o u n t yTulare C o u n t y V e n t u r a C o u n t y O r a n g e C o u n t y C A L I F O R N I A HOLOCENE ACTIVE CALIFORNIA FAULT ACTIVITY HISTORICALLY ACTIVE LATE QUATERNARY (POTENTIALLY ACTIVE)STATE/COUNTY BOUNDARY QUATERNARY (POTENTIALLY ACTIVE) SOURCE: U.S. GEOLOGICAL SURVEY AND CALIFORNIA GEOLOGICAL SURVEY, 2006,QUATERNARY FAULT AND FOLD DATABASE FOR THE UNITED STATES. SITE "4_108727001_FL.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. FAULT LOCATIONS FIGURE 4 !o 0 30 60 MILES LEGEND ! 108727001 | 3/19 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA SITE "REFERENCE: TODD, V.R., 2004, PRELIMINARY GEOLOGIC MAP OF THE EL CAJON 30 X 60-MINUTEQUADRANGLE, SOUTHERN CALIFORNIA 5_108727001_G.mxd 3/1/2019 AOBNOTE: DIRECTIONS, DIMENSIONS AND LOCATIONS ARE APPROXIMATE. GEOLOGY FIGURE 5 !o 0 2,000 4,000 FEET Tf Ksp Ksp Qya LEGEND_______________________________ TERRACE DEPOSITS SANTIAGO PEAK VOLCANICSKsp YOUNG ALLUVIUM "" """ "" " " " "" "" " "Qya FANGLOMERATETf OTAY FORMATIONTo STRIKE AND DIP OF BEDS5 " " """ " " " " " "" " " " " Qt 108727001 | 3/19 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA GEOLOGIC CROSS SECTION A-A'FIGURE 6ANOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006A 108727001 CS A-A'.DWGGeotechnical & Environmental Sciences Consultants720680AMATCHLINE, SEE BELOW ELEVATION (FEET, MSL)760640ELEVATION (FEET, MSL)720680760640600PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19PROPOSEDBUILDINGAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGQafToTP-3TD=5.0'TP-2TD=7.0'TP-1TD=8.0'QafTo????????????LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?TP-3TD=5.0'TEST PITTD=TOTAL DEPTH IN FEET??????????KEY PERGEOTECHNICS (2003)GEOTECHNICS, 2003.MATCHLINE, SEE ABOVE WESTA'WESTB-1TD=46.0'B-1TD=46.0'BORINGTD=TOTAL DEPTH IN FEET? GEOLOGIC CROSS SECTION B-B'FIGURE 6BNOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006B 108727001 CS B-B'.DWGGeotechnical & Environmental Sciences Consultants720680ELEVATION (FEET, MSL)760640ELEVATION (FEET, MSL)720680760640600PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?B-7TD=15.8'BORINGTD=TOTAL DEPTH IN FEETGEOTECHNICS, 2003.TP-10TD=6.0'TP-11TD=6.0'TP-12TD=7.0'B-7TD=15.8'B-4TD=25.4'B-3TD=35.8'APPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGPROPOSEDBUILDINGPROPOSEDBUILDINGAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGKEY PERGEOTECHNICS (2003)QafToQafQafTo??????????????????????????STABILITY FILL PERGEOTECHNICS (2003)TP-12TD=7.0'TEST PITTD=TOTAL DEPTH IN FEETMATCHLINE, SEE ABOVE MATCHLINE, SEE BELOW BWESTB'WEST GEOLOGIC CROSS SECTION C-C'FIGURE 6CNOTE: DIMENSIONS, DIRECTIONS AND LOCATIONS ARE APPROXIMATE. I REFERENCE: SWA ARCHITECTS, 2018.0FEET408006C 108727001 CS C-C'.DWGGeotechnical & Environmental Sciences Consultants720680ELEVATION (FEET, MSL)760640PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA108727001 I 3/19LEGENDQafFILLToOTAY FORMATIONGEOLOGIC CONTACT,QUERIED WHERE UNCERTAIN?GEOTECHNICS, 2003.TP-12TD=7.0'TEST PITTD=TOTAL DEPTH IN FEETELEVATION (FEET, MSL)720680760640CSOUTHTP-12TD=7.0'TP-2TD=7.0'TP-5TD=6.0'TP-6TD=6.0'C'NORTHAPPROXIMATELIMITS OF PROPOSEDREMEDIAL GRADINGPROPOSEDBUILDINGToQaf pP D H Pa NOTES: ACTIVE LATERAL EARTH PRESSURE, P P = 45 H psf 1. 3. P = 300 D psf PASSIVE LATERAL EARTH PRESSURE, P 5.H AND D ARE IN FEET a a p p SHORING Ps 2. s s P = 120 psf CONSTRUCTION TRAFFIC INDUCED SURCHARGE PRESSURE, P ASSUMES GROUNDWATER IS NOT PRESENT4. + LATERAL EARTH PRESSURES FOR TEMPORARY CANTILEVERED SHORING FIGURE 7 Geotechnical & Environmental Sciences Consultants7 108727001 D-CS.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 NOTES: GROUNDWATER BELOW BLOCK GROUNDWATER ABOVE BLOCK2. 1. P = 150p (D -d )2 2 lb/ft THRUST BLOCK d (VARIES) P Pp p D (VARIES) 3.ASSUMES BACKFILL IS GRANULAR MATERIAL 4.ASSUMES THRUST BLOCK IS ADJACENT TO COMPETENT MATERIAL 1 Pp2 pP = 1.3 ( D - d )[ 124.8h + 57.6 ( D+d )] GROUNDWATER TABLE6. D, d AND h ARE IN FEET5. h lb/ft THRUST BLOCK LATERAL EARTH PRESSURE DIAGRAM FIGURE 8 Geotechnical & Environmental Sciences Consultants8 108727001 D-TB.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 SDS = SD1 = NOTES: 1 In 50 years using Chiou & Youngs (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) attenuation relationships andthe risk coeff. 2 Deterministic ARS is 84th percentile of the median values from attenuation relationships by Chiou & Youngs (2008), Campbell & Bozorgnia (2008), and Boore & Atkinson (2008) for deep soils considering a Mw 6.8 event on the Rose Canyon fault located 17.5 kilometers from the site. It conforms with the lower bound limit per ASCE 7-10 Section 21.2.2 as modified by 2009 NEHRP Recommended Seismic Provisions. 3 Site-Specific MCER is the lesser of spectral ordinates of deterministic and probabilistic ARS at each period per ASCE 7-10 Section 21.2.3. Site-Specific Design Response Spectrum conforms with lower bound limit per ASCE 7-10 Section 21.3. 4 Mapped Design Response Spectrum is computed from mapped spectral ordinates modified for Site Class D (stiff soil profile) per ASCE 7-10 Section 11.4. It is presented for comparison. 0.553 0.091 7.500 0.054 0.400 0.543 0.250 0.552 10.000 0.0350.300 0.533 0.461 0.400 0.294 2.000 4.000 0.222 0.146 0.109 3.000 0.403 0.469 0.513 0.546 0.500 0.750 1.000 1.500 5.000 PERIOD (seconds) SITE-SPECIFIC DESIGN RESPONSE SPECTRUM Sa, (g) 0.075 0.100 0.150 0.200 0.235 0.258 0.284 0.337 0.010 0.020 0.030 0.050 PERIOD (seconds) SITE-SPECIFIC DESIGN RESPONSE SPECTRUM Sa, (g) 3/19108727001 9Acadia San Diego Medical Facility 830 Showroom Place Chula Vista, California 0.546 0.445 Probabilistic Ground Motion is for Risk-targeted Maximum Considered Earthquake (MCER) with ground motion having 2% probability of exceedance PGAM =0.321 0.0 0.5 1.0 012345678910SPECTRAL ACCELERATION, Sa (g)PERIOD, T (seconds) Mapped Design Response Spectrum Site-Specific Design Response Spectrum ACCELERATION RESPONSE SPECTRA PROJECT NO. DATE FIGURE Acadia 108727001_Site Specific Response ASCE 7-10 H+ APPP D PASSIVE PRESSURE ACTIVE PRESSURE DYNAMIC PRESSURE RESULTANT H/3 RESULTANT D/3 NOTES: ASSUMES NO HYDROSTATIC PRESSURE BUILD-UP BEHIND THE RETAINING WALL 1. STRUCTURAL, GRANULAR BACKFILL MATERIALS AS SPECIFIED IN SECTION 10.1.7 SHOULD BE USED 2. FOR RETAINING WALL BACKFILL BEHIND THE RETAINING WALL WALL DRAINAGE DETAIL SHOULD BE INSTALLED DRAINS AS RECOMMENDED IN THE RETAINING3. BASED ON A PEAK GROUND ACCELERATION OF 0.374g DYNAMIC LATERAL EARTH PRESSURE IS4. RECOMMENDED GEOTECHNICAL DESIGN PARAMETERS Equivalent Fluid Pressure (lb/ft /ft) Lateral Earth Pressure Level Backfill with Granular Soils 2 (1) (2)with Granular Soils 2H:1V Sloping Backfill (2) AP PP 300 D 120 D EP 45 H 75 H Level Ground 2H:1V Descending Ground 17 H H AND D ARE IN FEET7. SETBACK SHOULD BE IN ACCORDANCE WITH8. FIGURE 1808.7.1 OF THE IBC (2015) RETAINING WALL SURCHARGE PRESSURES CAUSED BY VEHICLES6. OR NEARBY STRUCTURES ARE NOT INCLUDED EP RESULTANT H/3 P IS CALCULATED IN ACCORDANCE WITH THE5. RECOMMENDATIONS OF MONONOBE AND MATSUO (1929), AND ATIK AND SITAR (2010). E LATERAL EARTH PRESSURES FOR YIELDING RETAINING WALLS FIGURE 10 Geotechnical & Environmental Sciences Consultants10 108727001 D-YRW.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 SOIL BACKFILL COMPACTED TO 90% RELATIVE COMPACTION * OUTLET 4-INCH-DIAMETER PERFORATED SCHEDULE 40 PVC PIPE OR EQUIVALENT INSTALLED WITH PERFORATIONS DOWN; 1% GRADIENT OR MORE TO A SUITABLE 3/4-INCH OPEN-GRADED GRAVEL WRAPPED IN AN APPROVED GEOFABRIC. 3 INCHES WALL FOOTING FINISHED GRADE RETAINING WALL 12 INCHES 12 INCHES VARIESGEOFABRIC *BASED ON ASTM D1557 RETAINING WALL DRAINAGE DETAIL FIGURE 11 Geotechnical & Environmental Sciences Consultants11 108727001 D-RW.DWGPROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 I 3/19 APPENDIX A Boring and Test Pit Logs Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 APPENDIX A BORING AND TEST PIT LOGS Field Procedure for the Collection of Disturbed Samples Disturbed soil samples were obtained in the field using the following methods. Bulk Samples Bulk samples of representative earth materials were obtained from the exploratory BORINGS AND TEST PITS. The samples were bagged and transported to the laboratory for testing. The Standard Penetration Test (SPT) Sampler Disturbed drive samples of earth materials were obtained by means of a Standard Penetration Test sampler. The sampler is composed of a split barrel with an external diameter of 2 inches and an unlined internal diameter of 1-3/8 inches. The sampler was driven into the ground 12 to 18 inches with a 140-pound hammer falling freely from a height of 30 inches in general accordance with ASTM D 1586. The blow counts were recorded for every 6 inches of penetration; the blow counts reported on the log are those for the last 12 inches of penetration. Soil samples were observed and removed from the sampler, bagged, sealed and transported to the laboratory for testing. Field Procedure for the Collection of Relatively Undisturbed Samples Relatively undisturbed soil samples were obtained in the field using the following method. The Modified Split-Barrel Drive Sampler The sampler, with an external diameter of 3 inches, was lined with 1-inch-long, thin brass rings with inside diameters of approximately 2.4 inches. The sample barrel was driven into the ground with the weight of a hammer in general accordance with ASTM D 3550. The driving weight was permitted to fall freely. The approximate length of the fall, the weight of the hammer, and the number of blows per foot of driving are presented on the boring logs as an index to the relative resistance of the materials sampled. The samples were removed from the sample barrel in the brass rings, sealed, and transported to the laboratory for testing. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 Soil Classification Chart Per ASTM D 2488 Primary Divisions Secondary Divisions Group Symbol Group Name COARSE- GRAINED SOILS more than 50% retained on No. 200 sieve GRAVEL more than 50% of coarse fraction retained on No. 4 sieve CLEAN GRAVEL less than 5% fines GW well-graded GRAVEL GP poorly graded GRAVEL GRAVEL with DUAL CLASSIFICATIONS 5% to 12% fines GW-GM well-graded GRAVEL with silt GP-GM poorly graded GRAVEL with silt GW-GC well-graded GRAVEL with clay GP-GC poorly graded GRAVEL with GRAVEL with FINES more than 12% fines GM silty GRAVEL GC clayey GRAVEL GC-GM silty, clayey GRAVEL SAND 50% or more of coarse fraction passes No. 4 sieve CLEAN SAND less than 5% fines SW well-graded SAND SP poorly graded SAND SAND with DUAL CLASSIFICATIONS 5% to 12% fines SW-SM well-graded SAND with silt SP-SM poorly graded SAND with silt SW-SC well-graded SAND with clay SP-SC poorly graded SAND with clay SAND with FINES more than 12% fines SM silty SAND SC clayey SAND SC-SM silty, clayey SAND FINE- GRAINED SOILS 50% or more passes No. 200 sieve SILT and CLAY liquid limit less than 50% INORGANIC CL lean CLAY ML SILT CL-ML silty CLAY ORGANIC OL (PI > 4)organic CLAY OL (PI < 4)organic SILT SILT and CLAY liquid limit 50% or more INORGANIC CH fat CLAY MH elastic SILT ORGANIC OH (plots on or above “A”-line)organic CLAY OH (plots below “A”-line)organic SILT Highly Organic Soils PT Peat USCS METHOD OF SOIL CLASSIFICATION Apparent Density - Coarse-Grained Soil Apparent Density Spooling Cable or Cathead Automatic Trip Hammer SPT (blows/foot) Modified Split Barrel (blows/foot) SPT (blows/foot) Modified Split Barrel (blows/foot) Very Loose < 4 < 8 < 3 < 5 Loose 5 - 10 9 - 21 4 - 7 6 - 14 Medium Dense 11 - 30 22 - 63 8 - 20 15 - 42 Dense 31 - 50 64 - 105 21 - 33 43 - 70 Very Dense > 50 > 105 > 33 > 70 Consistency - Fine-Grained Soil Consis-tency Spooling Cable or Cathead Automatic Trip Hammer SPT (blows/foot) Modified Split Barrel (blows/foot) SPT (blows/foot) Modified Split Barrel (blows/foot) Very Soft < 2 < 3 < 1 < 2 Soft 2 - 4 3 - 5 1 - 3 2 - 3 Firm 5 - 8 6 - 10 4 - 5 4 - 6 Stiff 9 - 15 11 - 20 6 - 10 7 - 13 Very Stiff 16 - 30 21 - 39 11 - 20 14 - 26 Hard > 30 > 39 > 20 > 26 LIQUID LIMIT (LL), %PLASTICITY INDEX (PI), %0 10 107 4 20 30 40 50 60 70 0 20 30 40 50 60 70 80 90 100 MH or OH ML or OLCL - ML Plasticity Chart Grain Size Description Sieve Size Grain Size Approximate Size Boulders > 12”> 12”Larger than basketball-sized Cobbles 3 - 12”3 - 12”Fist-sized to basketball-sized Gravel Coarse 3/4 - 3”3/4 - 3”Thumb-sized to fist-sized Fine #4 - 3/4”0.19 - 0.75”Pea-sized to thumb-sized Sand Coarse #10 - #4 0.079 - 0.19”Rock-salt-sized to pea-sized Medium #40 - #10 0.017 - 0.079”Sugar-sized to rock-salt-sized Fine #200 - #40 0.0029 - 0.017” Flour-sized to sugar-sized Fines Passing #200 < 0.0029”Flour-sized and smaller CH or OH CL or OL 0 5 10 15 20 XX/XX SM CL Bulk sample. Modified split-barrel drive sampler. No recovery with modified split-barrel drive sampler. Sample retained by others. Standard Penetration Test (SPT). No recovery with a SPT. Shelby tube sample. Distance pushed in inches/length of sample recovered in inches. No recovery with Shelby tube sampler. Continuous Push Sample. Seepage. Groundwater encountered during drilling. Groundwater measured after drilling. MAJOR MATERIAL TYPE (SOIL): Solid line denotes unit change. Dashed line denotes material change. Attitudes: Strike/Dip b: Bedding c: Contact j: Joint f: Fracture F: Fault cs: Clay Seam s: Shear bss: Basal Slide Surface sf: Shear Fracture sz: Shear Zone sbs: Shear Bedding Surface The total depth line is a solid line that is drawn at the bottom of the boring. BORING LOG Explanation of Boring Log Symbols PROJECT NO.DATE FIGUREDEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.BORING LOG EXPLANATION SHEET Updated Nov. 2011 BORING LOG 20 0 10 20 30 40 50/5" 50 77 62 50/5" 53 64 23.7 19.6 22.3 22.0 93.8 91.7 93.1 ML SM ML MH FILL:Light brown to gray, moist, stiff, sandy SILT; trace clay; scattered roots. Hard. Light brown to gray, very dense, silty fine to coarse SAND. Scattered fragments of siltstone and sandstone. Light brown to gray, moist, hard, sandy SILT. Gray; cohesionless. Scattered clay nodules. Brown to gray, moist, very stiff to hard, elastic SILT. BORING LOG FIGURE A- 1 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.B-1 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 40 50 60 70 80 40 50/5" 25.1 MH FILL: (Continued)Brown to gray, moist, hard, elastic SILT; strong organic/hydrocarbon odor; scattered fragments of siltstone and sandstone. OTAY FORMATION:Light gray, moist, strongly cemented, silty fine-grained SANDSTONE. Total Depth = 46 feet. (Refusal) Groundwater not encountered during drilling. Backfilled with approximately 16 cubic feet of bentonite cement grout shortly after drilling on 1/29/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 2 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.B-1 GROUND ELEVATION 710'  (MSL)SHEET 2 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 0 10 20 30 40 45 90/10" 51 50/5" 81 50/5" 50/4" 22.3 21.6 99.0 CL-ML ML FILL:Brown, moist, stiff, lean CLAY to SILT; scattered roots. Hard. Brown, moist, hard, SILT; scattered clay pockets. Scattered fragments of siltstone and sandstone. Organic odor. Dark brown. OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; slightly micaceous. Total Depth = 35.3 feet. Groundwater not encountered during drilling. Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling on 1/29/19. BORING LOG FIGURE A- 3 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.B-2 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 40 50 60 70 80 Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 4 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.B-2 GROUND ELEVATION 710'  (MSL)SHEET 2 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 0 10 20 30 40 57 40 90/11" 53 50/5" 64 50/4" 23.8 13.0 24.2 20.8 98.5 97.7 93.7 ML SM CL FILL:Light brown, moist, medium dense, fine sandy SILT; scattered roots; trace clay. Light brown, moist, medium dense, silty fine SAND. Dense; scattered fragments of siltstone and sandstone. Very dense; scattered clay nodules. Gray to brown, moist, hard, sandy CLAY. Organic odor; scattered fragments of siltstone and sandstone. OTAY FORMATION:Light gray, moist, moderately to strongly cemented; silty fine-grained SANDSTONE. Total Depth = 35.8 feet. Groundwater not encountered during drilling. Backfilled with approximately 12 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. BORING LOG FIGURE A- 5 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-3 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 40 50 60 70 80 Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 6 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-3 GROUND ELEVATION 710'  (MSL)SHEET 2 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 2 0 10 20 30 40 57 37 50/6" 22 50/5" 14.3 12.9 16.6 109.7 99.5 SM SC FILL:Light brown, moist, medium dense, silty SAND; scattered roots. Scattered clay nodules. Light brown, moist, medium dense, clayey SAND. Dense; scattered fragments of claystone and siltstone. Dense to very dense. OTAY FORMATION:Light gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 25.4 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 7 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-4 GROUND ELEVATION 720'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 61 32 87/11" 42 50/4" 21.1 15.1 96.2 104.9 SC FILL:Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots. Scattered fragments of siltstone and sandstone. Dense. Scattered clay nodules. OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. Total Depth = 25.3 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 8 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-5 GROUND ELEVATION 720'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 40 59 49 50/5" 50/3" 15.4 25.1 110.1 95.6 SC FILL:Light brown to gray, moist, medium dense, clayey fine SAND; scattered roots. Dense. Medium dense; scattered fragments of siltstone and sandstone. Dense. Scattered clay nodules. OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. Total Depth = 25.8 feet. Groundwater not encountered during drilling. Backfilled with approximately 8 cubic feet of bentonite cement grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 9 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-6 GROUND ELEVATION 720'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 50/5" 50/5" 50/4" 12.2 99.0 SM FILL:Grayish brown, moist, medium dense, silty fine SAND; trace clay; scattered roots. OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. @ 11': Slow drilling. Total Depth = 15.8 feet. Groundwater not encountered during drilling. Backfilled with grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 10 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-7 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 50/3" 50/5" 50/5" 11.8 103.1 SM FILL:Light brown, moist, medium dense, silty fine SAND; trace clay; scattered roots. OTAY FORMATION:Light gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE. Total Depth = 15.4 feet. Groundwater not encountered during drilling. Backfilled with grout shortly after drilling on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 11 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/30/19 BORING NO.B-8 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (A300) (Scott's Drilling) DRIVE WEIGHT 140 lbs. (Cathead)DROP 30" SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 SC FILL:Light brown, moist, medium dense, clayey SAND. OTAY FORMATION:Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 12 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-1 GROUND ELEVATION 705'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 SC FILL:Light brown, moist, medium dense, clayey SAND; scattered roots. OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered pink bentonite lenses. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 13 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-2 GROUND ELEVATION 705'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 SM FILL:Light brown, moist, medium dense, silty fine SAND. OTAY FORMATION:Light brown to gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 14 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-3 GROUND ELEVATION 715'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 SM FILL:Light brown, moist, medium dense, silty fine SAND. OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 15 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-4 GROUND ELEVATION 715'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 16 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-5 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 17 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-6 GROUND ELEVATION 710'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 ML FILL:Light brown, moist, stiff, sandy SILT; trace clay; scattered roots. OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 18 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-7 GROUND ELEVATION 705'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0 10 20 30 40 ML FILL:Light brown, moist, stiff, sandy SILT; scattered roots; trace clay. OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE. Total Depth = 5 feet. Groundwater not encountered during drilling. Boring converted to infiltration test on 1/29/19. Backfilled after testing on 1/30/19. Note: Groundwater, though not encountered at the time of drilling, may rise to a higher level due to seasonal variations in precipitation and several other factors as discussed in the report. The ground elevation shown above is an estimation only. It is based on our interpretations of published maps and other documents reviewed for the purposes of this evaluation. It is not sufficiently accurate for preparing construction bids and design documents. BORING LOG FIGURE A- 19 PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 |3/19DEPTH (feet)BulkSAMPLESDrivenBLOWS/FOOTMOISTURE (%)DRY DENSITY (PCF)SYMBOLCLASSIFICATIONU.S.C.S.DESCRIPTION/INTERPRETATION DATE DRILLED 1/29/19 BORING NO.IT-8 GROUND ELEVATION 705'  (MSL)SHEET 1 OF METHOD OF DRILLING 8" Diameter Hollow Stem Auger (Scott's Drilling) DRIVE WEIGHT N/A DROP N/A SAMPLED BY GSW LOGGED BY GSW REVIEWED BY NMM 1 0FILL:Bulk sample.Dashed line denotes material change.Drive sample.Sand cone performed.Seepage.Groundwater encountered during excavation.No recovery with drive sampler.Groundwater encountered after excavation.Sample retained by others.Shelby tube sample. Distance pushed in inches/length of samplerecovered in inches.No recovery with Shelby tube sampler.ALLUVIUM:Solid line denotes unit change.Attitude: Strike/Dipb: Bedding s: Shearc: Contact bss: Basal Slide Surfacej: Joint sf: Shear Fracturef: Fracture sz: Shear ZoneF: Fault sbs: Sheared Bedding Surfacecs: Clay SeamThe total depth is a solid line that is drawn at the bottom of theexcavation log.12SCALE 1 inch = 2 feetGROUND ELEVATIONDATE EXCAVATEDMETHOD OF EXCAVATIONTEST PIT DIAGRAMSMML46810SMxx/xx9113572DESCRIPTIONEXCAVATION LOGEXPLANATION SHEETDRY DENSITY (PCF)MOISTURE (%)DEPTH (FEET)SAMPLESSand ConeBulkDriven1CLASSIFICATIONU.S.C.S.TEST PIT LOGEXPLANATION OF TEST PIT, CORE, TRENCH ANDHAND AUGER LOG SYMBOLSFIGURE B-1 024681012024681012SCFILL:Light brown to gravel, moist, medium dense, clayey SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, clayey fine-grained SANDSTONE.Total Depth = 8 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-1GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101229.4MHFILL:Light brown to gray, moist, stiff, clayey SILT.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered rootlets and pinkish mottling.Total Depth = 7 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-2GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101218.4SCFILL:Brown to light brown, moist, medium dense. clayey SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered rootlets.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-3GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 024681012024681012SCFILL:Brown to gray, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately to strongly indurated, clayey SILTSTONE.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-4GROUND ELEVATION715' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101221.4SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND; scatteredroots.OTAY FORMATION:Brown to gray, moist, moderately to cemented, silty SANDSTONE;scattered claystone lenses at approximately 2 to 3 feet; pinkish mottling anddark brown laminations at approximately 5 to 6 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-5GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101226.1SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Light brown to gray, moist, moderately to strongly indurated, clayeySILTSTONE; scattered pockets of pink bentonite from approximately 4 to5.5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-6GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101225.9SMFILL:Light brown to gray, moist, medium dense, silty fine SAND.OTAY FORMATION:Gray, moist, moderately to strongly indurated, clayey SILTSTONE.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-7GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 024681012024681012SCFILL:Light brown, moist, medium dense, clayey SAND.OTAY FORMATION:Gray and reddish to yellowish brown, moist, moderately to stronglycemented, silty fine-grained SANDSTONE; scattered claystone lenses fromapproximately 4 to 5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-8GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101219.7SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Gray, moist, moderately to strongly cemented, silty fine-grainedSANDSTONE; scattered rootlets; slightly micaceous.Total Depth = 5 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-9GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101221.3SCFILL:Light brown to gray, moist, medium dense, clayey fine SAND.OTAY FORMATION:Gray and reddish brown to yellowish brown, moist, moderately to stronglycemented, silty fine-grained SANDSTONE; scattered claystone lensesapproximately 4 to 5 feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-10GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 024681012024681012SCFILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Light brown to gray, moist, moderately to strongly cemented, silty fine-grained SANDSTONE; scattered claystone lenses from approximately 3 to 4feet.Total Depth = 6 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-11GROUND ELEVATION710' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 02468101202468101236.1FILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately to strongly indurated, silty CLAYSTONE; scatteredlenses of pinkish gray bentonite.@ 4' to 5': Trace sand.Total Depth = 7 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-12GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 024681012024681012SCFILL:Light brown, moist, medium dense, clayey fine SAND; scattered roots.OTAY FORMATION:Gray, moist, moderately indurated, clayey SILTSTONE.Total Depth = 3 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-13GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 024681012024681012SMFILL;Light brown, moist, medium dense, silty fine SAND; scattered roots; traceclay.OTAY FORMATION:Gray, moist, moderately cemented, silty fine-grained SANDSTONE.Total Depth = 3 feet.Groundwater not encountered.Backfilled on 1/28/19.Note: Groundwater, though not encountered at the time of excavation, mayrise to a higher level due to seasonal variations in precipitation and severalother factors as discussed in the report.The ground elevation shown above is an estimation only. It is based on ourinterpretations of published maps and other documents reviewed for thepurposes of this evaluation. It is not sufficiently accurate for preparingconstruction bids and design documents.SCALE = 1 in./2 ft.108727001TEST PIT LOG PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIAPROJECT NO.3/19DATEDEPTH (FEET) Bulk SAMPLESDriven Sand Cone MOISTURE (%) DRY DENSITY (PCF) CLASSIFICATION U.S.C.S.DESCRIPTIONDATE EXCAVATED1/28/19TEST PIT NO.TP-14GROUND ELEVATION705' ± (MSL)LOGGED BYGSWMETHOD OF EXCAVATIONBackhoeLOCATIONSee Figure 2 APPENDIX B Geotechnical Laboratory Testing Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 APPENDIX B GEOTECHNICAL LABORATORY TESTING Classification Soils were visually and texturally classified in accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D 2488. Soil classifications are indicated on the logs of the exploratory borings and test pits in Appendix A. Moisture Content The moisture content of samples obtained from the exploratory excavations was evaluated in accordance with ASTM D 2216. The test results are presented on the logs of the exploratory excavations in Appendix A. In-place Moisture and Density Tests The moisture content and dry density of relatively undisturbed samples obtained from the exploratory borings were evaluated in general accordance with ASTM D 2937. The test results are presented on the logs of the exploratory borings in Appendix A. Gradation Analysis Gradation analysis tests were performed on selected representative soil samples in general accordance with ASTM D 422. The grain-size distribution curves are shown on Figures B-1 through B-9. These test results were utilized in evaluating the soil classifications in accordance with the USCS. Atterberg Limits Tests were performed on selected representative fine-grained soil samples to evaluate the liquid limit, plastic limit, and plasticity index in general accordance with ASTM D 4318. These test results were utilized to evaluate the soil classification in accordance with the Unified Soil Classification System (USCS). The test results and classifications are shown on Figure B-10. Consolidation Consolidation tests were performed on selected relatively undisturbed soil samples in general accordance with ASTM D 2435. The samples were inundated during testing to represent adverse field conditions. The percent of consolidation for each load cycle was recorded as a ratio of the amount of vertical compression to the original height of the sample. The results of the tests are summarized on Figures B-11 and B-12. Direct Shear Tests Direct shear testing was performed on relatively undisturbed and remolded samples in general accordance with ASTM D 3080 to evaluate its shear strength characteristics of the selected materials. The samples were inundated during shearing to represent adverse field conditions. The results are shown on Figures B-13 through B-18. Expansion Index Test The expansion indices of selected materials were evaluated in general accordance with ASTM D 4829. Specimens were molded under a specified compactive energy at approximately 50 percent saturation (plus or minus 2 percent). The prepared 1-inch thick by 4-inch diameter specimens were loaded with a surcharge of 144 pounds per square foot and was inundated with distilled water. Readings of volumetric swell were made for a period of 24 hours. The results of these tests are presented on Figure B-19. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 Proctor Density Tests The maximum dry density and optimum moisture content of a selected representative soil sample was evaluated using the Modified Proctor method in general accordance with ASTM D 1557. The results of these tests are summarized on Figure B-20. Soil Corrosivity Tests Soil pH and resistivity tests were performed on representative samples in general accordance with CT 643. The soluble sulfate and chloride contents of the selected samples were evaluated in general accordance with CT 417 and CT 422, respectively. The test results are presented on Figure B-21. R-Value The resistance value, or R-value, for site soils was evaluated in general accordance with California Test (CT) 301. Samples were prepared and evaluated for exudation pressure and expansion pressure. The equilibrium R-value is reported as the lesser or more conservative of the two calculated results. The test results are presented on Figure B-22. Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2 Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 30 50 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Passing No. 200 (percent) Cc GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Cu USCSD60 Fine Sample Location 100 D10 16 200 B-1 10.0-11.5 23 19 4 -- -- SM-- -- -- 34 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-1 108727001_SIEVE w No 8 B-1 @ 10.0-11.5.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 30 50 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 B-1 40.0-41.5 50 37 13 -- -- MH-- -- -- 57 Sample Location 100 D10 16 200 Passing No. 200 (percent) Cc GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Cu USCSD60 Fine 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-2 108727001_SIEVE w No 8 B-1 @ 40.0-41.0.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 30 50 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Passing No. 200 (percent) Cc GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Cu USCSD60 Fine Sample Location 100 D10 16 200 B-2 0.0-5.0 28 22 6 -- -- CL-ML-- -- -- 56 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-3 108727001_SIEVE w No 8 B-2 @ 0.0-5.0.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2"¾"½" ⅜"4 8 30 50 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 B-3 0.0-5.0 -- -- -- -- -- ML-- -- -- 71 Sample Location 100 D10 16 200 Passing No. 200 (percent) Cc GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Liquid Limit 1½" 1" Depth (ft)D30 Cu USCSD60 Fine 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-4 108727001_SIEVE w No 8 B-3 @ 0.0-5.0.xlsx Coarse Fine Coarse Fine SILT CLAY 3" 1-1/2" 1" 3/4" 1/2" 3/8" 4 8 16 30 50 100 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Passing No. 200 (percent) Sample LocationSymbol Plasticity Index Plastic Limit Liquid Limit Depth (ft)CcCu USCSD60 B-4 0.0-5.0 31 Medium GRAVEL SAND FINES D30D10 SM26 5 ---------- 32 0 10 20 30 40 50 60 70 80 90 100 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-5 108727001_SPLITSIEVE B-4 @ 0.0-5.0.xlsx Coarse Fine Coarse Fine SILT CLAY 3" 1-1/2" 1" 3/4" 1/2" 3/8" 4 8 16 30 50 100 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 -- -- 38 SC20 21 -- -- -- Medium GRAVEL SAND FINES D30D10 Passing No. 200 (percent) Hole No.Symbol Plasticity Index Plastic Limit Liquid Limit Depth (ft)CcCu USCSD60 B-6 0.0-5.0 41 0 10 20 30 40 50 60 70 80 90 100 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-6 108727001_SPLITSIEVE B-6 @ 0.0-5.0.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 NP - INDICATES NON-PLASTIC USCS TP-5 1.0-6.0 NP NP NP -- -- -- -- D60 Liquid Limit -- 27 SM Passing No. 200 (%) GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Fine Sample Location CcCu 100 Depth (ft)D30D10 16 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-7 108727001_SIEVE+HYDRO TP-5 @ 1.0-6.0.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Passing No. 200 (%) GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Fine Sample Location CcCu 100 Depth (ft)D30D10 16 USCS TP-7 1.0-6.0 27 25 2 -- -- -- -- D60 Liquid Limit -- 60 ML 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-8 108727001_SIEVE+HYDRO TP-7 @ 1.0-6.0.xlsx Coarse Fine Coarse Medium SILT CLAY 3" 2" 1-1/2" 1" 3/4" 3/8" 4 10 30 50 200 PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 422 Passing No. 200 (%) GRAVEL SAND FINES Symbol Plasticity Index Plastic Limit Fine Sample Location CcCu 100 Depth (ft)D30D10 16 USCS TP-12 1.0-7.0 39 19 20 -- -- -- -- D60 Liquid Limit -- 74 CL 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 0.00010.0010.010.1110100PERCENT FINER BY WEIGHTGRAIN SIZE IN MILLIMETERS U.S. STANDARD SIEVE NUMBERS HYDROMETER GRADATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-9 108727001_SIEVE+HYDRO TP-12 @ 1.0-7.0.xlsx   X + NP - INDICATES NON-PLASTIC PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 4318 SYMBOL LOCATION DEPTH (ft) LIQUID LIMIT PLASTIC LIMIT SM CL ML ML CL ML NP 27 19 20 25 2 NP 39 SM MH SM CL SC ML NP 21 MH ML CL-ML 41 13 19 No. 40 Sieve) 6 20 1.0-6.0 0.0-5.0 PLASTICITY INDEX CLASSIFICATION CL-ML 526 22 10.0-11.5 423 USCS B-6 1.0-6.0 B-1 31 TP-5 40.0-41.5 USCS (Fraction Finer Than TP-12 1.0-7.0 0.0-5.0 0.0-5.0 50 28 TP-7 37B-1 B-2 B-4 CH or OH CL or OL MH or OH ML or OLCL - ML 0 10 20 30 40 50 60 0 102030405060708090100110120PLASTICITY INDEX, PI LIQUID LIMIT, LL FIGURE B-10 ATTERBERG LIMITS TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_ATTERBERGx8.xlsx Seating Cycle Sample Location B-2 Loading Prior to Inundation Depth (ft) 10.0-10.8 Loading After Inundation Soil Type CL-ML Rebound Cycle PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.1 1.0 10.0 100.0 CONSOLIDATION IN PERCENT OF SAMPLE THICKNESS (%) EXPANSION (%)STRESS IN KIPS PER SQUARE FOOT CONSOLIDATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-11 108727001_CONSOLIDATION B-2 @ 0.0-5.0.xlsx Seating Cycle Sample Location B-3 Loading Prior to Inundation Depth (ft) 15.0-16.4 Loading After Inundation Soil Type ML Rebound Cycle PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2435 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.1 1.0 10.0 100.0 CONSOLIDATION IN PERCENT OF SAMPLE THICKNESS (%) EXPANSION (%)STRESS IN KIPS PER SQUARE FOOT CONSOLIDATION TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-12 108727001_CONSOLIDATION B-3 @ 15.0-16.4.xlsx PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SAND X Ultimate15.0-16.5B-1 Cohesion (psf) Friction Angle (degrees)Soil Type SM33 34 0 SM Description Symbol Sample Location 80 Depth (ft) Shear Strength 15.0-16.5Silty SAND B-1 Peak 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-13 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR B-1 @ 15.0-16.5.xlsx PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Sandy SILT X Ultimate25.0-25.9B-1 Cohesion (psf) Friction Angle (degrees)Soil Type ML27 27 250 ML Description Symbol Sample Location 480 Depth (ft) Shear Strength 25.0-25.9Sandy SILT B-1 Peak 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-14 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR B-1 @ 25.0-25.9.xlsx 5.0-6.5Clayey SAND B-5 Peak Cohesion (psf) Friction Angle (degrees)Soil Type SC30 30 260 SC Description Symbol Sample Location 400 Depth (ft) Shear Strength PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Clayey SAND X Ultimate5.0-6.5B-5 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-15 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR B-5 @ 5.0-6.5.xlsx 5.0-5.4Silty SANDSTONE B-7 Peak Cohesion (psf) Friction Angle (degrees)Soil Type Formation41 41 0 Formation Description Symbol Sample Location 0 Depth (ft) Shear Strength PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SANDSTONE X Ultimate5.0-5.4B-7 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-16 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR B-7 @ 5.0-5.4.xlsx 5.0-5.8Silty SANDSTONE B-8 Peak Cohesion (psf) Friction Angle (degrees)Soil Type Formation28 30 550 Formation Description Symbol Sample Location 830 Depth (ft) Shear Strength PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Silty SANDSTONE X Ultimate5.0-5.8B-8 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-17 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR B-8 @ 5.0-5.8.xlsx PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 3080 Ultimate1.0-6.0TP-6 Remolded @ 90% Relative Compaction Cohesion (psf) Friction Angle (degrees)Soil Type ML30 31 40 ML Description Symbol Sample Location 110 Depth (ft) Shear Strength 1.0-6.0TP-6 Peak X 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000SHEAR STRESS (PSF)NORMAL STRESS (PSF) FIGURE B-18 DIRECT SHEAR TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 108727001_DIRECT SHEAR TP-6 @ 1.0-6.0.xlsx PERFORMED IN GENERAL ACCORDANCE WITH High Medium Medium 102 75 88 0.102 0.075 0.08828.6 38.014.5 17.5 13.0 1.0-6.0 1.0-5.0 INITIAL MOISTURE (percent) COMPACTED DRY DENSITY (pcf) EXPANSION INDEX 92.8 88.0 97.4 36.3 POTENTIAL EXPANSION FINAL MOISTURE (percent) VOLUMETRIC SWELL (in) SAMPLE LOCATION B-6 SAMPLE DEPTH (ft) 0.0-5.0 Low19.5 0.024 249.5 112.2 TP-2 TP-6 TP-9 0.0-3.0 UBC STANDARD 18-2 ASTM D 4829 EXPANSION INDEX TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-19 108727001_EXPANSION - SDx4.xlsx ## ## PERFORMED IN GENERAL ACCORDANCE WITH METHOD Maximum Dry Density (pcf) 108.81.0-6.0TP-6 Optimum Moisture Content (percent) Soil Description SILTSTONE (excavated as SILT) Sample Location Depth (ft) 15.5 80.0 90.0 100.0 110.0 120.0 130.0 140.0 0 5 10 15 20 25 30 35 40DRY DENSITY (PCF)MOISTURE CONTENT (%) Zero Air Void Line (Specific Gravity = 2.70) Zero Air Void Line (Specific Gravity = 2.60) Zero Air Void Line (Specific Gravity = 2.50) ASTM D 1557 ASTM D 698 A B C PROCTOR DENSITY TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-20 108727001_MAXDENSITY TP-6 @ 1.0-6.0.xlsx 1 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 643 2 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 417 3 PERFORMED IN GENERAL ACCORDANCE WITH CALIFORNIA TEST METHOD 422 10 10 B-6 0.0-5.0 TP-9 800TP-2 CHLORIDE CONTENT 3 (ppm) pH 1SAMPLE DEPTH (ft) SAMPLE LOCATION RESISTIVITY 1 (ohm-cm) 0.001 8.9 30 1000 1,000 40 0.004 0.001 700 0.0-3.0 1.0-5.0 9.0 8.3 1035 SULFATE CONTENT 2 (ppm) (%) CORROSIVITY TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-21 108727001_CORROSIVITYx3.xlsx PERFORMED IN GENERAL ACCORDANCE WITH ASTM D 2844/CT 301 35 39 Clayey SAND (SC) Silty SAND (SM) 0.0-3.0 0.0-3.0 TP-13 TP-14 SAMPLE LOCATION SAMPLE DEPTH (ft)SOIL TYPE R-VALUE R-VALUE TEST RESULTS PROPOSED ACADIA SAN DIEGO MEDICAL FACILITY 830 SHOWROOM PLACE, CHULA VISTA, CALIFORNIA 108727001 | 3/19 FIGURE B-22 108727001_RVTABLE1.xlsx APPENDIX C Infiltration Testing Results Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 Test Date:Infiltration Test No.: IT-1 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.67 (min/in) (in/hr) 8:54 2.50 9:19 3.36 25 0.86 2.42 2.74 1.42 9:19 3.36 9:44 3.53 25 0.17 12.25 2.23 0.34 9:44 3.53 10:14 3.71 30 0.18 13.89 2.05 0.32 10:14 3.71 10:44 3.89 30 0.18 13.89 1.87 0.35 10:44 3.21 11:14 3.34 30 0.13 19.23 2.40 0.20 11:14 3.34 11:44 3.46 30 0.12 20.83 2.27 0.20 11:44 3.46 12:14 3.63 30 0.17 14.71 2.13 0.30 12:14 3.63 12:44 3.80 30 0.17 14.71 1.96 0.32 12:44 3.80 1:14 3.94 30 0.14 17.86 1.80 0.28 1:14 3.94 1:44 4.08 30 0.14 17.86 1.66 0.31 1:44 3.11 2:14 3.25 30 0.14 17.86 2.49 0.21 2:14 3.25 2:44 3.38 30 0.13 19.23 2.36 0.21 Test Date:Infiltration Test No.: IT-2 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.33 (min/in) (in/hr) 8:53 3.00 9:18 3.23 25 0.23 9.06 2.22 0.46 9:18 3.23 9:43 3.46 25 0.23 9.06 1.99 0.51 9:43 3.46 10:13 3.67 30 0.21 11.90 1.77 0.43 10:13 3.67 10:43 3.88 30 0.21 11.90 1.56 0.49 10:43 2.94 11:13 3.10 30 0.16 15.63 2.31 0.26 11:13 3.10 11:43 3.25 30 0.15 16.67 2.16 0.26 11:43 3.25 12:13 3.46 30 0.21 11.90 1.98 0.39 12:13 3.46 12:43 3.67 30 0.21 11.90 1.77 0.43 12:43 3.67 1:13 3.81 30 0.14 17.86 1.59 0.32 1:13 3.81 1:43 3.95 30 0.14 17.86 1.45 0.35 1:43 3.95 2:13 4.06 30 0.11 22.73 1.33 0.29 2:13 4.06 2:43 4.16 30 0.10 25.00 1.22 0.29 Notes: t1 = initial time when filling or refilling is completed d1 = initial depth to water in hole at t1 t2 = final time when incremental water level reading is taken d2 = final depth to water in hole at t2 ∆t = change in time between initial and final water level readings ∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour H0 = Initial height of water column ∆H = change in head over the time interval, inches in/hr = inches per hour ∆t = time interval, minutes r = effective radius of test hole Havg = average head over the time interval, inches 1/30/2019 t1 d1 (feet)t2 d2 (feet) ∆t (min) Percolation Rate to Infiltration Rate Conversion 1 1 Based on the "Porchet Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. t1 d1 (feet)t2 d2 (feet) ∆t (min) Infiltration Rate∆H (feet) Percolation Rate Havg (feet) Infiltration Rate 1/30/2019 ∆H (feet) Percolation Rate Havg (feet) ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ ∆ݐ ݎ൅2ܪ௔௩௚ Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 1 of 4 Test Date:Infiltration Test No.: IT-3 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.42 (min/in) (in/hr) 8:40 2.34 9:05 2.76 25 0.42 4.96 2.87 0.66 9:05 2.76 9:30 2.90 25 0.14 14.88 2.59 0.24 9:30 2.90 10:00 3.10 30 0.20 12.50 2.42 0.31 10:00 3.10 10:30 3.27 30 0.17 14.71 2.24 0.28 10:30 3.27 11:00 3.40 30 0.13 19.23 2.09 0.23 11:00 3.40 11:30 3.49 30 0.09 27.78 1.98 0.17 11:30 3.49 12:00 3.57 30 0.08 31.25 1.89 0.16 12:00 3.57 12:30 3.64 30 0.07 35.71 1.82 0.14 12:30 3.64 1:00 3.68 30 0.04 62.50 1.76 0.08 1:00 3.68 1:30 3.70 30 0.02 125.00 1.73 0.04 1:30 3.70 2:00 3.72 30 0.02 125.00 1.71 0.04 2:00 3.72 2:30 3.74 30 0.02 125.00 1.69 0.04 Test Date:Infiltration Test No.: IT-4 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.42 (min/in) (in/hr) 8:37 2.35 9:02 2.74 25 0.39 5.34 2.88 0.62 9:02 2.74 9:27 2.90 25 0.16 13.02 2.60 0.28 9:27 2.90 9:57 3.10 30 0.20 12.50 2.42 0.31 9:57 3.10 10:27 3.24 30 0.14 17.86 2.25 0.23 10:27 3.24 10:57 3.38 30 0.14 17.86 2.11 0.25 10:57 3.38 11:27 3.48 30 0.10 25.00 1.99 0.19 11:27 3.48 11:57 3.57 30 0.09 27.78 1.90 0.17 11:57 3.57 12:27 3.64 30 0.07 35.71 1.82 0.14 12:27 3.64 12:57 3.67 30 0.03 83.33 1.77 0.06 12:57 3.67 1:27 3.69 30 0.02 125.00 1.74 0.04 1:27 3.69 1:57 3.72 30 0.03 83.33 1.72 0.06 1:57 3.72 2:27 3.74 30 0.02 125.00 1.69 0.04 Notes: t1 = initial time when filling or refilling is completed d1 = initial depth to water in hole at t1 t2 = final time when incremental water level reading is taken d2 = final depth to water in hole at t2 ∆t = change in time between initial and final water level readings ∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour H0 = Initial height of water column ∆H = change in head over the time interval, inches in/hr = inches per hour ∆t = time interval, minutes r = effective radius of test hole Havg = average head over the time interval, inches Infiltration Rate 1/30/2019 t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) Infiltration Rate 1/30/2019 Percolation Rate to Infiltration Rate Conversion 1 1 Based on the "Porchet Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ ∆ݐ ݎ൅2ܪ௔௩௚ Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 2 of 4 Test Date:Infiltration Test No.: IT-5 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.42 (min/in) (in/hr) 8:57 3.10 9:22 3.12 25 0.02 104.17 2.31 0.04 9:22 3.12 9:47 3.22 25 0.10 20.83 2.25 0.20 9:47 3.22 10:17 3.31 30 0.09 27.78 2.16 0.16 10:17 3.31 10:47 3.38 30 0.07 35.71 2.08 0.12 10:47 3.40 11:17 3.45 30 0.05 50.00 2.00 0.09 11:17 3.49 11:47 3.53 30 0.04 62.50 1.91 0.08 11:47 3.56 12:17 3.59 30 0.03 83.33 1.85 0.06 12:17 3.63 12:47 3.66 30 0.03 83.33 1.78 0.06 12:47 3.72 1:17 3.75 30 0.03 83.33 1.69 0.06 1:17 3.80 1:47 3.82 30 0.02 125.00 1.61 0.05 1:47 3.84 2:17 3.85 30 0.01 250.00 1.58 0.02 2:17 3.88 2:47 3.89 30 0.01 250.00 1.54 0.02 Test Date:Infiltration Test No.: IT-6 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.50 (min/in) (in/hr) 8:58 3.59 9:23 3.59 25 0.00 #DIV/0! 1.91 <0.01 9:23 3.59 9:52 3.61 25 0.02 104.17 1.90 0.05 9:52 3.61 10:22 3.63 30 0.02 125.00 1.88 0.04 10:22 3.63 10:52 3.66 30 0.03 83.33 1.86 0.06 10:52 3.66 11:22 3.69 30 0.03 83.33 1.83 0.06 11:22 3.69 11:52 3.71 30 0.02 125.00 1.80 0.04 11:52 3.71 12:22 3.73 30 0.02 125.00 1.78 0.04 12:22 3.73 12:52 3.77 30 0.04 62.50 1.75 0.08 12:52 3.77 1:22 3.81 30 0.04 62.50 1.71 0.09 1:22 3.81 1:52 3.83 30 0.02 125.00 1.68 0.04 1:52 3.83 2:22 3.84 30 0.01 250.00 1.67 0.02 2:22 3.84 2:52 3.86 30 0.02 125.00 1.65 0.04 Notes: t1 = initial time when filling or refilling is completed d1 = initial depth to water in hole at t1 t2 = final time when incremental water level reading is taken d2 = final depth to water in hole at t2 ∆t = change in time between initial and final water level readings ∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour H0 = Initial height of water column ∆H = change in head over the time interval, inches in/hr = inches per hour ∆t = time interval, minutes r = effective radius of test hole Havg = average head over the time interval, inches Infiltration Rate 1/30/2019 t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) Infiltration Rate 1/30/2019 Percolation Rate to Infiltration Rate Conversion 1 1 Based on the "Porchet Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ ∆ݐ ݎ൅2ܪ௔௩௚ Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 3 of 4 Test Date:Infiltration Test No.: IT-7 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.42 (min/in) (in/hr) 9:14 2.49 9:39 3.01 25 0.52 4.01 2.67 0.88 9:39 3.01 10:03 3.42 25 0.41 5.08 2.21 0.83 10:03 3.42 10:33 3.82 30 0.40 6.25 1.80 0.81 10:33 3.82 11:03 4.21 30 0.39 6.41 1.41 0.99 11:03 3.32 11:33 3.64 30 0.32 7.81 1.94 0.61 11:33 3.64 12:03 3.95 30 0.31 8.06 1.63 0.69 12:03 3.95 12:33 4.21 30 0.26 9.62 1.34 0.69 12:33 4.25 1:03 4.43 30 0.18 13.89 1.08 0.58 1:03 2.39 1:33 2.75 30 0.36 6.94 2.85 0.48 1:33 2.89 2:03 3.20 30 0.31 8.06 2.38 0.49 2:03 3.39 2:33 3.64 30 0.25 10.00 1.91 0.48 2:33 3.77 3:03 3.97 30 0.20 12.50 1.55 0.47 Test Date:Infiltration Test No.: IT-8 Test Hole Diameter, D (inches): 8.0 Excavation Depth (feet): 5.00 Test performed and recorded by: GLC Pipe Length (feet): 5.58 (min/in) (in/hr) 9:12 2.74 9:37 3.85 25 1.11 1.88 2.29 2.17 9:37 3.85 10:02 3.95 25 0.10 20.83 1.68 0.26 10:02 3.95 10:32 4.06 30 0.11 22.73 1.58 0.25 10:32 4.06 11:02 4.17 30 0.11 22.73 1.47 0.27 11:02 3.02 11:32 3.23 30 0.21 11.90 2.46 0.32 11:32 3.23 12:02 3.44 30 0.21 11.90 2.25 0.35 12:02 3.44 12:32 3.59 30 0.15 16.67 2.07 0.27 12:32 3.59 1:02 3.73 30 0.14 17.86 1.92 0.27 1:02 3.73 1:32 3.84 30 0.11 22.73 1.80 0.22 1:32 3.84 2:02 3.96 30 0.12 20.83 1.68 0.26 2:02 3.96 2:32 4.08 30 0.12 20.83 1.56 0.28 2:32 4.08 3:02 4.19 30 0.11 22.73 1.45 0.27 Notes: t1 = initial time when filling or refilling is completed d1 = initial depth to water in hole at t1 t2 = final time when incremental water level reading is taken d2 = final depth to water in hole at t2 ∆t = change in time between initial and final water level readings ∆H = change in depth to water or change in height of water column (i.e., d2 - d1)It = tested infiltration rate, inches/hour H0 = Initial height of water column ∆H = change in head over the time interval, inches in/hr = inches per hour ∆t = time interval, minutes r = effective radius of test hole Havg = average head over the time interval, inches Infiltration Rate 1/30/2019 t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) Infiltration Rate 1/30/2019 Percolation Rate to Infiltration Rate Conversion 1 1 Based on the "Porchet Method" as presented in: Riverside County Flood Control, 2011, Design Handbook for Low Impact Development Best Management Practices: dated September. t1 d1 (feet)t2 d2 (feet) ∆t (min) ∆H (feet) Percolation Rate Havg (feet) ܫ௧ ൌ ∆ܪ ൈ 60 ൈ ݎ ∆ݐ ݎ൅2ܪ௔௩௚ Ninyo Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 4 of 4 Appendix D: Approved Infiltration Rate Assessment Methods BMP Design Manual-Appendices December 2015 D-17 Worksheet D.5-1: Factor of Safety and Design Infiltration Rate Worksheet Factor of Safety and Design Infiltration Rate Worksheet Worksheet D.5-1 Factor Category Factor Description Assigned Weight (w) Factor Value (v) Product (p) p = w x v A Suitability Assessment Soil assessment methods 0.25 Predominant soil texture 0.25 Site soil variability 0.25 Depth to groundwater / impervious layer 0.25 Suitability Assessment Safety Factor, SA = p B Design Level of pretreatment/ expected sediment loads 0.5 Redundancy/resiliency 0.25 Compaction during construction 0.25 Design Safety Factor, SB = p Combined Safety Factor, Stotal= SA x SB Observed Infiltration Rate, inch/hr, Kobserved (corrected for test-specific bias) Design Infiltration Rate, in/hr, Kdesign = Kobserved / Stotal Supporting Data Briefly describe infiltration test and provide reference to test forms: APPENDIX D Geotechnical Map (Geotechnics, 2003) Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 APPENDIX E Slope Stability Analyses Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 Acadia Medical Facility, Chula Vista, CASection A-A' Circular (Static)Ninyo & Moore / WRM\A-A' Circular.gsdSpencer MethodPLATE E-1 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.621 2 1.623 3 1.623 4 1.627 5 1.630 6 1.631 7 1.631 8 1.634 9 1.63510 1.637GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.621 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.621 2 1.623 3 1.623 4 1.627 5 1.630 6 1.631 7 1.631 8 1.634 9 1.635 10 1.637 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Circular (Static) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 620.000 88.000 620.000 1 2 88.000 620.000 135.000 642.000 1 3 135.000 642.000 290.000 714.000 2 4 290.000 714.000 450.000 713.000 2 5 450.000 713.000 555.000 715.000 2 6 555.000 715.000 570.000 717.000 2 7 570.000 717.000 590.000 717.000 2 8 590.000 717.000 610.000 717.000 2 9 610.000 717.000 660.000 713.000 2 10 660.000 713.000 855.000 713.000 2 11 855.000 713.000 900.000 713.000 2 12 135.000 642.000 135.100 637.000 1 13 135.100 637.000 149.900 637.000 1 14 149.900 637.000 150.000 643.000 1 15 150.000 643.000 465.000 670.000 1 16 465.000 670.000 636.000 708.000 1 17 636.000 708.000 855.000 708.000 1 18 855.000 708.000 855.100 712.000 1 19 855.100 712.000 900.000 712.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 88.00(ft) and X = 135.00(ft) Each Surface Enters within a Range Between X = 290.00(ft) and X = 900.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 500.00(ft) Specified Maximum Radius = 5000.000(ft) 25.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 836 Number of Trial Surfaces With Valid FS = 4164 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 16.7 % Statistical Data On All Valid FS Values: FS Max = 10.713 FS Min = 1.621 FS Ave = 3.981 Standard Deviation = 2.001 Coefficient of Variation = 50.27 % Critical Surface is Sequence Number 297 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 79.780997(ft) ; Y = 948.776488(ft); and Radius = 327.479219(ft) Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 91.197 621.496 2 116.130 623.321 3 140.851 627.042 4 165.217 632.638 5 189.085 640.077 6 212.315 649.315 7 234.774 660.298 8 256.329 672.962 9 276.855 687.234 10 296.232 703.030 11 307.652 713.890 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.755823 1.604422 0.268 0.1514010E+00 2 19.9500 1.675343 1.615690 0.363 0.5965232E-01 3 23.1677 1.595856 1.623454 0.428 0.2759794E-01 4 22.1501 1.624274 1.620956 0.407 0.3318397E-02 5 22.2595 1.621384 1.621222 0.409 0.1620673E-03 6 22.2651 1.621235 1.621236 0.409 0.9935420E-06 Factor Of Safety For The Preceding Specified Surface = 1.621 Theta (fx = 1.0) = 22.27 Deg Lambda = 0.409 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 96.18 622.70 0.426 1266.36 1.000 22.27 479.8 2 101.17 623.80 0.400 2885.50 1.000 22.27 1093.3 3 106.16 624.86 0.384 4857.41 1.000 22.27 1840.4 4 111.14 625.90 0.373 7182.09 1.000 22.27 2721.2 5 116.13 626.91 0.365 9859.54 1.000 22.27 3735.7 6 120.85 628.09 0.358 12024.63 1.000 22.27 4556.1 7 125.56 629.26 0.352 14356.20 1.000 22.27 5439.5 8 130.28 630.43 0.347 16854.25 1.000 22.27 6386.0 9 135.00 631.60 0.343 19518.78 1.000 22.27 7395.5 10 135.10 631.62 0.343 19577.06 1.000 22.27 7417.6 11 137.98 632.34 0.341 21284.78 1.000 22.27 8064.7 12 140.85 633.04 0.340 23053.67 1.000 22.27 8734.9 13 145.38 634.40 0.337 24987.98 1.000 22.27 9467.8 14 149.90 635.76 0.335 26981.48 1.000 22.27 10223.1 15 150.00 635.79 0.335 27026.21 1.000 22.27 10240.0 16 155.07 637.30 0.333 29333.04 1.000 22.27 11114.1 17 160.14 638.82 0.331 31714.27 1.000 22.27 12016.3 18 165.22 640.34 0.329 34169.89 1.000 22.27 12946.7 19 169.99 642.03 0.328 35344.61 1.000 22.27 13391.8 20 174.76 643.72 0.326 36526.05 1.000 22.27 13839.5 21 179.54 645.41 0.325 37714.22 1.000 22.27 14289.7 22 184.31 647.10 0.324 38909.10 1.000 22.27 14742.4 23 189.08 648.80 0.322 40110.70 1.000 22.27 15197.7 24 194.11 650.87 0.321 40048.45 1.000 22.27 15174.1 25 199.14 652.94 0.320 39973.03 1.000 22.27 15145.5 26 204.17 655.02 0.319 39884.43 1.000 22.27 15111.9 27 209.19 657.10 0.318 39782.65 1.000 22.27 15073.4 28 212.32 658.38 0.317 39785.09 1.000 22.27 15074.3 29 217.93 661.02 0.315 38292.68 1.000 22.27 14508.8 30 223.54 663.67 0.313 36811.12 1.000 22.27 13947.5 31 229.16 666.33 0.311 35340.40 1.000 22.27 13390.2 32 234.77 669.00 0.310 33880.52 1.000 22.27 12837.1 33 240.16 671.92 0.309 31184.47 1.000 22.27 11815.6 34 245.55 674.85 0.308 28570.63 1.000 22.27 10825.2 35 250.94 677.81 0.308 26038.98 1.000 22.27 9866.0 36 256.33 680.80 0.309 23589.54 1.000 22.27 8937.9 37 261.46 684.06 0.311 20283.75 1.000 22.27 7685.4 38 266.59 687.29 0.312 17134.97 0.948 21.22 6202.6 39 271.72 690.38 0.308 14169.86 0.830 18.77 4558.8 40 276.85 693.29 0.293 11437.56 0.711 16.24 3198.4 41 281.24 696.02 0.273 8609.65 0.610 14.03 2086.7 42 285.62 698.66 0.243 6047.23 0.509 11.77 1233.6 43 290.00 701.26 0.206 3741.85 0.408 9.48 616.1 44 293.12 703.09 0.192 2348.92 0.336 7.83 319.9 45 296.23 704.77 0.159 1271.03 0.264 6.16 136.5 46 301.94 711.01 0.467 -166.16 0.132 3.09 -9.0 47 307.65 713.89 0.000 0.07 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 47 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.99 0.98 93.69 621.68 622.66 4.19 25.08 5.00 2 4.99 2.95 98.68 622.04 625.00 4.19 25.08 5.00 3 4.99 4.92 103.66 622.41 627.33 4.19 25.08 5.00 4 4.99 6.89 108.65 622.77 629.67 4.19 25.08 5.00 5 4.99 8.86 113.64 623.14 632.00 4.19 25.08 5.00 6 4.72 10.60 118.49 623.68 634.27 8.56 25.08 4.77 7 4.72 12.09 123.21 624.39 636.48 8.56 25.08 4.77 8 4.72 13.59 127.92 625.10 638.69 8.56 25.08 4.77 9 4.72 15.09 132.64 625.81 640.90 8.56 25.08 4.77 10 0.10 15.85 135.05 626.17 642.02 8.56 24.92 0.10 11 2.88 16.32 136.54 626.39 642.71 8.56 24.92 2.91 12 2.88 17.22 139.41 626.83 644.05 8.56 24.92 2.91 13 4.52 18.21 143.11 627.56 645.77 12.94 24.92 4.64 14 4.52 19.27 147.64 628.60 647.87 12.94 24.92 4.64 15 0.10 19.81 149.95 629.13 648.94 12.94 24.92 0.10 16 5.07 20.42 152.54 629.73 650.15 12.94 24.92 5.20 17 5.07 21.61 157.61 630.89 652.50 12.94 24.92 5.20 18 5.07 22.80 162.68 632.06 654.86 12.94 24.92 5.20 19 4.77 23.76 167.60 633.38 657.14 17.31 24.92 5.00 20 4.77 24.49 172.38 634.87 659.36 17.31 24.92 5.00 21 4.77 25.22 177.15 636.36 661.58 17.31 24.92 5.00 22 4.77 25.95 181.92 637.85 663.80 17.31 24.92 5.00 23 4.77 26.68 186.70 639.33 666.01 17.31 24.92 5.00 24 5.03 27.21 191.60 641.08 668.29 21.69 24.92 5.41 25 5.03 27.55 196.63 643.08 670.63 21.69 24.92 5.41 26 5.03 27.89 201.65 645.08 672.96 21.69 24.92 5.41 27 5.03 28.22 206.68 647.07 675.30 21.69 24.92 5.41 28 3.12 28.50 210.75 648.69 677.19 21.69 24.92 3.36 29 5.61 28.53 215.12 650.69 679.22 26.06 24.92 6.25 30 5.61 28.39 220.74 653.43 681.83 26.06 24.92 6.25 31 5.61 28.26 226.35 656.18 684.43 26.06 24.92 6.25 32 5.61 28.12 231.97 658.92 687.04 26.06 24.92 6.25 33 5.39 27.72 237.47 661.88 689.60 30.44 24.92 6.25 34 5.39 27.05 242.86 665.05 692.10 30.44 24.92 6.25 35 5.39 26.39 248.25 668.21 694.60 30.44 24.92 6.25 36 5.39 25.73 253.63 671.38 697.11 30.44 24.92 6.25 37 5.13 24.80 258.89 674.75 699.55 34.81 24.92 6.25 38 5.13 23.62 264.03 678.31 701.93 34.81 24.92 6.25 39 5.13 22.44 269.16 681.88 704.32 34.81 24.92 6.25 40 5.13 21.25 274.29 685.45 706.70 34.81 24.92 6.25 41 4.38 19.89 279.05 689.02 708.91 39.19 24.92 5.65 42 4.38 18.36 283.43 692.59 710.95 39.19 24.92 5.65 43 4.38 16.82 287.81 696.16 712.98 39.19 24.92 5.65 44 3.12 14.77 291.56 699.22 713.99 39.19 -0.36 4.02 45 3.12 12.21 294.67 701.76 713.97 39.19 -0.36 4.02 46 5.71 8.20 299.09 705.74 713.94 43.56 -0.36 7.88 47 5.71 2.73 304.80 711.17 713.91 43.56 -0.36 7.88 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 91.196639 621.496299 2 96.183306 621.861204 3 101.169973 622.226108 4 106.156639 622.591013 5 111.143306 622.955917 6 116.129973 623.320822 7 120.847480 624.030933 8 125.564986 624.741044 9 130.282493 625.451155 10 135.000000 626.161266 11 135.100000 626.176319 12 137.975734 626.609194 13 140.851468 627.042069 14 145.375734 628.081202 15 149.900000 629.120335 16 150.000000 629.143303 17 155.072350 630.308320 18 160.144700 631.473337 19 165.217050 632.638354 20 169.990584 634.126096 21 174.764118 635.613838 22 179.537651 637.101579 23 184.311185 638.589321 24 189.084719 640.077063 25 194.112166 642.076251 26 199.139614 644.075439 27 204.167062 646.074627 28 209.194509 648.073815 29 212.315376 649.314842 30 217.929941 652.060596 31 223.544505 654.806349 32 229.159070 657.552103 33 234.773635 660.297856 34 240.162379 663.463916 35 245.551123 666.629976 36 250.939868 669.796036 37 256.328612 672.962097 38 261.460130 676.530012 39 266.591649 680.097927 40 271.723167 683.665842 41 276.854685 687.233757 42 281.236457 690.805626 43 285.618228 694.377495 44 290.000000 697.949363 45 293.116116 700.489514 46 296.232232 703.029664 47 301.942118 708.459669 48 307.652004 713.889675 ***Table 3 - Force and Pore Pressure Data On The 47 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 589.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 1767.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 2946.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 4124.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 5302.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 5998.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 6846.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 7694.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 8542.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 190.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 5632.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 5944.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 9884.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 10461.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 237.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 16 12429.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 13154.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 18 13879.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 19 13611.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 20 14029.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 21 14447.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 22 14865.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 23 15283.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 24 16418.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 25 16621.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 26 16823.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 27 17026.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 28 10671.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 29 19222.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 30 19129.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 31 19036.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 32 18944.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 33 17923.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 34 17494.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 35 17065.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 36 16637.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 37 15274.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 38 14545.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 39 13815.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 40 13086.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 41 10459.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 42 9651.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 43 8843.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 44 5523.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 45 4566.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 46 5617.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 47 1872.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 514135.26(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 514135.26(lbs) TOTAL AREA OF SLIDING MASS = 4284.46(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 47 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 1 300.00 28.00 24 1 300.00 28.00 25 1 300.00 28.00 26 1 300.00 28.00 27 1 300.00 28.00 28 2 200.00 30.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 39 2 200.00 30.00 40 2 200.00 30.00 41 2 200.00 30.00 42 2 200.00 30.00 43 2 200.00 30.00 44 2 200.00 30.00 45 2 200.00 30.00 46 2 200.00 30.00 47 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 47 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 4.19 93.69 5.00 196.13 118.16 1.660 2 4.19 98.68 5.00 453.08 354.47 1.278 3 4.19 103.66 5.00 710.03 590.78 1.202 4 4.19 108.65 5.00 966.98 827.10 1.169 5 4.19 113.64 5.00 1223.93 1063.41 1.151 6 8.56 118.49 4.77 1350.81 1271.45 1.062 7 8.56 123.21 4.77 1534.86 1451.22 1.058 8 8.56 127.92 4.77 1718.91 1630.99 1.054 9 8.56 132.64 4.77 1902.97 1810.76 1.051 10 8.56 135.05 0.10 1996.93 1902.53 1.050 11 8.56 136.54 2.91 2054.32 1958.59 1.049 12 8.56 139.41 2.91 2165.26 2066.95 1.048 13 12.94 143.11 4.64 2142.94 2184.87 0.981 14 12.94 147.64 4.64 2266.12 2312.37 0.980 15 12.94 149.95 0.10 2329.06 2377.52 0.980 16 12.94 152.54 5.20 2399.47 2450.40 0.979 17 12.94 157.61 5.20 2537.57 2593.34 0.978 18 12.94 162.68 5.20 2675.66 2736.28 0.978 19 17.31 167.60 5.00 2619.36 2851.53 0.919 20 17.31 172.38 5.00 2699.29 2939.09 0.918 21 17.31 177.15 5.00 2779.21 3026.65 0.918 22 17.31 181.92 5.00 2859.13 3114.20 0.918 23 17.31 186.70 5.00 2939.05 3201.76 0.918 24 21.69 191.60 5.41 2819.70 3265.71 0.863 25 21.69 196.63 5.41 2854.50 3306.05 0.863 26 21.69 201.65 5.41 2889.31 3346.38 0.863 27 21.69 206.68 5.41 2924.11 3386.72 0.863 28 21.69 210.75 3.36 2952.53 3419.41 0.863 29 26.06 215.12 6.25 2778.70 3423.67 0.812 30 26.06 220.74 6.25 2765.25 3407.14 0.812 31 26.06 226.35 6.25 2751.80 3390.62 0.812 32 26.06 231.97 6.25 2738.35 3374.09 0.812 33 30.44 237.47 6.25 2533.85 3326.06 0.762 34 30.44 242.86 6.25 2472.85 3246.51 0.762 35 30.44 248.25 6.25 2411.85 3166.96 0.762 36 30.44 253.63 6.25 2350.84 3087.41 0.761 37 34.81 258.89 6.25 2121.44 2976.59 0.713 38 34.81 264.03 6.25 2027.53 2834.48 0.715 39 34.81 269.16 6.25 1943.35 2692.37 0.722 40 34.81 274.29 6.25 1857.12 2550.26 0.728 41 39.19 279.05 5.65 1649.33 2387.02 0.691 42 39.19 283.43 5.65 1535.25 2202.64 0.697 43 39.19 287.81 5.65 1417.99 2018.26 0.703 44 39.19 291.56 4.02 1247.89 1772.50 0.704 45 39.19 294.67 4.02 1028.54 1465.34 0.702 46 43.56 299.09 7.88 636.99 983.82 0.647 47 43.56 304.80 7.88 157.34 327.94 0.480 ***TABLE 5A - Total Base Force Data on the 47 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 4.19 93.69 5.00 980.65 589.21 1.664 2 4.19 98.68 5.00 2265.40 1767.63 1.282 3 4.19 103.66 5.00 3550.16 2946.04 1.205 4 4.19 108.65 5.00 4834.91 4124.46 1.172 5 4.19 113.64 5.00 6119.67 5302.88 1.154 6 8.56 118.49 4.77 6444.22 5998.09 1.074 7 8.56 123.21 4.77 7322.28 6846.15 1.070 8 8.56 127.92 4.77 8200.34 7694.22 1.066 9 8.56 132.64 4.77 9078.41 8542.29 1.063 10 8.56 135.05 0.10 201.94 190.25 1.061 11 8.56 136.54 2.91 5974.24 5632.39 1.061 12 8.56 139.41 2.91 6296.86 5943.99 1.059 13 12.94 143.11 4.64 9947.68 9884.94 1.006 14 12.94 147.64 4.64 10519.46 10461.76 1.006 15 12.94 149.95 0.10 238.97 237.75 1.005 16 12.94 152.54 5.20 12487.86 12429.30 1.005 17 12.94 157.61 5.20 13206.57 13154.35 1.004 18 12.94 162.68 5.20 13925.28 13879.39 1.003 19 17.31 167.60 5.00 13096.82 13611.89 0.962 20 17.31 172.38 5.00 13496.43 14029.84 0.962 21 17.31 177.15 5.00 13896.03 14447.80 0.962 22 17.31 181.92 5.00 14295.64 14865.76 0.962 23 17.31 186.70 5.00 14695.25 15283.71 0.961 24 21.69 191.60 5.41 15255.57 16418.18 0.929 25 21.69 196.63 5.41 15443.88 16620.97 0.929 26 21.69 201.65 5.41 15632.18 16823.76 0.929 27 21.69 206.68 5.41 15820.49 17026.55 0.929 28 21.69 210.75 3.36 9916.28 10671.52 0.929 29 26.06 215.12 6.25 17366.85 19222.39 0.903 30 26.06 220.74 6.25 17282.79 19129.62 0.903 31 26.06 226.35 6.25 17198.73 19036.85 0.903 32 26.06 231.97 6.25 17114.67 18944.07 0.903 33 30.44 237.47 6.25 15836.59 17923.28 0.884 34 30.44 242.86 6.25 15455.32 17494.61 0.883 35 30.44 248.25 6.25 15074.04 17065.95 0.883 36 30.44 253.63 6.25 14692.76 16637.29 0.883 37 34.81 258.89 6.25 13259.01 15274.40 0.868 38 34.81 264.03 6.25 12672.07 14545.17 0.871 39 34.81 269.16 6.25 12145.96 13815.93 0.879 40 34.81 274.29 6.25 11606.99 13086.70 0.887 41 39.19 279.05 5.65 9323.95 10459.36 0.891 42 39.19 283.43 5.65 8679.02 9651.47 0.899 43 39.19 287.81 5.65 8016.14 8843.57 0.906 44 39.19 291.56 4.02 5016.86 5523.31 0.908 45 39.19 294.67 4.02 4134.99 4566.18 0.906 46 43.56 299.09 7.88 5019.18 5617.53 0.893 47 43.56 304.80 7.88 1239.78 1872.51 0.662 ***TABLE 6 - Effective and Base Shear Stress Data on the 47 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 4.19 93.69 5.00 196.13 404.28 249.37 2 4.19 98.68 5.00 453.08 540.91 333.64 3 4.19 103.66 5.00 710.03 677.53 417.91 4 4.19 108.65 5.00 966.98 814.15 502.18 5 4.19 113.64 5.00 1223.93 950.78 586.45 6 8.56 118.49 4.77 1350.81 1018.24 628.06 7 8.56 123.21 4.77 1534.86 1116.10 688.43 8 8.56 127.92 4.77 1718.91 1213.96 748.79 9 8.56 132.64 4.77 1902.97 1311.83 809.15 10 8.56 135.05 0.10 1996.93 1361.78 839.97 11 8.56 136.54 2.91 2054.32 1392.30 858.79 12 8.56 139.41 2.91 2165.26 1451.29 895.17 13 12.94 143.11 4.64 2142.94 1439.42 887.86 14 12.94 147.64 4.64 2266.12 1504.91 928.25 15 12.94 149.95 0.10 2329.06 1538.38 948.90 16 12.94 152.54 5.20 2399.47 1575.82 971.99 17 12.94 157.61 5.20 2537.57 1649.25 1017.28 18 12.94 162.68 5.20 2675.66 1722.68 1062.57 19 17.31 167.60 5.00 2619.36 1692.74 1044.11 20 17.31 172.38 5.00 2699.29 1735.24 1070.32 21 17.31 177.15 5.00 2779.21 1777.73 1096.53 22 17.31 181.92 5.00 2859.13 1820.23 1122.74 23 17.31 186.70 5.00 2939.05 1862.72 1148.95 24 21.69 191.60 5.41 2819.70 1799.26 1109.81 25 21.69 196.63 5.41 2854.50 1817.77 1121.22 26 21.69 201.65 5.41 2889.31 1836.27 1132.64 27 21.69 206.68 5.41 2924.11 1854.78 1144.05 28 21.69 210.75 3.36 2952.53 1904.65 1174.81 29 26.06 215.12 6.25 2778.70 1804.28 1112.90 30 26.06 220.74 6.25 2765.25 1796.52 1108.12 31 26.06 226.35 6.25 2751.80 1788.75 1103.33 32 26.06 231.97 6.25 2738.35 1780.99 1098.54 33 30.44 237.47 6.25 2533.85 1662.92 1025.71 34 30.44 242.86 6.25 2472.85 1627.70 1003.99 35 30.44 248.25 6.25 2411.85 1592.48 982.26 36 30.44 253.63 6.25 2350.84 1557.26 960.54 37 34.81 258.89 6.25 2121.44 1424.81 878.85 38 34.81 264.03 6.25 2027.53 1370.60 845.40 39 34.81 269.16 6.25 1943.35 1322.00 815.43 40 34.81 274.29 6.25 1857.12 1272.21 784.71 41 39.19 279.05 5.65 1649.33 1152.24 710.72 42 39.19 283.43 5.65 1535.25 1086.38 670.09 43 39.19 287.81 5.65 1417.99 1018.68 628.34 44 39.19 291.56 4.02 1247.89 920.47 567.76 45 39.19 294.67 4.02 1028.54 793.83 489.64 46 43.56 299.09 7.88 636.99 567.76 350.20 47 43.56 304.80 7.88 157.34 290.84 179.39 ***TABLE 6A - Effective and Base Shear Force Data on the 47 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 4.19 93.69 5.00 980.65 2021.42 1246.84 2 4.19 98.68 5.00 2265.40 2704.53 1668.19 3 4.19 103.66 5.00 3550.16 3387.65 2089.55 4 4.19 108.65 5.00 4834.91 4070.77 2510.90 5 4.19 113.64 5.00 6119.67 4753.88 2932.26 6 8.56 118.49 4.77 6444.22 4857.65 2996.26 7 8.56 123.21 4.77 7322.28 5324.52 3284.24 8 8.56 127.92 4.77 8200.34 5791.40 3572.21 9 8.56 132.64 4.77 9078.41 6258.27 3860.19 10 8.56 135.05 0.10 201.94 137.71 84.94 11 8.56 136.54 2.91 5974.24 4049.00 2497.48 12 8.56 139.41 2.91 6296.86 4220.54 2603.28 13 12.94 143.11 4.64 9947.68 6681.89 4121.48 14 12.94 147.64 4.64 10519.46 6985.91 4309.01 15 12.94 149.95 0.10 238.97 157.84 97.36 16 12.94 152.54 5.20 12487.86 8201.24 5058.64 17 12.94 157.61 5.20 13206.57 8583.38 5294.35 18 12.94 162.68 5.20 13925.28 8965.53 5530.06 19 17.31 167.60 5.00 13096.82 8463.70 5220.53 20 17.31 172.38 5.00 13496.43 8676.18 5351.58 21 17.31 177.15 5.00 13896.03 8888.65 5482.64 22 17.31 181.92 5.00 14295.64 9101.13 5613.70 23 17.31 186.70 5.00 14695.25 9313.60 5744.75 24 21.69 191.60 5.41 15255.57 9734.64 6004.46 25 21.69 196.63 5.41 15443.88 9834.76 6066.21 26 21.69 201.65 5.41 15632.18 9934.89 6127.97 27 21.69 206.68 5.41 15820.49 10035.01 6189.73 28 21.69 210.75 3.36 9916.28 6396.88 3945.68 29 26.06 215.12 6.25 17366.85 11276.75 6955.65 30 26.06 220.74 6.25 17282.79 11228.22 6925.72 31 26.06 226.35 6.25 17198.73 11179.69 6895.78 32 26.06 231.97 6.25 17114.67 11131.16 6865.85 33 30.44 237.47 6.25 15836.59 10393.26 6410.70 34 30.44 242.86 6.25 15455.32 10173.13 6274.92 35 30.44 248.25 6.25 15074.04 9953.00 6139.15 36 30.44 253.63 6.25 14692.76 9732.87 6003.37 37 34.81 258.89 6.25 13259.01 8905.09 5492.78 38 34.81 264.03 6.25 12672.07 8566.22 5283.76 39 34.81 269.16 6.25 12145.96 8262.47 5096.41 40 34.81 274.29 6.25 11606.99 7951.30 4904.47 41 39.19 279.05 5.65 9323.95 6513.81 4017.81 42 39.19 283.43 5.65 8679.02 6141.47 3788.14 43 39.19 287.81 5.65 8016.14 5758.75 3552.08 44 39.19 291.56 4.02 5016.86 3700.54 2282.54 45 39.19 294.67 4.02 4134.99 3191.39 1968.49 46 43.56 299.09 7.88 5019.18 4473.74 2759.46 47 43.56 304.80 7.88 1239.78 2291.70 1413.55 Average Effective Normal Stress = 2011.4672(psf) Average Available Shear Strength = 1363.8408(psf) Total Length of Failure Surface = 240.7592(ft) SUM OF MOMENTS = -0.148934E+00 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.2896781E-06 SUM OF FORCES = -.409033E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.7955748E- 10 Sum of Available Shear Forces = 328357.16(lbs) Sum of Mobilized Shear Forces = 202535.15(lbs) FS Balance Check: FS = 1.621235 **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection A-A' Block (Static)Ninyo & Moore / WRM\A-A' Block.gsdSpencer MethodPLATE E-2 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.801 2 1.801 3 1.801 4 1.801 5 1.801 6 1.801 7 1.801 8 1.801 9 1.80110 1.801GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.801 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.801 2 1.801 3 1.801 4 1.801 5 1.801 6 1.801 7 1.801 8 1.801 9 1.801 10 1.801 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Block\A-A' Block.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Block\A-A' Block.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Block (Static) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 620.000 88.000 620.000 1 2 88.000 620.000 135.000 642.000 1 3 135.000 642.000 290.000 714.000 2 4 290.000 714.000 450.000 713.000 2 5 450.000 713.000 555.000 715.000 2 6 555.000 715.000 570.000 717.000 2 7 570.000 717.000 590.000 717.000 2 8 590.000 717.000 610.000 717.000 2 9 610.000 717.000 660.000 713.000 2 10 660.000 713.000 855.000 713.000 2 11 855.000 713.000 900.000 713.000 2 12 135.000 642.000 135.100 637.000 1 13 135.100 637.000 149.900 637.000 1 14 149.900 637.000 150.000 643.000 1 15 150.000 643.000 465.000 670.000 1 16 465.000 670.000 636.000 708.000 1 17 636.000 708.000 855.000 708.000 1 18 855.000 708.000 855.100 712.000 1 19 855.100 712.000 900.000 712.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search = 5.00(ft) Zone X - 1 Y - 1 X - 2 Y - 2 Height No. (ft) (ft) (ft) (ft) (ft) 1 150.00 643.50 150.00 643.50 0.10 2 150.10 643.50 465.00 670.50 0.10 The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 483 Number of Trial Surfaces With Valid FS = 4517 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 9.7 % Statistical Data On All Valid FS Values: FS Max = 9.030 FS Min = 1.801 FS Ave = 3.130 Standard Deviation = 0.934 Coefficient of Variation = 29.84 % Critical Surface is Sequence Number 447 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.923519 1.765767 0.268 0.1577516E+00 2 19.9500 1.838297 1.792615 0.363 0.4568249E-01 3 21.9674 1.778809 1.804638 0.403 0.2582887E-01 4 21.2389 1.802694 1.800213 0.389 0.2481708E-02 5 21.3029 1.800716 1.800597 0.390 0.1183768E-03 6 21.3061 1.800616 1.800617 0.390 0.5640570E-06 Factor Of Safety For The Preceding Specified Surface = 1.801 Theta (fx = 1.0) = 21.31 Deg Lambda = 0.390 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 145.33 645.99 0.461 667.03 1.000 21.31 242.4 2 150.00 645.72 0.404 4139.63 1.000 21.31 1504.1 3 154.97 646.81 0.391 5807.66 1.000 21.31 2110.2 4 159.94 647.83 0.376 7779.92 1.000 21.31 2826.8 5 164.91 648.82 0.362 10056.41 1.000 21.31 3654.0 6 169.88 649.78 0.351 12637.12 1.000 21.31 4591.7 7 174.85 650.73 0.342 15522.06 1.000 21.31 5639.9 8 179.82 651.67 0.335 18711.23 1.000 21.31 6798.7 9 184.79 652.60 0.328 22204.63 1.000 21.31 8068.0 10 189.76 653.54 0.323 26002.26 1.000 21.31 9447.9 11 194.73 654.47 0.319 30104.11 1.000 21.31 10938.3 12 199.70 655.40 0.315 34510.19 1.000 21.31 12539.3 13 204.67 656.33 0.311 39220.49 1.000 21.31 14250.8 14 208.97 658.52 0.305 36768.22 1.000 21.31 13359.7 15 213.28 660.71 0.297 34377.90 1.000 21.31 12491.2 16 217.59 662.91 0.290 32049.53 1.000 21.31 11645.2 17 221.90 665.09 0.282 29783.12 1.000 21.31 10821.7 18 226.20 667.28 0.273 27578.67 1.000 21.31 10020.7 19 230.51 669.47 0.264 25436.18 1.000 21.31 9242.2 20 234.82 671.65 0.255 23355.64 1.000 21.31 8486.3 21 239.13 673.83 0.244 21337.05 1.000 21.31 7752.8 22 243.43 676.00 0.234 19380.43 1.000 21.31 7041.9 23 247.74 678.18 0.222 17485.76 1.000 21.31 6353.4 24 252.05 680.35 0.210 15653.04 1.000 21.31 5687.5 25 256.36 682.52 0.197 13882.28 1.000 21.31 5044.1 26 260.66 684.68 0.183 12173.48 1.000 21.31 4423.2 27 264.97 686.84 0.168 10526.64 1.000 21.31 3824.9 28 269.28 689.00 0.152 8941.75 1.000 21.31 3249.0 29 273.59 691.16 0.135 7418.82 1.000 21.31 2695.6 30 277.89 693.32 0.117 5957.84 1.000 21.31 2164.8 31 282.20 695.46 0.097 4554.98 0.983 20.98 1630.8 32 286.51 697.47 0.067 3202.00 0.858 18.51 1016.3 33 290.00 698.86 0.026 2164.02 0.757 16.45 612.7 34 290.82 699.13 0.013 1932.12 0.733 15.96 531.2 35 295.13 699.72 0.000- 888.90 0.608 13.35 205.2 36 299.43 687.46 0.000- 141.05 0.483 10.67 26.1 37 303.74 713.31 0.918 -315.71 0.358 7.96 -43.7 38 308.05 711.79 0.563 -482.00 0.233 5.20 -43.7 39 312.36 712.66 0.459 -354.48 0.108 2.42 -15.0 40 316.09 713.84 0.000 0.02 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 40 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 1.58 0.75 144.54 645.68 646.43 -25.80 24.92 1.75 2 4.67 3.47 147.66 644.41 647.88 -20.80 24.92 5.00 3 4.97 6.39 152.48 643.74 650.12 4.86 24.92 4.99 4 4.97 8.27 157.45 644.16 652.43 4.86 24.92 4.99 5 4.97 10.16 162.42 644.58 654.74 4.86 24.92 4.99 6 4.97 12.04 167.39 645.00 657.05 4.86 24.92 4.99 7 4.97 13.93 172.36 645.42 659.36 4.86 24.92 4.99 8 4.97 15.82 177.33 645.85 661.66 4.86 24.92 4.99 9 4.97 17.70 182.30 646.27 663.97 4.86 24.92 4.99 10 4.97 19.59 187.27 646.69 666.28 4.86 24.92 4.99 11 4.97 21.48 192.24 647.11 668.59 4.86 24.92 4.99 12 4.97 23.36 197.21 647.54 670.90 4.86 24.92 4.99 13 4.97 25.25 202.18 647.96 673.21 4.86 24.92 4.99 14 4.31 25.92 206.82 649.44 675.36 30.51 24.92 5.00 15 4.31 25.39 211.13 651.98 677.36 30.51 24.92 5.00 16 4.31 24.85 215.43 654.52 679.36 30.51 24.92 5.00 17 4.31 24.31 219.74 657.05 681.36 30.51 24.92 5.00 18 4.31 23.77 224.05 659.59 683.37 30.51 24.92 5.00 19 4.31 23.23 228.36 662.13 685.37 30.51 24.92 5.00 20 4.31 22.70 232.66 664.67 687.37 30.51 24.92 5.00 21 4.31 22.16 236.97 667.21 689.37 30.51 24.92 5.00 22 4.31 21.62 241.28 669.75 691.37 30.51 24.92 5.00 23 4.31 21.08 245.59 672.29 693.37 30.51 24.92 5.00 24 4.31 20.55 249.90 674.82 695.37 30.51 24.92 5.00 25 4.31 20.01 254.20 677.36 697.37 30.51 24.92 5.00 26 4.31 19.47 258.51 679.90 699.37 30.51 24.92 5.00 27 4.31 18.93 262.82 682.44 701.37 30.51 24.92 5.00 28 4.31 18.40 267.13 684.98 703.37 30.51 24.92 5.00 29 4.31 17.86 271.43 687.52 705.38 30.51 24.92 5.00 30 4.31 17.32 275.74 690.06 707.38 30.51 24.92 5.00 31 4.31 16.78 280.05 692.60 709.38 30.51 24.92 5.00 32 4.31 16.24 284.36 695.13 711.38 30.51 24.92 5.00 33 3.49 15.76 288.25 697.43 713.19 30.51 24.92 4.05 34 0.82 15.30 290.41 698.70 714.00 30.51 -0.36 0.95 35 4.31 13.77 292.97 700.21 713.98 30.51 -0.36 5.00 36 4.31 11.20 297.28 702.75 713.95 30.51 -0.36 5.00 37 4.31 8.64 301.59 705.29 713.93 30.51 -0.36 5.00 38 4.31 6.07 305.89 707.83 713.90 30.51 -0.36 5.00 39 4.31 3.51 310.20 710.37 713.87 30.51 -0.36 5.00 40 3.74 1.11 314.22 712.74 713.85 30.51 -0.36 4.34 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 143.747378 646.063298 2 145.325863 645.300238 3 150.000000 643.524725 4 154.969591 643.946952 5 159.939181 644.369179 6 164.908772 644.791406 7 169.878362 645.213632 8 174.847953 645.635859 9 179.817544 646.058086 10 184.787134 646.480313 11 189.756725 646.902540 12 194.726316 647.324766 13 199.695906 647.746993 14 204.665497 648.169220 15 208.973097 650.707840 16 213.280697 653.246460 17 217.588297 655.785080 18 221.895896 658.323700 19 226.203496 660.862320 20 230.511096 663.400940 21 234.818696 665.939560 22 239.126296 668.478180 23 243.433896 671.016800 24 247.741496 673.555421 25 252.049096 676.094041 26 256.356696 678.632661 27 260.664295 681.171281 28 264.971895 683.709901 29 269.279495 686.248521 30 273.587095 688.787141 31 277.894695 691.325761 32 282.202295 693.864381 33 286.509895 696.403001 34 290.000000 698.459843 35 290.817495 698.941621 36 295.125095 701.480241 37 299.432694 704.018861 38 303.740294 706.557481 39 308.047894 709.096101 40 312.355494 711.634721 41 316.092250 713.836923 ***Table 3 - Force and Pore Pressure Data On The 40 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 141.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 1946.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 3808.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 4933.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 6058.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 7182.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 8307.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 9432.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 10557.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 11682.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 12807.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 13932.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 15056.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 13399.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 13121.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 16 12843.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 12566.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 18 12288.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 19 12010.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 20 11732.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 21 11454.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 22 11176.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 23 10898.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 24 10620.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 25 10342.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 26 10064.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 27 9786.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 28 9508.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 29 9230.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 30 8952.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 31 8675.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 32 8397.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 33 6599.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 34 1500.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 35 7118.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 36 5792.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 37 4465.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 38 3139.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 39 1813.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 40 499.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 343844.72(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 343844.72(lbs) TOTAL AREA OF SLIDING MASS = 2865.37(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 40 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 21 2 200.00 30.00 22 2 200.00 30.00 23 2 200.00 30.00 24 2 200.00 30.00 25 2 200.00 30.00 26 2 200.00 30.00 27 2 200.00 30.00 28 2 200.00 30.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 39 2 200.00 30.00 40 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 40 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -25.80 144.54 1.75 351.50 89.78 3.915 2 -20.80 147.66 5.00 829.53 416.36 1.992 3 4.86 152.48 4.99 855.55 766.34 1.116 4 4.86 157.45 4.99 1097.55 992.68 1.106 5 4.86 162.42 4.99 1339.55 1219.03 1.099 6 4.86 167.39 4.99 1581.54 1445.38 1.094 7 4.86 172.36 4.99 1823.54 1671.73 1.091 8 4.86 177.33 4.99 2065.54 1898.07 1.088 9 4.86 182.30 4.99 2307.54 2124.42 1.086 10 4.86 187.27 4.99 2549.54 2350.77 1.085 11 4.86 192.24 4.99 2791.54 2577.11 1.083 12 4.86 197.21 4.99 3033.53 2803.46 1.082 13 4.86 202.18 4.99 3275.53 3029.81 1.081 14 30.51 206.82 5.00 2387.30 3110.72 0.767 15 30.51 211.13 5.00 2337.43 3046.20 0.767 16 30.51 215.43 5.00 2287.56 2981.68 0.767 17 30.51 219.74 5.00 2237.69 2917.16 0.767 18 30.51 224.05 5.00 2187.81 2852.64 0.767 19 30.51 228.36 5.00 2137.94 2788.12 0.767 20 30.51 232.66 5.00 2088.07 2723.60 0.767 21 30.51 236.97 5.00 2038.20 2659.08 0.767 22 30.51 241.28 5.00 1988.33 2594.56 0.766 23 30.51 245.59 5.00 1938.46 2530.04 0.766 24 30.51 249.90 5.00 1888.59 2465.52 0.766 25 30.51 254.20 5.00 1838.72 2401.00 0.766 26 30.51 258.51 5.00 1788.85 2336.48 0.766 27 30.51 262.82 5.00 1738.98 2271.96 0.765 28 30.51 267.13 5.00 1689.11 2207.44 0.765 29 30.51 271.43 5.00 1639.24 2142.92 0.765 30 30.51 275.74 5.00 1589.37 2078.40 0.765 31 30.51 280.05 5.00 1541.03 2013.88 0.765 32 30.51 284.36 5.00 1502.13 1949.35 0.771 33 30.51 288.25 4.05 1465.19 1890.96 0.775 34 30.51 290.41 0.95 1423.53 1835.61 0.776 35 30.51 292.97 5.00 1287.89 1652.46 0.779 36 30.51 297.28 5.00 1048.77 1344.59 0.780 37 30.51 301.59 5.00 804.55 1036.73 0.776 38 30.51 305.89 5.00 555.05 728.86 0.762 39 30.51 310.20 5.00 300.12 421.00 0.713 40 30.51 314.22 4.34 57.25 133.53 0.429 ***TABLE 5A - Total Base Force Data on the 40 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -25.80 144.54 1.75 616.26 141.71 4.349 2 -20.80 147.66 5.00 4147.66 1946.12 2.131 3 4.86 152.48 4.99 4267.05 3808.37 1.120 4 4.86 157.45 4.99 5474.01 4933.23 1.110 5 4.86 162.42 4.99 6680.98 6058.08 1.103 6 4.86 167.39 4.99 7887.94 7182.94 1.098 7 4.86 172.36 4.99 9094.91 8307.79 1.095 8 4.86 177.33 4.99 10301.87 9432.64 1.092 9 4.86 182.30 4.99 11508.84 10557.50 1.090 10 4.86 187.27 4.99 12715.80 11682.35 1.088 11 4.86 192.24 4.99 13922.77 12807.21 1.087 12 4.86 197.21 4.99 15129.73 13932.06 1.086 13 4.86 202.18 4.99 16336.70 15056.91 1.085 14 30.51 206.82 5.00 11936.49 13399.75 0.891 15 30.51 211.13 5.00 11687.14 13121.82 0.891 16 30.51 215.43 5.00 11437.78 12843.89 0.891 17 30.51 219.74 5.00 11188.43 12565.97 0.890 18 30.51 224.05 5.00 10939.08 12288.04 0.890 19 30.51 228.36 5.00 10689.72 12010.11 0.890 20 30.51 232.66 5.00 10440.37 11732.18 0.890 21 30.51 236.97 5.00 10191.02 11454.25 0.890 22 30.51 241.28 5.00 9941.66 11176.32 0.890 23 30.51 245.59 5.00 9692.31 10898.40 0.889 24 30.51 249.90 5.00 9442.96 10620.47 0.889 25 30.51 254.20 5.00 9193.60 10342.54 0.889 26 30.51 258.51 5.00 8944.25 10064.61 0.889 27 30.51 262.82 5.00 8694.90 9786.68 0.888 28 30.51 267.13 5.00 8445.55 9508.75 0.888 29 30.51 271.43 5.00 8196.19 9230.83 0.888 30 30.51 275.74 5.00 7946.84 8952.90 0.888 31 30.51 280.05 5.00 7705.16 8674.97 0.888 32 30.51 284.36 5.00 7510.64 8397.04 0.894 33 30.51 288.25 4.05 5935.64 6599.64 0.899 34 30.51 290.41 0.95 1350.78 1500.60 0.900 35 30.51 292.97 5.00 6439.45 7118.14 0.905 36 30.51 297.28 5.00 5243.87 5791.98 0.905 37 30.51 301.59 5.00 4022.75 4465.82 0.901 38 30.51 305.89 5.00 2775.27 3139.66 0.884 39 30.51 310.20 5.00 1500.58 1813.50 0.827 40 30.51 314.22 4.34 248.34 498.98 0.498 ***TABLE 6 - Effective and Base Shear Stress Data on the 40 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -25.80 144.54 1.75 351.50 402.94 223.78 2 -20.80 147.66 5.00 829.53 678.93 377.05 3 4.86 152.48 4.99 855.55 693.95 385.40 4 4.86 157.45 4.99 1097.55 833.67 462.99 5 4.86 162.42 4.99 1339.55 973.39 540.59 6 4.86 167.39 4.99 1581.54 1113.10 618.18 7 4.86 172.36 4.99 1823.54 1252.82 695.77 8 4.86 177.33 4.99 2065.54 1392.54 773.37 9 4.86 182.30 4.99 2307.54 1532.26 850.96 10 4.86 187.27 4.99 2549.54 1671.98 928.56 11 4.86 192.24 4.99 2791.54 1811.69 1006.15 12 4.86 197.21 4.99 3033.53 1951.41 1083.75 13 4.86 202.18 4.99 3275.53 2091.13 1161.34 14 30.51 206.82 5.00 2387.30 1578.31 876.54 15 30.51 211.13 5.00 2337.43 1549.51 860.55 16 30.51 215.43 5.00 2287.56 1520.72 844.56 17 30.51 219.74 5.00 2237.69 1491.93 828.57 18 30.51 224.05 5.00 2187.81 1463.14 812.57 19 30.51 228.36 5.00 2137.94 1434.34 796.58 20 30.51 232.66 5.00 2088.07 1405.55 780.59 21 30.51 236.97 5.00 2038.20 1376.76 764.60 22 30.51 241.28 5.00 1988.33 1347.96 748.61 23 30.51 245.59 5.00 1938.46 1319.17 732.62 24 30.51 249.90 5.00 1888.59 1290.38 716.63 25 30.51 254.20 5.00 1838.72 1261.59 700.64 26 30.51 258.51 5.00 1788.85 1232.79 684.65 27 30.51 262.82 5.00 1738.98 1204.00 668.66 28 30.51 267.13 5.00 1689.11 1175.21 652.67 29 30.51 271.43 5.00 1639.24 1146.41 636.68 30 30.51 275.74 5.00 1589.37 1117.62 620.69 31 30.51 280.05 5.00 1541.03 1089.71 605.19 32 30.51 284.36 5.00 1502.13 1067.25 592.72 33 30.51 288.25 4.05 1465.19 1045.93 580.87 34 30.51 290.41 0.95 1423.53 1021.88 567.51 35 30.51 292.97 5.00 1287.89 943.56 524.02 36 30.51 297.28 5.00 1048.77 805.51 447.35 37 30.51 301.59 5.00 804.55 664.51 369.04 38 30.51 305.89 5.00 555.05 520.46 289.05 39 30.51 310.20 5.00 300.12 373.27 207.30 40 30.51 314.22 4.34 57.25 233.06 129.43 ***TABLE 6A - Effective and Base Shear Force Data on the 40 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -25.80 144.54 1.75 616.26 706.45 392.34 2 -20.80 147.66 5.00 4147.66 3394.65 1885.27 3 4.86 152.48 4.99 4267.05 3461.08 1922.16 4 4.86 157.45 4.99 5474.01 4157.92 2309.17 5 4.86 162.42 4.99 6680.98 4854.76 2696.17 6 4.86 167.39 4.99 7887.94 5551.60 3083.17 7 4.86 172.36 4.99 9094.91 6248.45 3470.17 8 4.86 177.33 4.99 10301.87 6945.29 3857.17 9 4.86 182.30 4.99 11508.84 7642.13 4244.17 10 4.86 187.27 4.99 12715.80 8338.97 4631.18 11 4.86 192.24 4.99 13922.77 9035.81 5018.18 12 4.86 197.21 4.99 15129.73 9732.65 5405.18 13 4.86 202.18 4.99 16336.70 10429.50 5792.18 14 30.51 206.82 5.00 11936.49 7891.53 4382.69 15 30.51 211.13 5.00 11687.14 7747.57 4302.73 16 30.51 215.43 5.00 11437.78 7603.61 4222.78 17 30.51 219.74 5.00 11188.43 7459.64 4142.83 18 30.51 224.05 5.00 10939.08 7315.68 4062.87 19 30.51 228.36 5.00 10689.72 7171.71 3982.92 20 30.51 232.66 5.00 10440.37 7027.75 3902.97 21 30.51 236.97 5.00 10191.02 6883.79 3823.02 22 30.51 241.28 5.00 9941.66 6739.82 3743.06 23 30.51 245.59 5.00 9692.31 6595.86 3663.11 24 30.51 249.90 5.00 9442.96 6451.89 3583.16 25 30.51 254.20 5.00 9193.60 6307.93 3503.21 26 30.51 258.51 5.00 8944.25 6163.97 3423.25 27 30.51 262.82 5.00 8694.90 6020.00 3343.30 28 30.51 267.13 5.00 8445.55 5876.04 3263.35 29 30.51 271.43 5.00 8196.19 5732.07 3183.40 30 30.51 275.74 5.00 7946.84 5588.11 3103.44 31 30.51 280.05 5.00 7705.16 5448.58 3025.95 32 30.51 284.36 5.00 7510.64 5336.27 2963.58 33 30.51 288.25 4.05 5935.64 4237.17 2353.18 34 30.51 290.41 0.95 1350.78 969.66 538.51 35 30.51 292.97 5.00 6439.45 4717.82 2620.11 36 30.51 297.28 5.00 5243.87 4027.55 2236.76 37 30.51 301.59 5.00 4022.75 3322.54 1845.22 38 30.51 305.89 5.00 2775.27 2602.31 1445.23 39 30.51 310.20 5.00 1500.58 1866.36 1036.51 40 30.51 314.22 4.34 248.34 1010.86 561.40 Average Effective Normal Stress = 1727.2581(psf) Average Available Shear Strength = 1197.2329(psf) Total Length of Failure Surface = 190.9531(ft) SUM OF MOMENTS = -0.366176E-01 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.1064947E-06 SUM OF FORCES = -.299739E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.8717272E- 10 Sum of Available Shear Forces = 228615.34(lbs) Sum of Mobilized Shear Forces = 126965.04(lbs) FS Balance Check: FS = 1.800616 **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - CircularNinyo & Moore / WRM\B-B' East Slope Circular.gsdSpencer MethodPLATE E-3 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.598 2 1.600 3 1.601 4 1.610 5 1.610 6 1.613 7 1.616 8 1.617 9 1.61810 1.621GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.598 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.598 2 1.600 3 1.601 4 1.610 5 1.610 6 1.613 7 1.616 8 1.617 9 1.618 10 1.621 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Circular.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Circular.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope - Circular BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 640.000 30.000 643.000 1 2 30.000 643.000 57.000 657.000 1 3 57.000 657.000 155.000 708.000 2 4 155.000 708.000 205.000 710.000 2 5 205.000 710.000 828.000 710.000 2 6 828.000 710.000 876.000 686.000 2 7 876.000 686.000 900.000 686.000 1 8 57.000 657.000 57.100 652.000 1 9 57.100 652.000 71.900 652.000 1 10 71.900 652.000 72.000 658.000 1 11 72.000 658.000 245.000 683.000 1 12 245.000 683.000 371.000 705.000 1 13 371.000 705.000 700.000 705.000 1 14 700.000 705.000 700.100 709.000 1 15 700.100 709.000 813.000 709.000 1 16 813.000 709.000 861.000 686.000 1 17 861.000 686.000 876.000 686.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 0.00(ft) and X = 80.00(ft) Each Surface Enters within a Range Between X = 130.00(ft) and X = 600.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 500.00(ft) Specified Maximum Radius = 5000.000(ft) 20.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 969 Number of Trial Surfaces With Valid FS = 4031 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 19.4 % Statistical Data On All Valid FS Values: FS Max = 11.962 FS Min = 1.598 FS Ave = 3.888 Standard Deviation = 1.997 Coefficient of Variation = 51.36 % Critical Surface is Sequence Number 1743 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 40.107367(ft) ; Y = 798.816762(ft); and Radius = 155.152730(ft) Circular Trial Failure Surface Generated With 9 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 31.718 643.891 2 51.717 644.099 3 71.523 646.878 4 90.807 652.182 5 109.249 659.922 6 126.541 669.970 7 142.398 682.159 8 156.554 696.287 9 165.935 708.437 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.735514 1.564095 0.268 0.1714187E+00 2 19.9500 1.669606 1.582938 0.363 0.8666738E-01 3 25.0109 1.565991 1.603849 0.467 0.3785826E-01 4 23.4726 1.602877 1.597285 0.434 0.5592380E-02 5 23.6708 1.598434 1.598120 0.438 0.3142604E-03 6 23.6827 1.598167 1.598169 0.439 0.2728417E-05 7 23.6826 1.598169 1.598169 0.439 0.5028648E-08 Factor Of Safety For The Preceding Specified Surface = 1.598 Theta (fx = 1.0) = 23.68 Deg Lambda = 0.439 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 36.72 645.01 0.421 1500.00 1.000 23.68 602.5 2 41.72 645.95 0.385 3622.22 1.000 23.68 1454.9 3 46.72 646.84 0.366 6366.65 1.000 23.68 2557.3 4 51.72 647.70 0.354 9733.31 1.000 23.68 3909.6 5 54.36 648.38 0.350 11044.77 1.000 23.68 4436.3 6 57.00 649.06 0.347 12425.35 1.000 23.68 4990.9 7 57.10 649.09 0.347 12478.98 1.000 23.68 5012.4 8 61.91 650.32 0.341 15174.68 1.000 23.68 6095.2 9 66.72 651.54 0.336 18100.55 1.000 23.68 7270.4 10 71.52 652.75 0.332 21256.59 1.000 23.68 8538.1 11 71.90 652.88 0.332 21381.83 1.000 23.68 8588.4 12 72.00 652.91 0.332 21415.11 1.000 23.68 8601.8 13 76.70 654.54 0.329 22999.73 1.000 23.68 9238.3 14 81.40 656.17 0.327 24622.80 1.000 23.68 9890.2 15 86.11 657.79 0.325 26284.32 1.000 23.68 10557.6 16 90.81 659.41 0.322 27984.28 1.000 23.68 11240.4 17 95.42 661.45 0.320 27917.33 1.000 23.68 11213.5 18 100.03 663.49 0.319 27829.65 1.000 23.68 11178.3 19 104.64 665.54 0.317 27721.26 1.000 23.68 11134.8 20 109.25 667.60 0.316 27592.14 1.000 23.68 11082.9 21 113.21 669.78 0.315 26034.44 1.000 23.68 10457.2 22 117.18 671.98 0.313 24500.57 1.000 23.68 9841.1 23 121.86 674.59 0.312 22714.59 1.000 23.68 9123.7 24 126.54 677.23 0.313 20957.94 1.000 23.68 8418.2 25 131.83 680.87 0.312 17374.86 1.000 23.68 6978.9 26 137.11 684.60 0.316 14046.09 1.000 23.68 5641.9 27 142.40 688.24 0.316 10930.28 0.877 21.04 3923.5 28 146.60 691.53 0.300 7763.10 0.720 17.53 2338.8 29 150.80 694.66 0.270 5012.56 0.564 13.89 1203.4 30 155.00 697.75 0.227 2657.26 0.407 10.13 467.4 31 156.55 698.92 0.223 1913.42 0.349 8.71 289.9 32 161.24 705.22 0.485 -15.70 0.175 4.38 -1.2 33 165.93 708.44 0.000 0.00 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 33 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 5.00 1.27 34.22 643.92 645.19 0.60 27.41 5.00 2 5.00 3.81 39.22 643.97 647.78 0.60 27.41 5.00 3 5.00 6.35 44.22 644.02 650.37 0.60 27.41 5.00 4 5.00 8.89 49.22 644.07 652.96 0.60 27.41 5.00 5 2.64 10.66 53.04 644.28 654.95 7.99 27.41 2.67 6 2.64 11.66 55.68 644.65 656.32 7.99 27.41 2.67 7 0.10 12.18 57.05 644.85 657.03 7.99 27.49 0.10 8 4.81 13.11 59.50 645.19 658.30 7.99 27.49 4.85 9 4.81 14.94 64.31 645.87 660.81 7.99 27.49 4.85 10 4.81 16.77 69.12 646.54 663.31 7.99 27.49 4.85 11 0.38 17.73 71.71 646.93 664.66 15.38 27.49 0.39 12 0.10 17.78 71.95 647.00 664.78 15.38 27.49 0.10 13 4.70 18.37 74.35 647.66 666.03 15.38 27.49 4.88 14 4.70 19.53 79.05 648.95 668.48 15.38 27.49 4.88 15 4.70 20.68 83.75 650.24 670.92 15.38 27.49 4.88 16 4.70 21.84 88.46 651.53 673.37 15.38 27.49 4.88 17 4.61 22.64 93.11 653.15 675.79 22.77 27.49 5.00 18 4.61 23.11 97.72 655.08 678.19 22.77 27.49 5.00 19 4.61 23.57 102.33 657.02 680.59 22.77 27.49 5.00 20 4.61 24.04 106.94 658.95 682.99 22.77 27.49 5.00 21 3.96 24.15 111.23 661.07 685.22 30.16 27.49 4.58 22 3.96 23.91 115.19 663.38 687.29 30.16 27.49 4.58 23 4.68 23.65 119.52 665.89 689.53 30.16 27.49 5.42 24 4.68 23.36 124.20 668.61 691.97 30.16 27.49 5.42 25 5.29 22.56 129.18 672.00 694.57 37.55 27.49 6.67 26 5.29 21.25 134.47 676.06 697.32 37.55 27.49 6.67 27 5.29 19.94 139.76 680.13 700.07 37.55 27.49 6.67 28 4.20 18.28 144.50 684.26 702.53 44.94 27.49 5.93 29 4.20 16.27 148.70 688.45 704.72 44.94 27.49 5.93 30 4.20 14.27 152.90 692.64 706.91 44.94 27.49 5.93 31 1.55 12.52 155.78 695.51 708.03 44.94 2.29 2.20 32 4.69 8.83 158.90 699.32 708.16 52.33 2.29 7.68 33 4.69 2.94 163.59 705.40 708.34 52.33 2.29 7.68 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 31.718344 643.890993 2 36.718073 643.943000 3 41.717803 643.995006 4 46.717532 644.047013 5 51.717262 644.099019 6 54.358631 644.469619 7 57.000000 644.840220 8 57.100000 644.854250 9 61.907754 645.528808 10 66.715509 646.203365 11 71.523263 646.877922 12 71.900000 646.981535 13 72.000000 647.009037 14 76.701810 648.302160 15 81.403620 649.595282 16 86.105431 650.888404 17 90.807241 652.181526 18 95.417621 654.116570 19 100.028001 656.051615 20 104.638381 657.986659 21 109.248761 659.921703 22 113.212817 662.225077 23 117.176873 664.528450 24 121.859131 667.249144 25 126.541388 669.969839 26 131.826852 674.032882 27 137.112316 678.095924 28 142.397780 682.158967 29 146.598520 686.351073 30 150.799260 690.543179 31 155.000000 694.735286 32 156.554456 696.286547 33 161.244676 702.361971 34 165.934895 708.437396 ***Table 3 - Force and Pore Pressure Data On The 33 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 762.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 2286.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 3810.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 5334.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 3379.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 3695.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 146.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 7564.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 8618.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 9673.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 801.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 213.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 10366.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 11017.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 11668.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 16 12319.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 12527.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 18 12784.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 19 13041.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 20 13298.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 21 11487.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 22 11372.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 23 13286.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 24 13126.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 25 14311.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 26 13478.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 27 12646.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 28 9214.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 29 8203.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 30 7192.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 31 2335.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 32 4970.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 33 1656.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 266593.63(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 266593.63(lbs) TOTAL AREA OF SLIDING MASS = 2221.61(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 33 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 2 200.00 30.00 24 2 200.00 30.00 25 2 200.00 30.00 26 2 200.00 30.00 27 2 200.00 30.00 28 2 200.00 30.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 33 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 0.60 34.22 5.00 270.05 152.43 1.772 2 0.60 39.22 5.00 623.66 457.28 1.364 3 0.60 44.22 5.00 977.28 762.13 1.282 4 0.60 49.22 5.00 1330.90 1066.99 1.247 5 7.99 53.04 2.67 1387.67 1279.35 1.085 6 7.99 55.68 2.67 1512.25 1399.23 1.081 7 7.99 57.05 0.10 1576.91 1461.45 1.079 8 7.99 59.50 4.85 1693.22 1573.38 1.076 9 7.99 64.31 4.85 1921.10 1792.67 1.072 10 7.99 69.12 4.85 2148.99 2011.97 1.068 11 15.38 71.71 0.39 2023.87 2127.16 0.951 12 15.38 71.95 0.10 2030.46 2134.18 0.951 13 15.38 74.35 4.88 2096.76 2204.87 0.951 14 15.38 79.05 4.88 2226.62 2343.32 0.950 15 15.38 83.75 4.88 2356.47 2481.77 0.950 16 15.38 88.46 4.88 2486.32 2620.22 0.949 17 22.77 93.11 5.00 2310.10 2717.30 0.850 18 22.77 97.72 5.00 2357.40 2773.01 0.850 19 22.77 102.33 5.00 2404.70 2828.72 0.850 20 22.77 106.94 5.00 2451.99 2884.42 0.850 21 30.16 111.23 4.58 2204.72 2897.85 0.761 22 30.16 115.19 4.58 2182.57 2869.00 0.761 23 30.16 119.52 5.42 2158.50 2837.53 0.761 24 30.16 124.20 5.42 2132.41 2803.45 0.761 25 37.55 129.18 6.67 1830.75 2707.66 0.676 26 37.55 134.47 6.67 1722.62 2550.17 0.675 27 37.55 139.76 6.67 1634.54 2392.67 0.683 28 44.94 144.50 5.93 1349.97 2193.57 0.615 29 44.94 148.70 5.93 1224.60 1952.85 0.627 30 44.94 152.90 5.93 1091.79 1712.13 0.638 31 44.94 155.78 2.20 957.90 1502.42 0.638 32 52.33 158.90 7.68 589.33 1059.81 0.556 33 52.33 163.59 7.68 130.23 353.27 0.369 ***TABLE 5A - Total Base Force Data on the 33 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 0.60 34.22 5.00 1350.23 762.09 1.772 2 0.60 39.22 5.00 3118.32 2286.28 1.364 3 0.60 44.22 5.00 4886.41 3810.46 1.282 4 0.60 49.22 5.00 6654.50 5334.65 1.247 5 7.99 53.04 2.67 3701.25 3379.25 1.095 6 7.99 55.68 2.67 4033.53 3695.89 1.091 7 7.99 57.05 0.10 159.24 146.15 1.090 8 7.99 59.50 4.85 8220.32 7564.43 1.087 9 7.99 64.31 4.85 9326.67 8618.73 1.082 10 7.99 69.12 4.85 10433.01 9673.04 1.079 11 15.38 71.71 0.39 790.78 801.38 0.987 12 15.38 71.95 0.10 210.58 213.42 0.987 13 15.38 74.35 4.88 10224.64 10366.90 0.986 14 15.38 79.05 4.88 10857.85 11017.86 0.985 15 15.38 83.75 4.88 11491.05 11668.82 0.985 16 15.38 88.46 4.88 12124.26 12319.78 0.984 17 22.77 93.11 5.00 11550.50 12527.78 0.922 18 22.77 97.72 5.00 11786.99 12784.62 0.922 19 22.77 102.33 5.00 12023.48 13041.45 0.922 20 22.77 106.94 5.00 12259.97 13298.29 0.922 21 30.16 111.23 4.58 10107.94 11487.24 0.880 22 30.16 115.19 4.58 10006.36 11372.87 0.880 23 30.16 119.52 5.42 11688.99 13286.04 0.880 24 30.16 124.20 5.42 11547.71 13126.47 0.880 25 37.55 129.18 6.67 12205.03 14311.25 0.853 26 37.55 134.47 6.67 11484.11 13478.82 0.852 27 37.55 139.76 6.67 10896.95 12646.40 0.862 28 44.94 144.50 5.93 8011.62 9214.61 0.869 29 44.94 148.70 5.93 7267.56 8203.40 0.886 30 44.94 152.90 5.93 6479.40 7192.20 0.901 31 44.94 155.78 2.20 2103.62 2335.45 0.901 32 52.33 158.90 7.68 4523.24 4970.73 0.910 33 52.33 163.59 7.68 999.52 1656.91 0.603 ***TABLE 6 - Effective and Base Shear Stress Data on the 33 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 0.60 34.22 5.00 270.05 443.59 277.56 2 0.60 39.22 5.00 623.66 631.61 395.21 3 0.60 44.22 5.00 977.28 819.63 512.86 4 0.60 49.22 5.00 1330.90 1007.65 630.50 5 7.99 53.04 2.67 1387.67 1037.84 649.39 6 7.99 55.68 2.67 1512.25 1104.08 690.84 7 7.99 57.05 0.10 1576.91 1138.46 712.35 8 7.99 59.50 4.85 1693.22 1200.30 751.05 9 7.99 64.31 4.85 1921.10 1321.47 826.86 10 7.99 69.12 4.85 2148.99 1442.64 902.68 11 15.38 71.71 0.39 2023.87 1376.11 861.06 12 15.38 71.95 0.10 2030.46 1379.61 863.25 13 15.38 74.35 4.88 2096.76 1414.87 885.31 14 15.38 79.05 4.88 2226.62 1483.91 928.51 15 15.38 83.75 4.88 2356.47 1552.96 971.71 16 15.38 88.46 4.88 2486.32 1622.00 1014.91 17 22.77 93.11 5.00 2310.10 1528.30 956.28 18 22.77 97.72 5.00 2357.40 1553.45 972.02 19 22.77 102.33 5.00 2404.70 1578.60 987.76 20 22.77 106.94 5.00 2451.99 1603.75 1003.49 21 30.16 111.23 4.58 2204.72 1472.27 921.22 22 30.16 115.19 4.58 2182.57 1460.49 913.85 23 30.16 119.52 5.42 2158.50 1446.21 904.92 24 30.16 124.20 5.42 2132.41 1431.15 895.49 25 37.55 129.18 6.67 1830.75 1256.99 786.52 26 37.55 134.47 6.67 1722.62 1194.55 747.45 27 37.55 139.76 6.67 1634.54 1143.70 715.63 28 44.94 144.50 5.93 1349.97 979.41 612.83 29 44.94 148.70 5.93 1224.60 907.02 567.54 30 44.94 152.90 5.93 1091.79 830.35 519.56 31 44.94 155.78 2.20 957.90 753.04 471.19 32 52.33 158.90 7.68 589.33 540.25 338.04 33 52.33 163.59 7.68 130.23 275.19 172.19 ***TABLE 6A - Effective and Base Shear Force Data on the 33 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 0.60 34.22 5.00 1350.23 2217.93 1387.80 2 0.60 39.22 5.00 3118.32 3158.04 1976.04 3 0.60 44.22 5.00 4886.41 4098.15 2564.28 4 0.60 49.22 5.00 6654.50 5038.26 3152.52 5 7.99 53.04 2.67 3701.25 2768.16 1732.08 6 7.99 55.68 2.67 4033.53 2944.84 1842.63 7 7.99 57.05 0.10 159.24 114.96 71.93 8 7.99 59.50 4.85 8220.32 5827.27 3646.22 9 7.99 64.31 4.85 9326.67 6415.53 4014.30 10 7.99 69.12 4.85 10433.01 7003.78 4382.38 11 15.38 71.71 0.39 790.78 537.68 336.44 12 15.38 71.95 0.10 210.58 143.08 89.53 13 15.38 74.35 4.88 10224.64 6899.45 4317.10 14 15.38 79.05 4.88 10857.85 7236.14 4527.77 15 15.38 83.75 4.88 11491.05 7572.82 4738.43 16 15.38 88.46 4.88 12124.26 7909.50 4949.10 17 22.77 93.11 5.00 11550.50 7641.51 4781.41 18 22.77 97.72 5.00 11786.99 7767.25 4860.09 19 22.77 102.33 5.00 12023.48 7893.00 4938.78 20 22.77 106.94 5.00 12259.97 8018.74 5017.46 21 30.16 111.23 4.58 10107.94 6749.89 4223.51 22 30.16 115.19 4.58 10006.36 6695.88 4189.72 23 30.16 119.52 5.42 11688.99 7831.71 4900.42 24 30.16 124.20 5.42 11547.71 7750.14 4849.39 25 37.55 129.18 6.67 12205.03 8379.91 5243.44 26 37.55 134.47 6.67 11484.11 7963.69 4983.01 27 37.55 139.76 6.67 10896.95 7624.69 4770.89 28 44.94 144.50 5.93 8011.62 5812.44 3636.93 29 44.94 148.70 5.93 7267.56 5382.86 3368.14 30 44.94 152.90 5.93 6479.40 4927.81 3083.41 31 44.94 155.78 2.20 2103.62 1653.74 1034.77 32 52.33 158.90 7.68 4523.24 4146.54 2594.55 33 52.33 163.59 7.68 999.52 2112.11 1321.58 Average Effective Normal Stress = 1625.5225(psf) Average Available Shear Strength = 1147.3254(psf) Total Length of Failure Surface = 155.3504(ft) SUM OF MOMENTS = -0.362302E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.1359004E-08 SUM OF FORCES = -.309219E-07 (lbs);Imbalance (Fraction of Total Weight) = -0.1159889E- 12 Sum of Available Shear Forces = 178237.50(lbs) Sum of Mobilized Shear Forces = 111526.07(lbs) FS Balance Check: FS = 1.598169 **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Block (Static)Ninyo & Moore / WRM\B-B' East Slope Block.gsdSpencer MethodPLATE E-4 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.889 2 1.895 3 1.895 4 1.895 5 1.895 6 1.895 7 1.895 8 1.895 9 1.89510 1.895GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.889 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.889 2 1.895 3 1.895 4 1.895 5 1.895 6 1.895 7 1.895 8 1.895 9 1.895 10 1.895 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Block.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Block.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope - Block (Static) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 640.000 30.000 643.000 1 2 30.000 643.000 57.000 657.000 1 3 57.000 657.000 155.000 708.000 2 4 155.000 708.000 205.000 710.000 2 5 205.000 710.000 828.000 710.000 2 6 828.000 710.000 876.000 686.000 2 7 876.000 686.000 900.000 686.000 1 8 57.000 657.000 57.100 652.000 1 9 57.100 652.000 71.900 652.000 1 10 71.900 652.000 72.000 658.000 1 11 72.000 658.000 245.000 683.000 1 12 245.000 683.000 371.000 705.000 1 13 371.000 705.000 700.000 705.000 1 14 700.000 705.000 700.100 709.000 1 15 700.100 709.000 813.000 709.000 1 16 813.000 709.000 861.000 686.000 1 17 861.000 686.000 876.000 686.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search = 25.00(ft) Zone X - 1 Y - 1 X - 2 Y - 2 Height No. (ft) (ft) (ft) (ft) (ft) 1 72.00 658.50 72.00 658.50 0.10 2 72.10 658.50 370.00 704.50 0.10 The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 1472 Number of Trial Surfaces With Valid FS = 3528 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 29.4 % Statistical Data On All Valid FS Values: FS Max = 11.465 FS Min = 1.889 FS Ave = 3.112 Standard Deviation = 0.828 Coefficient of Variation = 26.61 % Critical Surface is Sequence Number 4 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 2.021309 1.803180 0.268 0.2181291E+00 2 19.9500 1.961303 1.850477 0.363 0.1108254E+00 3 25.0614 1.858517 1.902728 0.468 0.4421077E-01 4 23.6041 1.893488 1.887415 0.437 0.6073402E-02 5 23.7804 1.889536 1.889248 0.441 0.2877992E-03 6 23.7892 1.889337 1.889339 0.441 0.1926737E-05 7 23.7891 1.889339 1.889339 0.441 0.4101654E-08 Factor Of Safety For The Preceding Specified Surface = 1.889 Theta (fx = 1.0) = 23.79 Deg Lambda = 0.441 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 67.15 660.52 0.438 1299.43 1.000 23.79 524.2 2 72.00 660.87 0.372 3717.98 1.000 23.79 1499.7 3 76.88 662.23 0.366 5020.97 1.000 23.79 2025.3 4 81.76 663.55 0.357 6502.06 1.000 23.79 2622.7 5 86.64 664.84 0.349 8161.25 1.000 23.79 3292.0 6 91.52 666.12 0.342 9998.54 1.000 23.79 4033.1 7 96.40 667.38 0.335 12013.93 1.000 23.79 4846.1 8 101.28 668.63 0.330 14207.41 1.000 23.79 5730.9 9 106.16 669.88 0.325 16579.00 1.000 23.79 6687.5 10 111.04 671.12 0.321 19128.68 1.000 23.79 7716.0 11 115.92 672.36 0.317 21856.46 1.000 23.79 8816.3 12 120.80 673.60 0.314 24762.33 1.000 23.79 9988.4 13 125.68 674.83 0.311 27846.31 1.000 23.79 11232.4 14 130.56 676.06 0.308 31108.38 1.000 23.79 12548.2 15 136.17 680.94 0.296 22910.60 1.000 23.79 9241.5 16 141.79 685.84 0.283 15832.06 1.000 23.79 6386.2 17 147.40 690.82 0.268 9876.63 0.991 23.60 3954.8 18 151.20 693.93 0.251 6719.10 0.812 19.70 2265.3 19 155.00 696.97 0.224 3960.14 0.633 15.60 1065.0 20 159.92 700.79 0.208 1287.90 0.402 10.04 224.5 21 164.84 706.08 0.486 -39.63 0.170 4.28 -3.0 22 168.45 708.54 0.000 0.00 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 22 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.85 1.57 64.72 659.45 661.02 -7.20 27.49 4.89 2 4.85 4.71 69.57 658.83 663.54 -7.20 27.49 4.89 3 4.88 7.17 74.44 658.90 666.08 8.72 27.49 4.94 4 4.88 8.96 79.32 659.65 668.62 8.72 27.49 4.94 5 4.88 10.76 84.20 660.40 671.15 8.72 27.49 4.94 6 4.88 12.55 89.08 661.15 673.69 8.72 27.49 4.94 7 4.88 14.34 93.96 661.90 676.23 8.72 27.49 4.94 8 4.88 16.13 98.84 662.64 678.77 8.72 27.49 4.94 9 4.88 17.92 103.72 663.39 681.31 8.72 27.49 4.94 10 4.88 19.71 108.60 664.14 683.85 8.72 27.49 4.94 11 4.88 21.50 113.48 664.89 686.39 8.72 27.49 4.94 12 4.88 23.29 118.36 665.64 688.93 8.72 27.49 4.94 13 4.88 25.08 123.24 666.39 691.47 8.72 27.49 4.94 14 4.88 26.88 128.12 667.13 694.01 8.72 27.49 4.94 15 5.62 26.15 133.36 670.59 696.74 47.64 27.49 8.33 16 5.62 22.92 138.98 676.74 699.66 47.64 27.49 8.33 17 5.62 19.68 144.59 682.90 702.58 47.64 27.49 8.33 18 3.80 17.10 149.30 687.93 705.03 45.76 27.49 5.45 19 3.80 15.18 153.10 691.83 707.01 45.76 27.49 5.45 20 4.92 11.79 157.46 696.31 708.10 45.76 2.29 7.05 21 4.92 6.93 162.38 701.36 708.30 45.76 2.29 7.05 22 3.60 2.25 166.65 706.21 708.47 52.19 2.29 5.88 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 62.292693 659.754360 2 67.146346 659.141374 3 72.000000 658.528387 4 76.879694 659.276685 5 81.759388 660.024982 6 86.639082 660.773279 7 91.518776 661.521576 8 96.398471 662.269873 9 101.278165 663.018170 10 106.157859 663.766467 11 111.037553 664.514764 12 115.917247 665.263062 13 120.796941 666.011359 14 125.676635 666.759656 15 130.556329 667.507953 16 136.171419 673.665486 17 141.786509 679.823019 18 147.401598 685.980553 19 151.200799 689.882077 20 155.000000 693.783601 21 159.921419 698.837567 22 164.842837 703.891533 23 168.447676 708.537907 ***Table 3 - Force and Pore Pressure Data On The 22 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 914.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 2742.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 4200.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 5249.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 6298.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 7346.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 8395.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 9444.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 10493.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 11542.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 12591.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 13639.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 14688.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 15737.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 17622.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 16 15442.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 13262.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 18 7797.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 19 6920.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 20 6961.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 21 4093.1 0.0 0.0 0.0 0.0 0.0 0.0 0.00 22 973.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 196357.25(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 196357.25(lbs) TOTAL AREA OF SLIDING MASS = 1636.31(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 22 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 21 2 200.00 30.00 22 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 22 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -7.20 64.72 4.89 322.12 188.33 1.710 2 -7.20 69.57 4.89 810.65 565.00 1.435 3 8.72 74.44 4.94 909.65 860.80 1.057 4 8.72 79.32 4.94 1129.02 1075.73 1.050 5 8.72 84.20 4.94 1348.40 1290.67 1.045 6 8.72 89.08 4.94 1567.78 1505.61 1.041 7 8.72 93.96 4.94 1787.16 1720.54 1.039 8 8.72 98.84 4.94 2006.54 1935.48 1.037 9 8.72 103.72 4.94 2225.92 2150.41 1.035 10 8.72 108.60 4.94 2445.29 2365.35 1.034 11 8.72 113.48 4.94 2664.67 2580.29 1.033 12 8.72 118.36 4.94 2884.05 2795.22 1.032 13 8.72 123.24 4.94 3103.43 3010.16 1.031 14 8.72 128.12 4.94 3322.81 3225.10 1.030 15 47.64 133.36 8.33 1822.67 3138.44 0.581 16 47.64 138.98 8.33 1592.09 2750.19 0.579 17 47.64 144.59 8.33 1363.73 2361.94 0.577 18 45.76 149.30 5.45 1260.43 2052.36 0.614 19 45.76 153.10 5.45 1149.85 1821.43 0.631 20 45.76 157.46 7.05 918.88 1414.54 0.650 21 45.76 162.38 7.05 534.36 831.69 0.643 22 52.19 166.65 5.88 95.91 270.13 0.355 ***TABLE 5A - Total Base Force Data on the 22 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -7.20 64.72 4.89 1575.90 914.10 1.724 2 -7.20 69.57 4.89 3965.86 2742.30 1.446 3 8.72 74.44 4.94 4490.68 4200.42 1.069 4 8.72 79.32 4.94 5573.69 5249.25 1.062 5 8.72 84.20 4.94 6656.71 6298.07 1.057 6 8.72 89.08 4.94 7739.72 7346.89 1.053 7 8.72 93.96 4.94 8822.73 8395.72 1.051 8 8.72 98.84 4.94 9905.74 9444.54 1.049 9 8.72 103.72 4.94 10988.76 10493.36 1.047 10 8.72 108.60 4.94 12071.77 11542.19 1.046 11 8.72 113.48 4.94 13154.78 12591.01 1.045 12 8.72 118.36 4.94 14237.79 13639.83 1.044 13 8.72 123.24 4.94 15320.80 14688.65 1.043 14 8.72 128.12 4.94 16403.82 15737.48 1.042 15 47.64 133.36 8.33 15188.90 17622.62 0.862 16 47.64 138.98 8.33 13267.43 15442.58 0.859 17 47.64 144.59 8.33 11364.44 13262.53 0.857 18 45.76 149.30 5.45 6863.93 7797.32 0.880 19 45.76 153.10 5.45 6261.74 6919.98 0.905 20 45.76 157.46 7.05 6482.01 6961.55 0.931 21 45.76 162.38 7.05 3769.54 4093.09 0.921 22 52.19 166.65 5.88 564.04 973.78 0.579 ***TABLE 6 - Effective and Base Shear Stress Data on the 22 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -7.20 64.72 4.89 322.12 385.98 204.29 2 -7.20 69.57 4.89 810.65 668.03 353.58 3 8.72 74.44 4.94 909.65 725.18 383.83 4 8.72 79.32 4.94 1129.02 851.84 450.87 5 8.72 84.20 4.94 1348.40 978.50 517.91 6 8.72 89.08 4.94 1567.78 1105.16 584.94 7 8.72 93.96 4.94 1787.16 1231.82 651.98 8 8.72 98.84 4.94 2006.54 1358.47 719.02 9 8.72 103.72 4.94 2225.92 1485.13 786.06 10 8.72 108.60 4.94 2445.29 1611.79 853.10 11 8.72 113.48 4.94 2664.67 1738.45 920.14 12 8.72 118.36 4.94 2884.05 1865.11 987.17 13 8.72 123.24 4.94 3103.43 1991.76 1054.21 14 8.72 128.12 4.94 3322.81 2118.42 1121.25 15 47.64 133.36 8.33 1822.67 1252.32 662.83 16 47.64 138.98 8.33 1592.09 1119.19 592.37 17 47.64 144.59 8.33 1363.73 987.35 522.59 18 45.76 149.30 5.45 1260.43 927.71 491.02 19 45.76 153.10 5.45 1149.85 863.86 457.23 20 45.76 157.46 7.05 918.88 730.51 386.65 21 45.76 162.38 7.05 534.36 508.51 269.15 22 52.19 166.65 5.88 95.91 255.37 135.17 ***TABLE 6A - Effective and Base Shear Force Data on the 22 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -7.20 64.72 4.89 1575.90 1888.29 999.44 2 -7.20 69.57 4.89 3965.86 3268.13 1729.78 3 8.72 74.44 4.94 4490.68 3580.04 1894.87 4 8.72 79.32 4.94 5573.69 4205.32 2225.82 5 8.72 84.20 4.94 6656.71 4830.60 2556.77 6 8.72 89.08 4.94 7739.72 5455.88 2887.72 7 8.72 93.96 4.94 8822.73 6081.15 3218.67 8 8.72 98.84 4.94 9905.74 6706.43 3549.62 9 8.72 103.72 4.94 10988.76 7331.71 3880.57 10 8.72 108.60 4.94 12071.77 7956.99 4211.52 11 8.72 113.48 4.94 13154.78 8582.26 4542.47 12 8.72 118.36 4.94 14237.79 9207.54 4873.42 13 8.72 123.24 4.94 15320.80 9832.82 5204.37 14 8.72 128.12 4.94 16403.82 10458.09 5535.32 15 47.64 133.36 8.33 15188.90 10435.98 5523.62 16 47.64 138.98 8.33 13267.43 9326.62 4936.45 17 47.64 144.59 8.33 11364.44 8227.93 4354.92 18 45.76 149.30 5.45 6863.93 5052.04 2673.97 19 45.76 153.10 5.45 6261.74 4704.36 2489.95 20 45.76 157.46 7.05 6482.01 5153.24 2727.54 21 45.76 162.38 7.05 3769.54 3587.20 1898.66 22 52.19 166.65 5.88 564.04 1501.80 794.88 Average Effective Normal Stress = 1558.5378(psf) Average Available Shear Strength = 1099.8222(psf) Total Length of Failure Surface = 124.9060(ft) SUM OF MOMENTS = -0.151208E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.7700665E-09 SUM OF FORCES = -.428195E-07 (lbs);Imbalance (Fraction of Total Weight) = -0.2180693E- 12 Sum of Available Shear Forces = 137374.43(lbs) Sum of Mobilized Shear Forces = 72710.33(lbs) FS Balance Check: FS = 1.889339 **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Stability Fill (Static)Ninyo & Moore / WRM\B-B' Stability Fill Static.gsdSpencer MethodPLATE E-5 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 2.169 2 2.183 3 2.190 4 2.200 5 2.203 6 2.203 7 2.205 8 2.212 9 2.21310 2.214GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =2.169 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775No. FS1 2.169 2 2.183 3 2.190 4 2.200 5 2.203 6 2.203 7 2.205 8 2.212 9 2.213 10 2.214 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' Stability Fill Static.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' Stability Fill Static.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Stability Fill (Static) BOUNDARY DATA 3 Surface Boundaries 6 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 686.000 24.000 686.000 1 2 24.000 686.000 72.000 710.000 2 3 72.000 710.000 200.000 710.000 2 4 24.000 686.000 39.000 686.000 1 5 39.000 686.000 87.000 709.000 1 6 87.000 709.000 200.000 709.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 650.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.0360(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 15.00(ft) and X = 30.00(ft) Each Surface Enters within a Range Between X = 65.00(ft) and X = 200.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 650.00(ft) Specified Maximum Radius = 5000.000(ft) 8.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 488 Number of Trial Surfaces With Valid FS = 4512 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 9.8 % Statistical Data On All Valid FS Values: FS Max = 9.589 FS Min = 2.169 FS Ave = 4.436 Standard Deviation = 1.770 Coefficient of Variation = 39.90 % Critical Surface is Sequence Number 2971 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 24.427814(ft) ; Y = 752.816904(ft); and Radius = 66.642014(ft) Circular Trial Failure Surface Generated With 9 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 24.350 686.175 2 32.336 686.646 3 40.208 688.070 4 47.853 690.428 5 55.160 693.684 6 62.024 697.793 7 68.347 702.694 8 74.037 708.318 9 75.372 710.000 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 2.345018 2.109622 0.268 0.2353964E+00 2 19.9500 2.236837 2.130058 0.363 0.1067799E+00 3 24.0588 2.055723 2.178462 0.446 0.1227395E+00 4 21.8611 2.167436 2.169207 0.401 0.1770779E-02 5 21.8294 2.168751 2.169075 0.401 0.3248744E-03 6 21.8223 2.169045 2.169046 0.400 0.1337365E-05 7 21.8223 2.169046 2.169046 0.400 0.6883573E-07 Factor Of Safety For The Preceding Specified Surface = 2.169 Theta (fx = 1.0) = 21.82 Deg Lambda = 0.400 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 28.34 687.09 0.387 527.67 1.000 21.82 196.2 2 32.34 687.90 0.356 1257.29 1.000 21.82 467.4 3 36.27 688.95 0.332 1832.94 1.000 21.82 681.4 4 40.21 690.01 0.321 2462.30 1.000 21.82 915.3 5 44.03 691.34 0.309 2719.19 1.000 21.82 1010.8 6 47.85 692.68 0.301 2962.18 1.000 21.82 1101.1 7 50.62 693.89 0.292 2830.35 1.000 21.82 1052.1 8 53.39 695.11 0.284 2690.39 1.000 21.82 1000.1 9 55.16 695.85 0.275 2653.46 1.000 21.82 986.4 10 55.66 696.10 0.270 2592.89 1.000 21.82 963.9 11 58.84 697.79 0.252 2111.28 1.000 21.82 784.8 12 62.02 699.49 0.235 1662.88 1.000 21.82 618.1 13 65.19 701.46 0.191 1018.55 1.000 21.82 378.6 14 68.35 703.36 0.121 502.60 1.000 21.82 186.8 15 72.00 710.03 1.000+ -43.09 1.000 21.82 -16.0 16 74.04 708.89 0.341 -114.74 1.000 21.82 -42.7 17 75.37 710.00 0.000 0.00 1.000 21.82 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 17 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 3.99 0.88 26.35 686.29 687.17 3.37 26.57 4.00 2 3.99 2.64 30.34 686.53 689.17 3.37 26.57 4.00 3 3.94 4.15 34.30 687.00 691.15 10.26 26.57 4.00 4 3.94 5.41 38.24 687.71 693.12 10.26 26.57 4.00 5 3.82 6.40 42.12 688.66 695.06 17.14 26.57 4.00 6 3.82 7.13 45.94 689.84 696.97 17.14 26.57 4.00 7 2.77 7.57 49.24 691.04 698.62 24.02 26.57 3.03 8 2.77 7.72 52.01 692.28 700.00 24.02 26.57 3.03 9 1.77 7.85 54.28 693.29 701.14 24.02 26.57 1.94 10 0.50 7.87 55.41 693.83 701.70 30.90 26.57 0.58 11 3.18 7.69 57.25 694.93 702.62 30.90 26.57 3.71 12 3.18 7.38 60.43 696.84 704.22 30.90 26.57 3.71 13 3.16 6.78 63.61 699.02 705.80 37.78 26.57 4.00 14 3.16 5.91 66.77 701.47 707.38 37.78 26.57 4.00 15 3.65 4.59 70.17 704.50 709.09 44.67 26.57 5.14 16 2.04 2.69 73.02 707.31 710.00 44.67 0.00 2.86 17 1.34 0.84 74.70 709.16 710.00 51.55 0.00 2.15 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 24.349870 686.174935 2 28.342936 686.410354 3 32.336002 686.645772 4 36.272088 687.357976 5 40.208173 688.070179 6 44.030555 689.248904 7 47.852938 690.427628 8 50.622427 691.661878 9 53.391917 692.896127 10 55.160131 693.684148 11 55.656401 693.981192 12 58.840427 695.887001 13 62.024452 697.792810 14 65.185716 700.243607 15 68.346981 702.694405 16 72.000000 706.305221 17 74.036605 708.318298 18 75.371931 710.000000 ***Table 3 - Force and Pore Pressure Data On The 17 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 421.9 0.0 0.0 0.0 0.0 0.0 0.0 0.00 2 1265.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 3 1960.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 4 2553.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 5 2935.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 6 3271.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 7 2517.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 8 2567.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 9 1665.2 0.0 0.0 0.0 0.0 0.0 0.0 0.00 10 468.8 0.0 0.0 0.0 0.0 0.0 0.0 0.00 11 2938.3 0.0 0.0 0.0 0.0 0.0 0.0 0.00 12 2818.4 0.0 0.0 0.0 0.0 0.0 0.0 0.00 13 2573.6 0.0 0.0 0.0 0.0 0.0 0.0 0.00 14 2243.5 0.0 0.0 0.0 0.0 0.0 0.0 0.00 15 2010.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 16 657.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 17 134.7 0.0 0.0 0.0 0.0 0.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 33003.27(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 33003.27(lbs) TOTAL AREA OF SLIDING MASS = 275.03(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 17 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 1 300.00 28.00 10 1 300.00 28.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 17 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 3.37 26.35 4.00 147.05 105.67 1.392 2 3.37 30.34 4.00 373.62 317.00 1.179 3 10.26 34.30 4.00 511.08 498.02 1.026 4 10.26 38.24 4.00 659.70 648.72 1.017 5 17.14 42.12 4.00 706.57 768.02 0.920 6 17.14 45.94 4.00 786.55 855.91 0.919 7 24.02 49.24 3.03 759.95 908.89 0.836 8 24.02 52.01 3.03 775.12 926.95 0.836 9 24.02 54.28 1.94 786.43 941.74 0.835 10 30.90 55.41 0.58 711.96 944.58 0.754 11 30.90 57.25 3.71 699.89 922.81 0.758 12 30.90 60.43 3.71 670.75 885.16 0.758 13 37.78 63.61 4.00 552.80 814.12 0.679 14 37.78 66.77 4.00 478.75 709.70 0.675 15 44.67 70.17 5.14 319.66 550.43 0.581 16 44.67 73.02 2.86 172.88 322.59 0.536 17 51.55 74.70 2.15 12.52 100.90 0.124 ***TABLE 5A - Total Base Force Data on the 17 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 3.37 26.35 4.00 588.18 421.93 1.394 2 3.37 30.34 4.00 1494.50 1265.80 1.181 3 10.26 34.30 4.00 2044.33 1960.24 1.043 4 10.26 38.24 4.00 2638.79 2553.41 1.033 5 17.14 42.12 4.00 2826.28 2935.65 0.963 6 17.14 45.94 4.00 3146.19 3271.63 0.962 7 24.02 49.24 3.03 2304.23 2517.16 0.915 8 24.02 52.01 3.03 2350.23 2567.18 0.915 9 24.02 54.28 1.94 1522.42 1665.21 0.914 10 30.90 55.41 0.58 411.78 468.76 0.878 11 30.90 57.25 3.71 2597.15 2938.26 0.884 12 30.90 60.43 3.71 2489.04 2818.36 0.883 13 37.78 63.61 4.00 2211.19 2573.65 0.859 14 37.78 66.77 4.00 1915.01 2243.55 0.854 15 44.67 70.17 5.14 1641.90 2010.74 0.817 16 44.67 73.02 2.86 495.07 656.99 0.754 17 51.55 74.70 2.15 26.89 134.74 0.200 ***TABLE 6 - Effective and Base Shear Stress Data on the 17 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 3.37 26.35 4.00 147.05 284.90 131.35 2 3.37 30.34 4.00 373.62 415.71 191.66 3 10.26 34.30 4.00 511.08 495.07 228.25 4 10.26 38.24 4.00 659.70 580.88 267.80 5 17.14 42.12 4.00 706.57 607.94 280.28 6 17.14 45.94 4.00 786.55 654.11 301.57 7 24.02 49.24 3.03 759.95 638.76 294.49 8 24.02 52.01 3.03 775.12 647.52 298.53 9 24.02 54.28 1.94 786.43 718.15 331.09 10 30.90 55.41 0.58 711.96 678.55 312.84 11 30.90 57.25 3.71 699.89 604.08 278.50 12 30.90 60.43 3.71 670.75 587.26 270.75 13 37.78 63.61 4.00 552.80 519.16 239.35 14 37.78 66.77 4.00 478.75 476.41 219.64 15 44.67 70.17 5.14 319.66 384.56 177.29 16 44.67 73.02 2.86 172.88 299.81 138.22 17 51.55 74.70 2.15 12.52 207.23 95.54 ***TABLE 6A - Effective and Base Shear Force Data on the 17 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 3.37 26.35 4.00 588.18 1139.59 525.39 2 3.37 30.34 4.00 1494.50 1662.85 766.63 3 10.26 34.30 4.00 2044.33 1980.30 912.98 4 10.26 38.24 4.00 2638.79 2323.51 1071.21 5 17.14 42.12 4.00 2826.28 2431.75 1121.12 6 17.14 45.94 4.00 3146.19 2616.46 1206.27 7 24.02 49.24 3.03 2304.23 1936.76 892.91 8 24.02 52.01 3.03 2350.23 1963.32 905.15 9 24.02 54.28 1.94 1522.42 1390.24 640.95 10 30.90 55.41 0.58 411.78 392.46 180.94 11 30.90 57.25 3.71 2597.15 2241.63 1033.46 12 30.90 60.43 3.71 2489.04 2179.21 1004.69 13 37.78 63.61 4.00 2211.19 2076.63 957.39 14 37.78 66.77 4.00 1915.01 1905.63 878.56 15 44.67 70.17 5.14 1641.90 1975.23 910.64 16 44.67 73.02 2.86 495.07 858.55 395.82 17 51.55 74.70 2.15 26.89 445.00 205.16 Average Effective Normal Stress = 528.0235(psf) Average Available Shear Strength = 507.6602(psf) Total Length of Failure Surface = 58.1474(ft) SUM OF MOMENTS = -0.109033E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.3303709E-08 SUM OF FORCES = -.190984E-05 (lbs);Imbalance (Fraction of Total Weight) = -0.5786835E- 10 Sum of Available Shear Forces = 29519.11(lbs) Sum of Mobilized Shear Forces = 13609.26(lbs) FS Balance Check: FS = 2.169046 **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection A-A' Circular (Seismic)Ninyo & Moore / WRM\A-A' Circular (Seismic).gsdSpencer MethodPLATE E-6 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.083 2 1.084 3 1.089 4 1.099 5 1.102 6 1.105 7 1.105 8 1.107 9 1.10710 1.109GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.083 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.083 2 1.084 3 1.089 4 1.099 5 1.102 6 1.105 7 1.105 8 1.107 9 1.107 10 1.109 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular (Seismic).gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Circular\A-A' Circular (Seismic).OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Circular (Seismic) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 620.000 88.000 620.000 1 2 88.000 620.000 135.000 642.000 1 3 135.000 642.000 290.000 714.000 2 4 290.000 714.000 450.000 713.000 2 5 450.000 713.000 555.000 715.000 2 6 555.000 715.000 570.000 717.000 2 7 570.000 717.000 590.000 717.000 2 8 590.000 717.000 610.000 717.000 2 9 610.000 717.000 660.000 713.000 2 10 660.000 713.000 855.000 713.000 2 11 855.000 713.000 900.000 713.000 2 12 135.000 642.000 135.100 637.000 1 13 135.100 637.000 149.900 637.000 1 14 149.900 637.000 150.000 643.000 1 15 150.000 643.000 465.000 670.000 1 16 465.000 670.000 636.000 708.000 1 17 636.000 708.000 855.000 708.000 1 18 855.000 708.000 855.100 712.000 1 19 855.100 712.000 900.000 712.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity = 1.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity = 0.0 will result in default Peak Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor = 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.1128(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 88.00(ft) and X = 135.00(ft) Each Surface Enters within a Range Between X = 290.00(ft) and X = 900.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 500.00(ft) Specified Maximum Radius = 5000.000(ft) 25.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 1506 Number of Trial Surfaces With Valid FS = 3494 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 30.1 % Statistical Data On All Valid FS Values: FS Max = 3.094 FS Min = 1.083 FS Ave = 2.100 Standard Deviation = 0.443 Coefficient of Variation = 21.07 % Critical Surface is Sequence Number 547 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 122.265688(ft) ; Y = 824.954712(ft); and Radius = 203.246462(ft) Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 95.446 623.485 2 120.384 621.717 3 145.349 623.023 4 169.966 627.385 5 193.861 634.736 6 216.673 644.965 7 238.056 657.917 8 257.687 673.396 9 275.270 691.168 10 290.537 710.965 11 292.323 713.985 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.224198 1.031802 0.268 0.1923959E+00 2 19.9500 1.205217 1.045646 0.363 0.1595707E+00 3 44.0083 0.000000 1.156963 0.966 0.1156963E+01 4 22.8654 1.187821 1.054611 0.422 0.1332099E+00 5 25.0522 1.169927 1.061821 0.467 0.1081056E+00 6 34.4672 0.936700 1.099526 0.686 0.1628255E+00 7 28.8082 1.122790 1.075386 0.550 0.4740330E-01 8 30.0850 1.098995 1.080398 0.579 0.1859749E-01 9 30.9093 1.080307 1.083756 0.599 0.3448741E-02 10 30.7804 1.083437 1.083224 0.596 0.2134901E-03 11 30.7879 1.083256 1.083255 0.596 0.1654751E-05 12 30.7880 1.083255 1.083255 0.596 0.2918654E-09 Factor Of Safety For The Preceding Specified Surface = 1.083 Theta (fx = 1.0) = 30.79 Deg Lambda = 0.596 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 100.43 624.79 0.619 3110.71 1.000 30.79 1592.3 2 105.42 625.70 0.543 7316.76 1.000 30.79 3745.2 3 110.41 626.50 0.505 12618.13 1.000 30.79 6458.7 4 115.40 627.21 0.478 19014.83 1.000 30.79 9733.0 5 120.38 627.88 0.458 26506.86 1.000 30.79 13567.9 6 125.26 629.13 0.463 31570.58 1.000 30.79 16159.8 7 130.13 630.28 0.460 37055.18 1.000 30.79 18967.1 8 135.00 631.35 0.454 42960.67 1.000 30.79 21989.9 9 135.10 631.37 0.454 43086.29 1.000 30.79 22054.2 10 140.22 632.44 0.447 49759.20 1.000 30.79 25469.9 11 145.35 633.45 0.438 56893.79 1.000 30.79 29121.8 12 149.90 634.90 0.441 60236.22 1.000 30.79 30832.6 13 150.00 634.93 0.441 60310.67 1.000 30.79 30870.8 14 154.99 636.47 0.442 64081.42 1.000 30.79 32800.9 15 159.98 637.95 0.441 67959.12 1.000 30.79 34785.7 16 164.97 639.38 0.438 71943.78 1.000 30.79 36825.3 17 169.97 640.77 0.434 76035.40 1.000 30.79 38919.7 18 174.75 642.65 0.436 76713.82 1.000 30.79 39266.9 19 179.52 644.49 0.438 77369.67 1.000 30.79 39602.6 20 184.30 646.30 0.438 78002.94 1.000 30.79 39926.8 21 189.08 648.08 0.437 78613.65 1.000 30.79 40239.4 22 193.86 649.82 0.436 79201.78 1.000 30.79 40540.4 23 198.42 652.00 0.439 76955.53 1.000 30.79 39390.6 24 202.99 654.16 0.441 74701.37 1.000 30.79 38236.8 25 207.55 656.30 0.443 72439.31 1.000 30.79 37079.0 26 212.11 658.42 0.444 70169.35 1.000 30.79 35917.0 27 216.67 660.53 0.445 67891.48 1.000 30.79 34751.1 28 220.28 662.61 0.449 64261.68 1.000 30.79 32893.1 29 223.88 664.69 0.452 60702.18 1.000 30.79 31071.2 30 228.61 667.40 0.457 56240.59 1.000 30.79 28787.4 31 233.33 670.10 0.461 51887.66 1.000 30.79 26559.3 32 238.06 672.81 0.466 47643.37 1.000 30.79 24386.8 33 242.96 676.31 0.478 41401.36 1.000 30.79 21191.8 34 247.87 679.86 0.494 35533.39 1.000 30.79 18188.2 35 252.78 683.51 0.514 30039.44 1.000 30.79 15376.1 36 257.69 686.95 0.530 24454.65 0.880 27.66 11352.3 37 262.08 690.50 0.546 18952.25 0.768 24.59 7886.1 38 266.48 693.90 0.559 14195.87 0.656 21.36 5170.4 39 270.87 697.18 0.569 10140.11 0.545 17.98 3130.4 40 275.27 700.34 0.574 6744.67 0.433 14.47 1685.3 41 280.18 705.01 0.628 3168.39 0.308 10.41 572.6 42 285.09 710.24 0.810 983.91 0.184 6.25 107.1 43 290.00 712.86 0.694 242.90 0.059 2.01 8.5 44 290.54 712.45 0.490 258.75 0.045 1.55 7.0 45 292.32 713.99 0.000 669.53 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 45 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.99 1.34 97.94 623.31 624.65 -4.06 25.08 5.00 2 4.99 4.03 102.93 622.95 626.99 -4.06 25.08 5.00 3 4.99 6.72 107.91 622.60 629.32 -4.06 25.08 5.00 4 4.99 9.41 112.90 622.25 631.66 -4.06 25.08 5.00 5 4.99 12.10 117.89 621.89 633.99 -4.06 25.08 5.00 6 4.87 14.45 122.82 621.84 636.30 3.00 25.08 4.88 7 4.87 16.48 127.69 622.10 638.58 3.00 25.08 4.88 8 4.87 18.51 132.56 622.35 640.86 3.00 25.08 4.88 9 0.10 19.54 135.05 622.48 642.02 3.00 24.92 0.10 10 5.12 20.62 137.66 622.62 643.24 3.00 24.92 5.13 11 5.12 22.73 142.79 622.89 645.62 3.00 24.92 5.13 12 4.55 24.44 147.62 623.43 647.86 10.05 24.92 4.62 13 0.10 25.11 149.95 623.84 648.94 10.05 24.92 0.10 14 4.99 25.84 152.50 624.29 650.13 10.05 24.92 5.07 15 4.99 27.27 157.49 625.17 652.45 10.05 24.92 5.07 16 4.99 28.71 162.48 626.06 654.76 10.05 24.92 5.07 17 4.99 30.14 167.47 626.94 657.08 10.05 24.92 5.07 18 4.78 31.23 172.36 628.12 659.35 17.10 24.92 5.00 19 4.78 31.98 177.13 629.59 661.57 17.10 24.92 5.00 20 4.78 32.73 181.91 631.06 663.79 17.10 24.92 5.00 21 4.78 33.48 186.69 632.53 666.01 17.10 24.92 5.00 22 4.78 34.23 191.47 634.00 668.23 17.10 24.92 5.00 23 4.56 34.64 196.14 635.76 670.40 24.15 24.92 5.00 24 4.56 34.72 200.70 637.80 672.52 24.15 24.92 5.00 25 4.56 34.79 205.27 639.85 674.64 24.15 24.92 5.00 26 4.56 34.86 209.83 641.90 676.76 24.15 24.92 5.00 27 4.56 34.94 214.39 643.94 678.88 24.15 24.92 5.00 28 3.61 34.72 218.48 646.06 680.78 31.20 24.92 4.22 29 3.61 34.21 222.08 648.24 682.45 31.20 24.92 4.22 30 4.72 33.62 226.25 650.76 684.39 31.20 24.92 5.52 31 4.72 32.95 230.97 653.62 686.58 31.20 24.92 5.52 32 4.72 32.29 235.69 656.49 688.77 31.20 24.92 5.52 33 4.91 31.16 240.51 659.85 691.01 38.26 24.92 6.25 34 4.91 29.57 245.42 663.72 693.29 38.26 24.92 6.25 35 4.91 27.98 250.33 667.59 695.57 38.26 24.92 6.25 36 4.91 26.39 255.23 671.46 697.85 38.26 24.92 6.25 37 4.40 24.39 259.89 675.62 700.01 45.31 24.92 6.25 38 4.40 21.99 264.28 680.06 702.05 45.31 24.92 6.25 39 4.40 19.59 268.68 684.50 704.09 45.31 24.92 6.25 40 4.40 17.19 273.07 688.95 706.14 45.31 24.92 6.25 41 4.91 13.95 277.72 694.35 708.30 52.36 24.92 8.04 42 4.91 9.86 282.63 700.72 710.58 52.36 24.92 8.04 43 4.91 5.78 287.54 707.08 712.86 52.36 24.92 8.04 44 0.54 3.38 290.27 710.62 714.00 52.36 -0.36 0.88 45 1.79 1.52 291.43 712.48 713.99 59.41 -0.36 3.51 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 95.446289 623.485497 2 100.433763 623.131790 3 105.421236 622.778083 4 110.408710 622.424377 5 115.396183 622.070670 6 120.383657 621.716963 7 125.255771 621.971912 8 130.127886 622.226861 9 135.000000 622.481810 10 135.100000 622.487043 11 140.224749 622.755212 12 145.349499 623.023381 13 149.900000 623.829646 14 150.000000 623.847364 15 154.991522 624.731770 16 159.983043 625.616175 17 164.974565 626.500581 18 169.966087 627.384986 19 174.745064 628.855146 20 179.524042 630.325306 21 184.303020 631.795467 22 189.081998 633.265627 23 193.860976 634.735787 24 198.423309 636.781543 25 202.985642 638.827299 26 207.547974 640.873056 27 212.110307 642.918812 28 216.672640 644.964568 29 220.278686 647.148772 30 223.884732 649.332977 31 228.608469 652.194174 32 233.332207 655.055372 33 238.055944 657.916569 34 242.963798 661.786384 35 247.871652 665.656199 36 252.779506 669.526014 37 257.687361 673.395828 38 262.082988 677.838908 39 266.478616 682.281988 40 270.874243 686.725068 41 275.269871 691.168148 42 280.179914 697.534684 43 285.089957 703.901219 44 290.000000 710.267755 45 290.537453 710.964636 46 292.323147 713.985480 ***Table 3 - Force and Pore Pressure Data On The 45 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 804.5 0.0 0.0 0.0 0.0 160.9 0.0 0.00 2 2413.4 0.0 0.0 0.0 0.0 482.7 0.0 0.00 3 4022.3 0.0 0.0 0.0 0.0 804.5 0.0 0.00 4 5631.2 0.0 0.0 0.0 0.0 1126.2 0.0 0.00 5 7240.1 0.0 0.0 0.0 0.0 1448.0 0.0 0.00 6 8450.7 0.0 0.0 0.0 0.0 1690.1 0.0 0.00 7 9635.0 0.0 0.0 0.0 0.0 1927.0 0.0 0.00 8 10819.2 0.0 0.0 0.0 0.0 2163.8 0.0 0.00 9 234.5 0.0 0.0 0.0 0.0 46.9 0.0 0.00 10 12678.0 0.0 0.0 0.0 0.0 2535.6 0.0 0.00 11 13977.0 0.0 0.0 0.0 0.0 2795.4 0.0 0.00 12 13344.6 0.0 0.0 0.0 0.0 2668.9 0.0 0.00 13 301.3 0.0 0.0 0.0 0.0 60.3 0.0 0.00 14 15476.2 0.0 0.0 0.0 0.0 3095.2 0.0 0.00 15 16335.3 0.0 0.0 0.0 0.0 3267.1 0.0 0.00 16 17194.4 0.0 0.0 0.0 0.0 3438.9 0.0 0.00 17 18053.5 0.0 0.0 0.0 0.0 3610.7 0.0 0.00 18 17911.0 0.0 0.0 0.0 0.0 3582.2 0.0 0.00 19 18340.9 0.0 0.0 0.0 0.0 3668.2 0.0 0.00 20 18770.9 0.0 0.0 0.0 0.0 3754.2 0.0 0.00 21 19200.9 0.0 0.0 0.0 0.0 3840.2 0.0 0.00 22 19630.8 0.0 0.0 0.0 0.0 3926.2 0.0 0.00 23 18966.3 0.0 0.0 0.0 0.0 3793.3 0.0 0.00 24 19006.5 0.0 0.0 0.0 0.0 3801.3 0.0 0.00 25 19046.8 0.0 0.0 0.0 0.0 3809.4 0.0 0.00 26 19087.0 0.0 0.0 0.0 0.0 3817.4 0.0 0.00 27 19127.3 0.0 0.0 0.0 0.0 3825.5 0.0 0.00 28 15023.8 0.0 0.0 0.0 0.0 3004.8 0.0 0.00 29 14803.5 0.0 0.0 0.0 0.0 2960.7 0.0 0.00 30 19058.5 0.0 0.0 0.0 0.0 3811.7 0.0 0.00 31 18680.5 0.0 0.0 0.0 0.0 3736.1 0.0 0.00 32 18302.4 0.0 0.0 0.0 0.0 3660.5 0.0 0.00 33 18351.2 0.0 0.0 0.0 0.0 3670.2 0.0 0.00 34 17414.7 0.0 0.0 0.0 0.0 3482.9 0.0 0.00 35 16478.3 0.0 0.0 0.0 0.0 3295.7 0.0 0.00 36 15541.9 0.0 0.0 0.0 0.0 3108.4 0.0 0.00 37 12867.1 0.0 0.0 0.0 0.0 2573.4 0.0 0.00 38 11600.5 0.0 0.0 0.0 0.0 2320.1 0.0 0.00 39 10333.9 0.0 0.0 0.0 0.0 2066.8 0.0 0.00 40 9067.3 0.0 0.0 0.0 0.0 1813.5 0.0 0.00 41 8217.4 0.0 0.0 0.0 0.0 1643.5 0.0 0.00 42 5810.1 0.0 0.0 0.0 0.0 1162.0 0.0 0.00 43 3402.7 0.0 0.0 0.0 0.0 680.5 0.0 0.00 44 218.1 0.0 0.0 0.0 0.0 43.6 0.0 0.00 45 324.9 0.0 0.0 0.0 0.0 65.0 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 561196.38(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 561196.38(lbs) TOTAL AREA OF SLIDING MASS = 4676.64(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 45 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 1 300.00 28.00 24 1 300.00 28.00 25 1 300.00 28.00 26 1 300.00 28.00 27 1 300.00 28.00 28 1 300.00 28.00 29 1 300.00 28.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 39 2 200.00 30.00 40 2 200.00 30.00 41 2 200.00 30.00 42 2 200.00 30.00 43 2 200.00 30.00 44 2 200.00 30.00 45 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 45 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -4.06 97.94 5.00 518.23 161.30 3.213 2 -4.06 102.93 5.00 968.92 483.89 2.002 3 -4.06 107.91 5.00 1419.62 806.48 1.760 4 -4.06 112.90 5.00 1870.31 1129.07 1.657 5 -4.06 117.89 5.00 2321.00 1451.67 1.599 6 3.00 122.82 4.88 2195.60 1734.50 1.266 7 3.00 127.69 4.88 2475.70 1977.57 1.252 8 3.00 132.56 4.88 2755.80 2220.65 1.241 9 3.00 135.05 0.10 2898.70 2344.66 1.236 10 3.00 137.66 5.13 3047.59 2473.87 1.232 11 3.00 142.79 5.13 3339.69 2727.35 1.225 12 10.05 147.62 4.62 2998.66 2932.55 1.023 13 10.05 149.95 0.10 3077.12 3012.72 1.021 14 10.05 152.50 5.07 3163.02 3100.50 1.020 15 10.05 157.49 5.07 3331.45 3272.61 1.018 16 10.05 162.48 5.07 3499.88 3444.72 1.016 17 10.05 167.47 5.07 3668.31 3616.82 1.014 18 17.10 172.36 5.00 3245.30 3747.86 0.866 19 17.10 177.13 5.00 3321.36 3837.83 0.865 20 17.10 181.91 5.00 3397.43 3927.80 0.865 21 17.10 186.69 5.00 3473.50 4017.77 0.865 22 17.10 191.47 5.00 3549.56 4107.75 0.864 23 24.15 196.14 5.00 3098.89 4157.14 0.745 24 24.15 200.70 5.00 3105.40 4165.96 0.745 25 24.15 205.27 5.00 3111.90 4174.79 0.745 26 24.15 209.83 5.00 3118.41 4183.61 0.745 27 24.15 214.39 5.00 3124.91 4192.43 0.745 28 31.20 218.48 4.22 2685.03 4166.29 0.644 29 31.20 222.08 4.22 2645.63 4105.20 0.644 30 31.20 226.25 5.52 2600.00 4034.63 0.644 31 31.20 230.97 5.52 2548.39 3954.60 0.644 32 31.20 235.69 5.52 2496.79 3874.57 0.644 33 38.26 240.51 6.25 2071.86 3739.15 0.554 34 38.26 245.42 6.25 1964.98 3548.34 0.554 35 38.26 250.33 6.25 1858.10 3357.54 0.553 36 38.26 255.23 6.25 1792.58 3166.73 0.566 37 45.31 259.89 6.25 1455.13 2927.26 0.497 38 45.31 264.28 6.25 1343.46 2639.11 0.509 39 45.31 268.68 6.25 1223.07 2350.96 0.520 40 45.31 273.07 6.25 1093.46 2062.81 0.530 41 52.36 277.72 8.04 768.05 1673.59 0.459 42 52.36 282.63 8.04 528.67 1183.30 0.447 43 52.36 287.54 8.04 264.99 693.01 0.382 44 52.36 290.27 0.88 98.88 405.86 0.244 45 59.41 291.43 3.51 -68.58 181.92 -0.377 ***TABLE 5A - Total Base Force Data on the 45 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -4.06 97.94 5.00 2591.14 804.46 3.221 2 -4.06 102.93 5.00 4844.61 2413.38 2.007 3 -4.06 107.91 5.00 7098.08 4022.30 1.765 4 -4.06 112.90 5.00 9351.55 5631.22 1.661 5 -4.06 117.89 5.00 11605.02 7240.14 1.603 6 3.00 122.82 4.88 10711.87 8450.67 1.268 7 3.00 127.69 4.88 12078.41 9634.96 1.254 8 3.00 132.56 4.88 13444.94 10819.24 1.243 9 3.00 135.05 0.10 290.27 234.47 1.238 10 3.00 137.66 5.13 15639.53 12677.97 1.234 11 3.00 142.79 5.13 17138.48 13977.00 1.226 12 10.05 147.62 4.62 13857.94 13344.56 1.038 13 10.05 149.95 0.10 312.50 301.27 1.037 14 10.05 152.50 5.07 16034.21 15476.21 1.036 15 10.05 157.49 5.07 16888.02 16335.29 1.034 16 10.05 162.48 5.07 17741.83 17194.38 1.032 17 10.05 167.47 5.07 18595.63 18053.46 1.030 18 17.10 172.36 5.00 16226.48 17910.96 0.906 19 17.10 177.13 5.00 16606.81 18340.93 0.905 20 17.10 181.91 5.00 16987.15 18770.89 0.905 21 17.10 186.69 5.00 17367.48 19200.86 0.905 22 17.10 191.47 5.00 17747.81 19630.82 0.904 23 24.15 196.14 5.00 15494.47 18966.26 0.817 24 24.15 200.70 5.00 15526.99 19006.51 0.817 25 24.15 205.27 5.00 15559.51 19046.77 0.817 26 24.15 209.83 5.00 15592.03 19087.02 0.817 27 24.15 214.39 5.00 15624.55 19127.27 0.817 28 31.20 218.48 4.22 11320.00 15023.85 0.753 29 31.20 222.08 4.22 11153.87 14803.53 0.753 30 31.20 226.25 5.52 14358.98 19058.55 0.753 31 31.20 230.97 5.52 14074.00 18680.49 0.753 32 31.20 235.69 5.52 13789.02 18302.43 0.753 33 38.26 240.51 6.25 12949.14 18351.19 0.706 34 38.26 245.42 6.25 12281.14 17414.75 0.705 35 38.26 250.33 6.25 11613.15 16478.31 0.705 36 38.26 255.23 6.25 11203.63 15541.87 0.721 37 45.31 259.89 6.25 9094.57 12867.13 0.707 38 45.31 264.28 6.25 8396.62 11600.54 0.724 39 45.31 268.68 6.25 7644.18 10333.94 0.740 40 45.31 273.07 6.25 6834.14 9067.35 0.754 41 52.36 277.72 8.04 6175.14 8217.41 0.751 42 52.36 282.63 8.04 4250.50 5810.07 0.732 43 52.36 287.54 8.04 2130.53 3402.73 0.626 44 52.36 290.27 0.88 87.02 218.13 0.399 45 59.41 291.43 3.51 -240.66 324.85 -0.741 ***TABLE 6 - Effective and Base Shear Stress Data on the 45 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -4.06 97.94 5.00 518.23 575.55 531.31 2 -4.06 102.93 5.00 968.92 815.18 752.53 3 -4.06 107.91 5.00 1419.62 1054.82 973.75 4 -4.06 112.90 5.00 1870.31 1294.46 1194.97 5 -4.06 117.89 5.00 2321.00 1534.10 1416.19 6 3.00 122.82 4.88 2195.60 1467.42 1354.64 7 3.00 127.69 4.88 2475.70 1616.35 1492.13 8 3.00 132.56 4.88 2755.80 1765.28 1629.61 9 3.00 135.05 0.10 2898.70 1841.27 1699.75 10 3.00 137.66 5.13 3047.59 1920.43 1772.84 11 3.00 142.79 5.13 3339.69 2075.74 1916.21 12 10.05 147.62 4.62 2998.66 1894.42 1748.82 13 10.05 149.95 0.10 3077.12 1936.13 1787.33 14 10.05 152.50 5.07 3163.02 1981.81 1829.49 15 10.05 157.49 5.07 3331.45 2071.36 1912.17 16 10.05 162.48 5.07 3499.88 2160.92 1994.84 17 10.05 167.47 5.07 3668.31 2250.47 2077.51 18 17.10 172.36 5.00 3245.30 2025.55 1869.88 19 17.10 177.13 5.00 3321.36 2066.00 1907.21 20 17.10 181.91 5.00 3397.43 2106.45 1944.55 21 17.10 186.69 5.00 3473.50 2146.89 1981.89 22 17.10 191.47 5.00 3549.56 2187.34 2019.23 23 24.15 196.14 5.00 3098.89 1947.71 1798.02 24 24.15 200.70 5.00 3105.40 1951.17 1801.21 25 24.15 205.27 5.00 3111.90 1954.63 1804.40 26 24.15 209.83 5.00 3118.41 1958.09 1807.60 27 24.15 214.39 5.00 3124.91 1961.54 1810.79 28 31.20 218.48 4.22 2685.03 1727.66 1594.88 29 31.20 222.08 4.22 2645.63 1706.71 1575.54 30 31.20 226.25 5.52 2600.00 1701.11 1570.37 31 31.20 230.97 5.52 2548.39 1671.32 1542.86 32 31.20 235.69 5.52 2496.79 1641.52 1515.36 33 38.26 240.51 6.25 2071.86 1396.19 1288.88 34 38.26 245.42 6.25 1964.98 1334.48 1231.92 35 38.26 250.33 6.25 1858.10 1272.78 1174.96 36 38.26 255.23 6.25 1792.58 1234.95 1140.03 37 45.31 259.89 6.25 1455.13 1040.12 960.18 38 45.31 264.28 6.25 1343.46 975.65 900.66 39 45.31 268.68 6.25 1223.07 906.14 836.50 40 45.31 273.07 6.25 1093.46 831.31 767.42 41 52.36 277.72 8.04 768.05 643.44 593.98 42 52.36 282.63 8.04 528.67 505.23 466.40 43 52.36 287.54 8.04 264.99 352.99 325.86 44 52.36 290.27 0.88 98.88 257.09 237.33 45 59.41 291.43 3.51 0.00 0.00 0.00 ***TABLE 6A - Effective and Base Shear Force Data on the 45 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -4.06 97.94 5.00 2591.14 2877.73 2656.56 2 -4.06 102.93 5.00 4844.61 4075.92 3762.66 3 -4.06 107.91 5.00 7098.08 5274.12 4868.77 4 -4.06 112.90 5.00 9351.55 6472.31 5974.87 5 -4.06 117.89 5.00 11605.02 7670.50 7080.97 6 3.00 122.82 4.88 10711.87 7159.24 6609.00 7 3.00 127.69 4.88 12078.41 7885.84 7279.76 8 3.00 132.56 4.88 13444.94 8612.44 7950.52 9 3.00 135.05 0.10 290.27 184.38 170.21 10 3.00 137.66 5.13 15639.53 9855.21 9097.78 11 3.00 142.79 5.13 17138.48 10652.22 9833.53 12 10.05 147.62 4.62 13857.94 8754.81 8081.95 13 10.05 149.95 0.10 312.50 196.63 181.52 14 10.05 152.50 5.07 16034.21 10046.32 9274.20 15 10.05 157.49 5.07 16888.02 10500.30 9693.28 16 10.05 162.48 5.07 17741.83 10954.28 10112.37 17 10.05 167.47 5.07 18595.63 11408.25 10531.46 18 17.10 172.36 5.00 16226.48 10127.77 9349.39 19 17.10 177.13 5.00 16606.81 10330.00 9536.07 20 17.10 181.91 5.00 16987.15 10532.23 9722.76 21 17.10 186.69 5.00 17367.48 10734.45 9909.44 22 17.10 191.47 5.00 17747.81 10936.68 10096.13 23 24.15 196.14 5.00 15494.47 9738.56 8990.09 24 24.15 200.70 5.00 15526.99 9755.85 9006.05 25 24.15 205.27 5.00 15559.51 9773.14 9022.01 26 24.15 209.83 5.00 15592.03 9790.43 9037.98 27 24.15 214.39 5.00 15624.55 9807.72 9053.94 28 31.20 218.48 4.22 11320.00 7283.74 6723.94 29 31.20 222.08 4.22 11153.87 7195.41 6642.40 30 31.20 226.25 5.52 14358.98 9394.70 8672.66 31 31.20 230.97 5.52 14074.00 9230.17 8520.77 32 31.20 235.69 5.52 13789.02 9065.63 8368.88 33 38.26 240.51 6.25 12949.14 8726.19 8055.53 34 38.26 245.42 6.25 12281.14 8340.52 7699.50 35 38.26 250.33 6.25 11613.15 7954.86 7343.47 36 38.26 255.23 6.25 11203.63 7718.42 7125.21 37 45.31 259.89 6.25 9094.57 6500.75 6001.13 38 45.31 264.28 6.25 8396.62 6097.79 5629.14 39 45.31 268.68 6.25 7644.18 5663.37 5228.10 40 45.31 273.07 6.25 6834.14 5195.69 4796.37 41 52.36 277.72 8.04 6175.14 5173.22 4775.62 42 52.36 282.63 8.04 4250.50 4062.02 3749.83 43 52.36 287.54 8.04 2130.53 2838.06 2619.94 44 52.36 290.27 0.88 87.02 226.25 208.86 45 59.41 291.43 3.51 0.00 0.00 0.00 Average Effective Normal Stress = 2223.4219(psf) Average Available Shear Strength = 1465.0357(psf) Total Length of Failure Surface = 228.5092(ft) SUM OF MOMENTS = -0.877362E-04 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.1563377E-09 SUM OF FORCES = -.510676E-01 (lbs);Imbalance (Fraction of Total Weight) = -0.9099779E- 07 Sum of Available Shear Forces = 334774.08(lbs) Sum of Mobilized Shear Forces = 309044.60(lbs) FS Balance Check: FS = 1.083255 The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection A-A' Block (Seismic)Ninyo & Moore / WRM\A-A' Block (Seismic).gsdSpencer MethodPLATE E-7 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.558 2 1.558 3 1.558 4 1.558 5 1.558 6 1.558 7 1.558 8 1.558 9 1.58810 1.588GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.558 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 B 18 B 19 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.558 2 1.558 3 1.558 4 1.558 5 1.558 6 1.558 7 1.558 8 1.558 9 1.588 10 1.588 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Block\A-A' Block (Seismic).gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\A-A'\Block\A-A' Block (Seismic).OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section A-A' Block (Seismic) BOUNDARY DATA 11 Surface Boundaries 19 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 620.000 88.000 620.000 1 2 88.000 620.000 135.000 642.000 1 3 135.000 642.000 290.000 714.000 2 4 290.000 714.000 450.000 713.000 2 5 450.000 713.000 555.000 715.000 2 6 555.000 715.000 570.000 717.000 2 7 570.000 717.000 590.000 717.000 2 8 590.000 717.000 610.000 717.000 2 9 610.000 717.000 660.000 713.000 2 10 660.000 713.000 855.000 713.000 2 11 855.000 713.000 900.000 713.000 2 12 135.000 642.000 135.100 637.000 1 13 135.100 637.000 149.900 637.000 1 14 149.900 637.000 150.000 643.000 1 15 150.000 643.000 465.000 670.000 1 16 465.000 670.000 636.000 708.000 1 17 636.000 708.000 855.000 708.000 1 18 855.000 708.000 855.100 712.000 1 19 855.100 712.000 900.000 712.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity = 1.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity = 0.0 will result in default Peak Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor = 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search = 25.00(ft) Zone X - 1 Y - 1 X - 2 Y - 2 Height No. (ft) (ft) (ft) (ft) (ft) 1 150.00 643.50 150.00 643.50 0.10 2 150.10 643.50 465.00 670.50 0.10 The Spencer Method Was Selected for FS Analysis. Selected fx function = Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 3758 Number of Trial Surfaces With Valid FS = 1242 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 75.2 % Statistical Data On All Valid FS Values: FS Max = 12.184 FS Min = 1.558 FS Ave = 2.202 Standard Deviation = 1.194 Coefficient of Variation = 54.25 % Critical Surface is Sequence Number 108 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 0.000000 1.518894 0.268 0.1518894E+01 2 19.9500 0.886289 1.527130 0.363 0.6408409E+00 3 23.5620 1.232911 1.533686 0.436 0.3007755E+00 4 26.7560 1.380052 1.539972 0.504 0.1599195E+00 5 30.3816 1.481424 1.547796 0.586 0.6637214E-01 6 32.9535 1.532456 1.553892 0.648 0.2143612E-01 7 34.1801 1.553046 1.556988 0.679 0.3941989E-02 8 34.4565 1.557423 1.557704 0.686 0.2811723E-03 9 34.4777 1.557756 1.557760 0.687 0.4007720E-05 10 34.4780 1.557760 1.557760 0.687 0.7232433E-08 Factor Of Safety For The Preceding Specified Surface = 1.558 Theta (fx = 1.0) = 34.48 Deg Lambda = 0.687 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Constant (1.0) SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 145.80 646.12 0.671 1801.21 1.000 34.48 1019.6 2 150.00 646.51 0.551 4735.02 1.000 34.48 2680.4 3 155.00 648.44 0.612 6112.47 1.000 34.48 3460.2 4 160.00 650.02 0.612 7619.60 1.000 34.48 4313.4 5 165.00 651.37 0.591 9256.41 1.000 34.48 5240.0 6 170.00 652.54 0.562 11022.89 1.000 34.48 6239.9 7 175.00 653.57 0.531 12919.05 1.000 34.48 7313.3 8 180.00 654.50 0.501 14944.89 1.000 34.48 8460.1 9 185.00 655.34 0.472 17100.40 1.000 34.48 9680.4 10 190.00 656.10 0.445 19385.59 1.000 34.48 10974.0 11 195.00 656.79 0.419 21800.46 1.000 34.48 12341.0 12 200.00 657.44 0.396 24345.01 1.000 34.48 13781.5 13 205.00 658.03 0.373 27019.23 1.000 34.48 15295.3 14 210.00 658.59 0.353 29823.14 1.000 34.48 16882.6 15 215.00 659.11 0.334 32756.71 1.000 34.48 18543.2 16 220.00 659.60 0.316 35819.97 1.000 34.48 20277.3 17 225.00 660.06 0.299 39012.90 1.000 34.48 22084.8 18 230.00 660.49 0.283 42335.51 1.000 34.48 23965.7 19 235.00 660.90 0.269 45787.80 1.000 34.48 25920.0 20 240.00 661.30 0.255 49369.77 1.000 34.48 27947.7 21 245.00 661.67 0.242 53081.41 1.000 34.48 30048.8 22 250.00 662.02 0.230 56922.73 1.000 34.48 32223.4 23 255.00 662.36 0.218 60893.72 1.000 34.48 34471.3 24 260.00 662.69 0.207 64994.40 1.000 34.48 36792.7 25 265.00 663.00 0.197 69224.75 1.000 34.48 39187.4 26 270.00 663.30 0.187 73584.78 1.000 34.48 41655.6 27 275.00 663.59 0.178 78074.48 1.000 34.48 44197.2 28 280.00 663.87 0.169 82693.86 1.000 34.48 46812.2 29 285.00 664.15 0.160 87442.93 1.000 34.48 49500.5 30 290.00 664.41 0.152 92321.66 1.000 34.48 52262.4 31 296.00 664.87 0.153 98229.06 1.000 34.48 55606.5 32 302.00 665.59 0.158 104091.20 1.000 34.48 58925.0 33 306.68 667.28 0.162 97082.22 1.000 34.48 54957.3 34 311.37 668.96 0.166 90315.66 1.000 34.48 51126.8 35 316.06 670.65 0.171 83791.53 1.000 34.48 47433.5 36 320.74 672.34 0.176 77509.81 1.000 34.48 43877.5 37 325.43 674.04 0.182 71470.52 1.000 34.48 40458.7 38 330.12 675.74 0.188 65673.65 1.000 34.48 37177.2 39 334.80 677.45 0.194 60119.21 1.000 34.48 34032.9 40 339.49 679.16 0.201 54807.19 1.000 34.48 31025.8 41 344.18 680.88 0.210 49737.59 1.000 34.48 28155.9 42 348.87 682.61 0.219 44910.41 1.000 34.48 25423.3 43 353.55 684.35 0.229 40325.66 1.000 34.48 22827.9 44 358.24 686.10 0.240 35983.33 1.000 34.48 20369.8 45 362.93 687.87 0.253 31883.42 1.000 34.48 18048.9 46 367.61 689.66 0.269 28025.93 1.000 34.48 15865.2 47 372.30 691.47 0.286 24410.87 1.000 34.48 13818.7 48 376.99 693.31 0.307 21038.23 1.000 34.48 11909.5 49 381.67 695.19 0.332 17908.02 1.000 34.48 10137.5 50 386.36 697.12 0.363 15020.22 1.000 34.48 8502.8 51 391.05 699.13 0.401 12374.85 1.000 34.48 7005.3 52 395.74 701.24 0.450 9971.90 1.000 34.48 5645.0 53 400.42 703.50 0.515 7811.38 1.000 34.48 4421.9 54 405.11 706.02 0.607 5893.28 1.000 34.48 3336.1 55 409.80 708.99 0.745 4217.60 1.000 34.48 2387.5 56 414.48 712.87 0.976 2784.34 1.000 34.48 1576.2 57 419.17 719.09 1.000+ 1593.51 1.000 34.48 902.1 58 423.86 735.50 1.000+ 645.10 1.000 34.48 365.2 59 428.54 462.56 0.000- -60.89 1.000 34.48 -34.5 60 433.23 688.01 0.000- -524.45 1.000 34.48 -296.9 61 437.92 700.54 0.000- -745.59 1.000 34.48 -422.1 62 442.61 706.11 0.000- -724.31 1.000 34.48 -410.0 63 446.30 709.34 0.000- -627.37 1.000 34.48 -355.1 64 450.00 711.78 0.000- -303.10 1.000 34.48 -171.6 65 452.23 713.04 0.000 0.00 1.000 34.48 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 65 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.20 1.37 143.70 644.68 646.04 -10.59 24.92 4.27 2 4.20 4.10 147.90 643.89 647.99 -10.59 24.92 4.27 3 5.00 6.42 152.50 643.71 650.13 4.90 24.92 5.02 4 5.00 8.31 157.50 644.14 652.45 4.90 24.92 5.02 5 5.00 10.20 162.50 644.57 654.77 4.90 24.92 5.02 6 5.00 12.10 167.50 645.00 657.10 4.90 24.92 5.02 7 5.00 13.99 172.50 645.43 659.42 4.90 24.92 5.02 8 5.00 15.89 177.50 645.85 661.74 4.90 24.92 5.02 9 5.00 17.78 182.50 646.28 664.06 4.90 24.92 5.02 10 5.00 19.68 187.50 646.71 666.39 4.90 24.92 5.02 11 5.00 21.57 192.50 647.14 668.71 4.90 24.92 5.02 12 5.00 23.46 197.50 647.57 671.03 4.90 24.92 5.02 13 5.00 25.36 202.50 648.00 673.35 4.90 24.92 5.02 14 5.00 27.25 207.50 648.42 675.68 4.90 24.92 5.02 15 5.00 29.15 212.50 648.85 678.00 4.90 24.92 5.02 16 5.00 31.04 217.50 649.28 680.32 4.90 24.92 5.02 17 5.00 32.94 222.50 649.71 682.65 4.90 24.92 5.02 18 5.00 34.83 227.50 650.14 684.97 4.90 24.92 5.02 19 5.00 36.72 232.50 650.57 687.29 4.90 24.92 5.02 20 5.00 38.62 237.50 650.99 689.61 4.90 24.92 5.02 21 5.00 40.51 242.50 651.42 691.94 4.90 24.92 5.02 22 5.00 42.41 247.50 651.85 694.26 4.90 24.92 5.02 23 5.00 44.30 252.50 652.28 696.58 4.90 24.92 5.02 24 5.00 46.20 257.50 652.71 698.90 4.90 24.92 5.02 25 5.00 48.09 262.50 653.14 701.23 4.90 24.92 5.02 26 5.00 49.99 267.50 653.56 703.55 4.90 24.92 5.02 27 5.00 51.88 272.50 653.99 705.87 4.90 24.92 5.02 28 5.00 53.77 277.50 654.42 708.19 4.90 24.92 5.02 29 5.00 55.67 282.50 654.85 710.52 4.90 24.92 5.02 30 5.00 57.56 287.50 655.28 712.84 4.90 24.92 5.02 31 6.00 58.23 293.00 655.75 713.98 4.90 -0.36 6.02 32 6.00 57.68 299.00 656.26 713.94 4.90 -0.36 6.02 33 4.69 56.52 304.34 657.39 713.91 20.38 -0.36 5.00 34 4.69 54.75 309.03 659.13 713.88 20.38 -0.36 5.00 35 4.69 52.98 313.71 660.87 713.85 20.38 -0.36 5.00 36 4.69 51.21 318.40 662.61 713.82 20.38 -0.36 5.00 37 4.69 49.44 323.09 664.35 713.79 20.38 -0.36 5.00 38 4.69 47.67 327.77 666.09 713.76 20.38 -0.36 5.00 39 4.69 45.90 332.46 667.84 713.73 20.38 -0.36 5.00 40 4.69 44.13 337.15 669.58 713.71 20.38 -0.36 5.00 41 4.69 42.36 341.83 671.32 713.68 20.38 -0.36 5.00 42 4.69 40.59 346.52 673.06 713.65 20.38 -0.36 5.00 43 4.69 38.82 351.21 674.80 713.62 20.38 -0.36 5.00 44 4.69 37.05 355.90 676.54 713.59 20.38 -0.36 5.00 45 4.69 35.27 360.58 678.28 713.56 20.38 -0.36 5.00 46 4.69 33.50 365.27 680.03 713.53 20.38 -0.36 5.00 47 4.69 31.73 369.96 681.77 713.50 20.38 -0.36 5.00 48 4.69 29.96 374.64 683.51 713.47 20.38 -0.36 5.00 49 4.69 28.19 379.33 685.25 713.44 20.38 -0.36 5.00 50 4.69 26.42 384.02 686.99 713.41 20.38 -0.36 5.00 51 4.69 24.65 388.70 688.73 713.38 20.38 -0.36 5.00 52 4.69 22.88 393.39 690.47 713.35 20.38 -0.36 5.00 53 4.69 21.11 398.08 692.21 713.32 20.38 -0.36 5.00 54 4.69 19.34 402.77 693.96 713.30 20.38 -0.36 5.00 55 4.69 17.57 407.45 695.70 713.27 20.38 -0.36 5.00 56 4.69 15.80 412.14 697.44 713.24 20.38 -0.36 5.00 57 4.69 14.03 416.83 699.18 713.21 20.38 -0.36 5.00 58 4.69 12.26 421.51 700.92 713.18 20.38 -0.36 5.00 59 4.69 10.49 426.20 702.66 713.15 20.38 -0.36 5.00 60 4.69 8.72 430.89 704.40 713.12 20.38 -0.36 5.00 61 4.69 6.95 435.57 706.14 713.09 20.38 -0.36 5.00 62 4.69 5.17 440.26 707.89 713.06 20.38 -0.36 5.00 63 3.70 3.45 444.45 709.58 713.03 24.00 -0.36 4.05 64 3.70 1.79 448.15 711.23 713.01 24.00 -0.36 4.05 65 2.23 0.48 451.11 712.55 713.02 24.00 1.09 2.44 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 141.606586 645.068866 2 145.803293 644.284222 3 150.000000 643.499579 4 155.000000 643.927823 5 160.000000 644.356067 6 165.000000 644.784311 7 170.000000 645.212555 8 175.000000 645.640799 9 180.000000 646.069043 10 185.000000 646.497287 11 190.000000 646.925531 12 195.000000 647.353775 13 200.000000 647.782019 14 205.000000 648.210263 15 210.000000 648.638506 16 215.000000 649.066750 17 220.000000 649.494994 18 225.000000 649.923238 19 230.000000 650.351482 20 235.000000 650.779726 21 240.000000 651.207970 22 245.000000 651.636214 23 250.000000 652.064458 24 255.000000 652.492702 25 260.000000 652.920946 26 265.000000 653.349190 27 270.000000 653.777434 28 275.000000 654.205678 29 280.000000 654.633922 30 285.000000 655.062166 31 290.000000 655.490410 32 295.997714 656.004107 33 301.995428 656.517804 34 306.682421 658.259098 35 311.369413 660.000393 36 316.056405 661.741687 37 320.743397 663.482982 38 325.430389 665.224276 39 330.117382 666.965570 40 334.804374 668.706865 41 339.491366 670.448159 42 344.178358 672.189453 43 348.865350 673.930748 44 353.552342 675.672042 45 358.239335 677.413337 46 362.926327 679.154631 47 367.613319 680.895925 48 372.300311 682.637220 49 376.987303 684.378514 50 381.674296 686.119809 51 386.361288 687.861103 52 391.048280 689.602397 53 395.735272 691.343692 54 400.422264 693.084986 55 405.109256 694.826281 56 409.796249 696.567575 57 414.483241 698.308869 58 419.170233 700.050164 59 423.857225 701.791458 60 428.544217 703.532752 61 433.231210 705.274047 62 437.918202 707.015341 63 442.605194 708.756636 64 446.302597 710.403109 65 450.000000 712.049581 66 452.229681 713.042470 ***Table 3 - Force and Pore Pressure Data On The 65 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 688.4 0.0 0.0 0.0 0.0 137.7 0.0 0.00 2 2065.3 0.0 0.0 0.0 0.0 413.1 0.0 0.00 3 3849.2 0.0 0.0 0.0 0.0 769.8 0.0 0.00 4 4985.8 0.0 0.0 0.0 0.0 997.2 0.0 0.00 5 6122.4 0.0 0.0 0.0 0.0 1224.5 0.0 0.00 6 7259.0 0.0 0.0 0.0 0.0 1451.8 0.0 0.00 7 8395.6 0.0 0.0 0.0 0.0 1679.1 0.0 0.00 8 9532.2 0.0 0.0 0.0 0.0 1906.4 0.0 0.00 9 10668.8 0.0 0.0 0.0 0.0 2133.8 0.0 0.00 10 11805.4 0.0 0.0 0.0 0.0 2361.1 0.0 0.00 11 12942.0 0.0 0.0 0.0 0.0 2588.4 0.0 0.00 12 14078.6 0.0 0.0 0.0 0.0 2815.7 0.0 0.00 13 15215.2 0.0 0.0 0.0 0.0 3043.0 0.0 0.00 14 16351.8 0.0 0.0 0.0 0.0 3270.4 0.0 0.00 15 17488.4 0.0 0.0 0.0 0.0 3497.7 0.0 0.00 16 18625.0 0.0 0.0 0.0 0.0 3725.0 0.0 0.00 17 19761.6 0.0 0.0 0.0 0.0 3952.3 0.0 0.00 18 20898.2 0.0 0.0 0.0 0.0 4179.6 0.0 0.00 19 22034.8 0.0 0.0 0.0 0.0 4407.0 0.0 0.00 20 23171.4 0.0 0.0 0.0 0.0 4634.3 0.0 0.00 21 24308.0 0.0 0.0 0.0 0.0 4861.6 0.0 0.00 22 25444.6 0.0 0.0 0.0 0.0 5088.9 0.0 0.00 23 26581.2 0.0 0.0 0.0 0.0 5316.2 0.0 0.00 24 27717.8 0.0 0.0 0.0 0.0 5543.6 0.0 0.00 25 28854.4 0.0 0.0 0.0 0.0 5770.9 0.0 0.00 26 29991.0 0.0 0.0 0.0 0.0 5998.2 0.0 0.00 27 31127.6 0.0 0.0 0.0 0.0 6225.5 0.0 0.00 28 32264.2 0.0 0.0 0.0 0.0 6452.8 0.0 0.00 29 33400.9 0.0 0.0 0.0 0.0 6680.2 0.0 0.00 30 34537.5 0.0 0.0 0.0 0.0 6907.5 0.0 0.00 31 41912.5 0.0 0.0 0.0 0.0 8382.5 0.0 0.00 32 41515.8 0.0 0.0 0.0 0.0 8303.2 0.0 0.00 33 31790.1 0.0 0.0 0.0 0.0 6358.0 0.0 0.00 34 30794.3 0.0 0.0 0.0 0.0 6158.9 0.0 0.00 35 29798.4 0.0 0.0 0.0 0.0 5959.7 0.0 0.00 36 28802.6 0.0 0.0 0.0 0.0 5760.5 0.0 0.00 37 27806.7 0.0 0.0 0.0 0.0 5561.3 0.0 0.00 38 26810.9 0.0 0.0 0.0 0.0 5362.2 0.0 0.00 39 25815.1 0.0 0.0 0.0 0.0 5163.0 0.0 0.00 40 24819.2 0.0 0.0 0.0 0.0 4963.8 0.0 0.00 41 23823.4 0.0 0.0 0.0 0.0 4764.7 0.0 0.00 42 22827.5 0.0 0.0 0.0 0.0 4565.5 0.0 0.00 43 21831.7 0.0 0.0 0.0 0.0 4366.3 0.0 0.00 44 20835.8 0.0 0.0 0.0 0.0 4167.2 0.0 0.00 45 19840.0 0.0 0.0 0.0 0.0 3968.0 0.0 0.00 46 18844.1 0.0 0.0 0.0 0.0 3768.8 0.0 0.00 47 17848.3 0.0 0.0 0.0 0.0 3569.7 0.0 0.00 48 16852.4 0.0 0.0 0.0 0.0 3370.5 0.0 0.00 49 15856.6 0.0 0.0 0.0 0.0 3171.3 0.0 0.00 50 14860.7 0.0 0.0 0.0 0.0 2972.1 0.0 0.00 51 13864.9 0.0 0.0 0.0 0.0 2773.0 0.0 0.00 52 12869.0 0.0 0.0 0.0 0.0 2573.8 0.0 0.00 53 11873.2 0.0 0.0 0.0 0.0 2374.6 0.0 0.00 54 10877.3 0.0 0.0 0.0 0.0 2175.5 0.0 0.00 55 9881.5 0.0 0.0 0.0 0.0 1976.3 0.0 0.00 56 8885.6 0.0 0.0 0.0 0.0 1777.1 0.0 0.00 57 7889.8 0.0 0.0 0.0 0.0 1578.0 0.0 0.00 58 6893.9 0.0 0.0 0.0 0.0 1378.8 0.0 0.00 59 5898.1 0.0 0.0 0.0 0.0 1179.6 0.0 0.00 60 4902.2 0.0 0.0 0.0 0.0 980.4 0.0 0.00 61 3906.4 0.0 0.0 0.0 0.0 781.3 0.0 0.00 62 2910.6 0.0 0.0 0.0 0.0 582.1 0.0 0.00 63 1532.9 0.0 0.0 0.0 0.0 306.6 0.0 0.00 64 792.1 0.0 0.0 0.0 0.0 158.4 0.0 0.00 65 127.1 0.0 0.0 0.0 0.0 25.4 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 1146557.72(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 1146557.72(lbs) TOTAL AREA OF SLIDING MASS = 9554.65(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 65 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 21 2 200.00 30.00 22 2 200.00 30.00 23 2 200.00 30.00 24 2 200.00 30.00 25 2 200.00 30.00 26 2 200.00 30.00 27 2 200.00 30.00 28 2 200.00 30.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 39 2 200.00 30.00 40 2 200.00 30.00 41 2 200.00 30.00 42 2 200.00 30.00 43 2 200.00 30.00 44 2 200.00 30.00 45 2 200.00 30.00 46 2 200.00 30.00 47 2 200.00 30.00 48 2 200.00 30.00 49 2 200.00 30.00 50 2 200.00 30.00 51 2 200.00 30.00 52 2 200.00 30.00 53 2 200.00 30.00 54 2 200.00 30.00 55 2 200.00 30.00 56 2 200.00 30.00 57 2 200.00 30.00 58 2 200.00 30.00 59 2 200.00 30.00 60 2 200.00 30.00 61 2 200.00 30.00 62 2 200.00 30.00 63 2 200.00 30.00 64 2 200.00 30.00 65 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 65 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -10.59 143.70 4.27 463.10 164.04 2.823 2 -10.59 147.90 4.27 979.77 492.13 1.991 3 4.90 152.50 5.02 886.65 769.84 1.152 4 4.90 157.50 5.02 1121.21 997.16 1.124 5 4.90 162.50 5.02 1355.76 1224.48 1.107 6 4.90 167.50 5.02 1590.32 1451.80 1.095 7 4.90 172.50 5.02 1824.88 1679.12 1.087 8 4.90 177.50 5.02 2059.43 1906.44 1.080 9 4.90 182.50 5.02 2293.99 2133.76 1.075 10 4.90 187.50 5.02 2528.55 2361.08 1.071 11 4.90 192.50 5.02 2763.10 2588.40 1.067 12 4.90 197.50 5.02 2997.66 2815.72 1.065 13 4.90 202.50 5.02 3232.21 3043.04 1.062 14 4.90 207.50 5.02 3466.77 3270.36 1.060 15 4.90 212.50 5.02 3701.33 3497.68 1.058 16 4.90 217.50 5.02 3935.88 3725.00 1.057 17 4.90 222.50 5.02 4170.44 3952.33 1.055 18 4.90 227.50 5.02 4405.00 4179.65 1.054 19 4.90 232.50 5.02 4639.55 4406.97 1.053 20 4.90 237.50 5.02 4874.11 4634.29 1.052 21 4.90 242.50 5.02 5108.67 4861.61 1.051 22 4.90 247.50 5.02 5343.22 5088.93 1.050 23 4.90 252.50 5.02 5577.78 5316.25 1.049 24 4.90 257.50 5.02 5812.34 5543.57 1.048 25 4.90 262.50 5.02 6046.89 5770.89 1.048 26 4.90 267.50 5.02 6281.45 5998.21 1.047 27 4.90 272.50 5.02 6516.01 6225.53 1.047 28 4.90 277.50 5.02 6750.56 6452.85 1.046 29 4.90 282.50 5.02 6985.12 6680.17 1.046 30 4.90 287.50 5.02 7219.67 6907.49 1.045 31 4.90 293.00 6.02 7302.83 6988.08 1.045 32 4.90 299.00 6.02 7234.58 6921.94 1.045 33 20.38 304.34 5.00 5175.73 6782.63 0.763 34 20.38 309.03 5.00 5014.71 6570.16 0.763 35 20.38 313.71 5.00 4853.69 6357.69 0.763 36 20.38 318.40 5.00 4692.67 6145.22 0.764 37 20.38 323.09 5.00 4531.65 5932.75 0.764 38 20.38 327.77 5.00 4370.63 5720.28 0.764 39 20.38 332.46 5.00 4209.61 5507.81 0.764 40 20.38 337.15 5.00 4048.59 5295.34 0.765 41 20.38 341.83 5.00 3887.57 5082.87 0.765 42 20.38 346.52 5.00 3726.55 4870.40 0.765 43 20.38 351.21 5.00 3565.53 4657.93 0.765 44 20.38 355.90 5.00 3404.51 4445.46 0.766 45 20.38 360.58 5.00 3243.49 4232.98 0.766 46 20.38 365.27 5.00 3082.47 4020.51 0.767 47 20.38 369.96 5.00 2921.45 3808.04 0.767 48 20.38 374.64 5.00 2760.43 3595.57 0.768 49 20.38 379.33 5.00 2599.41 3383.10 0.768 50 20.38 384.02 5.00 2438.40 3170.63 0.769 51 20.38 388.70 5.00 2277.38 2958.16 0.770 52 20.38 393.39 5.00 2116.36 2745.69 0.771 53 20.38 398.08 5.00 1955.34 2533.22 0.772 54 20.38 402.77 5.00 1794.32 2320.75 0.773 55 20.38 407.45 5.00 1633.30 2108.28 0.775 56 20.38 412.14 5.00 1472.28 1895.81 0.777 57 20.38 416.83 5.00 1311.26 1683.34 0.779 58 20.38 421.51 5.00 1150.24 1470.87 0.782 59 20.38 426.20 5.00 989.22 1258.40 0.786 60 20.38 430.89 5.00 828.20 1045.93 0.792 61 20.38 435.57 5.00 667.18 833.46 0.800 62 20.38 440.26 5.00 506.16 620.99 0.815 63 24.00 444.45 4.05 319.51 414.57 0.771 64 24.00 448.15 4.05 177.42 214.23 0.828 65 24.00 451.11 2.44 65.93 57.03 1.156 ***TABLE 5A - Total Base Force Data on the 65 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -10.59 143.70 4.27 1977.19 688.45 2.872 2 -10.59 147.90 4.27 4183.07 2065.35 2.025 3 4.90 152.50 5.02 4449.48 3849.20 1.156 4 4.90 157.50 5.02 5626.56 4985.80 1.129 5 4.90 162.50 5.02 6803.63 6122.40 1.111 6 4.90 167.50 5.02 7980.71 7259.00 1.099 7 4.90 172.50 5.02 9157.78 8395.61 1.091 8 4.90 177.50 5.02 10334.86 9532.21 1.084 9 4.90 182.50 5.02 11511.94 10668.81 1.079 10 4.90 187.50 5.02 12689.01 11805.41 1.075 11 4.90 192.50 5.02 13866.09 12942.01 1.071 12 4.90 197.50 5.02 15043.16 14078.62 1.069 13 4.90 202.50 5.02 16220.24 15215.22 1.066 14 4.90 207.50 5.02 17397.32 16351.82 1.064 15 4.90 212.50 5.02 18574.39 17488.42 1.062 16 4.90 217.50 5.02 19751.47 18625.02 1.060 17 4.90 222.50 5.02 20928.55 19761.63 1.059 18 4.90 227.50 5.02 22105.62 20898.23 1.058 19 4.90 232.50 5.02 23282.70 22034.83 1.057 20 4.90 237.50 5.02 24459.77 23171.43 1.056 21 4.90 242.50 5.02 25636.85 24308.03 1.055 22 4.90 247.50 5.02 26813.93 25444.64 1.054 23 4.90 252.50 5.02 27991.00 26581.24 1.053 24 4.90 257.50 5.02 29168.08 27717.84 1.052 25 4.90 262.50 5.02 30345.15 28854.44 1.052 26 4.90 267.50 5.02 31522.23 29991.04 1.051 27 4.90 272.50 5.02 32699.31 31127.65 1.050 28 4.90 277.50 5.02 33876.38 32264.25 1.050 29 4.90 282.50 5.02 35053.46 33400.85 1.049 30 4.90 287.50 5.02 36230.53 34537.45 1.049 31 4.90 293.00 6.02 43960.64 41912.51 1.049 32 4.90 299.00 6.02 43549.81 41515.81 1.049 33 20.38 304.34 5.00 25878.63 31790.14 0.814 34 20.38 309.03 5.00 25073.54 30794.29 0.814 35 20.38 313.71 5.00 24268.44 29798.45 0.814 36 20.38 318.40 5.00 23463.34 28802.60 0.815 37 20.38 323.09 5.00 22658.24 27806.75 0.815 38 20.38 327.77 5.00 21853.15 26810.90 0.815 39 20.38 332.46 5.00 21048.05 25815.05 0.815 40 20.38 337.15 5.00 20242.95 24819.21 0.816 41 20.38 341.83 5.00 19437.85 23823.36 0.816 42 20.38 346.52 5.00 18632.76 22827.51 0.816 43 20.38 351.21 5.00 17827.66 21831.66 0.817 44 20.38 355.90 5.00 17022.56 20835.81 0.817 45 20.38 360.58 5.00 16217.46 19839.97 0.817 46 20.38 365.27 5.00 15412.37 18844.12 0.818 47 20.38 369.96 5.00 14607.27 17848.27 0.818 48 20.38 374.64 5.00 13802.17 16852.42 0.819 49 20.38 379.33 5.00 12997.07 15856.58 0.820 50 20.38 384.02 5.00 12191.98 14860.73 0.820 51 20.38 388.70 5.00 11386.88 13864.88 0.821 52 20.38 393.39 5.00 10581.78 12869.03 0.822 53 20.38 398.08 5.00 9776.68 11873.18 0.823 54 20.38 402.77 5.00 8971.59 10877.34 0.825 55 20.38 407.45 5.00 8166.49 9881.49 0.826 56 20.38 412.14 5.00 7361.39 8885.64 0.828 57 20.38 416.83 5.00 6556.29 7889.79 0.831 58 20.38 421.51 5.00 5751.20 6893.94 0.834 59 20.38 426.20 5.00 4946.10 5898.10 0.839 60 20.38 430.89 5.00 4141.00 4902.25 0.845 61 20.38 435.57 5.00 3335.90 3906.40 0.854 62 20.38 440.26 5.00 2530.81 2910.55 0.870 63 24.00 444.45 4.05 1293.20 1532.85 0.844 64 24.00 448.15 4.05 718.08 792.08 0.907 65 24.00 451.11 2.44 160.91 127.15 1.266 ***TABLE 6 - Effective and Base Shear Stress Data on the 65 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -10.59 143.70 4.27 463.10 467.37 300.03 2 -10.59 147.90 4.27 979.77 765.67 491.52 3 4.90 152.50 5.02 886.65 711.91 457.01 4 4.90 157.50 5.02 1121.21 847.33 543.94 5 4.90 162.50 5.02 1355.76 982.75 630.87 6 4.90 167.50 5.02 1590.32 1118.17 717.81 7 4.90 172.50 5.02 1824.88 1253.59 804.74 8 4.90 177.50 5.02 2059.43 1389.01 891.67 9 4.90 182.50 5.02 2293.99 1524.43 978.61 10 4.90 187.50 5.02 2528.55 1659.86 1065.54 11 4.90 192.50 5.02 2763.10 1795.28 1152.47 12 4.90 197.50 5.02 2997.66 1930.70 1239.41 13 4.90 202.50 5.02 3232.21 2066.12 1326.34 14 4.90 207.50 5.02 3466.77 2201.54 1413.27 15 4.90 212.50 5.02 3701.33 2336.96 1500.21 16 4.90 217.50 5.02 3935.88 2472.38 1587.14 17 4.90 222.50 5.02 4170.44 2607.80 1674.07 18 4.90 227.50 5.02 4405.00 2743.23 1761.01 19 4.90 232.50 5.02 4639.55 2878.65 1847.94 20 4.90 237.50 5.02 4874.11 3014.07 1934.87 21 4.90 242.50 5.02 5108.67 3149.49 2021.81 22 4.90 247.50 5.02 5343.22 3284.91 2108.74 23 4.90 252.50 5.02 5577.78 3420.33 2195.67 24 4.90 257.50 5.02 5812.34 3555.75 2282.61 25 4.90 262.50 5.02 6046.89 3691.17 2369.54 26 4.90 267.50 5.02 6281.45 3826.60 2456.47 27 4.90 272.50 5.02 6516.01 3962.02 2543.41 28 4.90 277.50 5.02 6750.56 4097.44 2630.34 29 4.90 282.50 5.02 6985.12 4232.86 2717.27 30 4.90 287.50 5.02 7219.67 4368.28 2804.21 31 4.90 293.00 6.02 7302.83 4416.29 2835.03 32 4.90 299.00 6.02 7234.58 4376.89 2809.73 33 20.38 304.34 5.00 5175.73 3188.21 2046.66 34 20.38 309.03 5.00 5014.71 3095.24 1986.98 35 20.38 313.71 5.00 4853.69 3002.28 1927.30 36 20.38 318.40 5.00 4692.67 2909.31 1867.63 37 20.38 323.09 5.00 4531.65 2816.35 1807.95 38 20.38 327.77 5.00 4370.63 2723.38 1748.27 39 20.38 332.46 5.00 4209.61 2630.42 1688.59 40 20.38 337.15 5.00 4048.59 2537.45 1628.91 41 20.38 341.83 5.00 3887.57 2444.49 1569.23 42 20.38 346.52 5.00 3726.55 2351.53 1509.56 43 20.38 351.21 5.00 3565.53 2258.56 1449.88 44 20.38 355.90 5.00 3404.51 2165.60 1390.20 45 20.38 360.58 5.00 3243.49 2072.63 1330.52 46 20.38 365.27 5.00 3082.47 1979.67 1270.84 47 20.38 369.96 5.00 2921.45 1886.70 1211.16 48 20.38 374.64 5.00 2760.43 1793.74 1151.48 49 20.38 379.33 5.00 2599.41 1700.77 1091.81 50 20.38 384.02 5.00 2438.40 1607.81 1032.13 51 20.38 388.70 5.00 2277.38 1514.84 972.45 52 20.38 393.39 5.00 2116.36 1421.88 912.77 53 20.38 398.08 5.00 1955.34 1328.91 853.09 54 20.38 402.77 5.00 1794.32 1235.95 793.41 55 20.38 407.45 5.00 1633.30 1142.98 733.74 56 20.38 412.14 5.00 1472.28 1050.02 674.06 57 20.38 416.83 5.00 1311.26 957.06 614.38 58 20.38 421.51 5.00 1150.24 864.09 554.70 59 20.38 426.20 5.00 989.22 771.13 495.02 60 20.38 430.89 5.00 828.20 678.16 435.34 61 20.38 435.57 5.00 667.18 585.20 375.67 62 20.38 440.26 5.00 506.16 492.23 315.99 63 24.00 444.45 4.05 319.51 384.47 246.81 64 24.00 448.15 4.05 177.42 302.43 194.15 65 24.00 451.11 2.44 65.93 238.06 152.82 ***TABLE 6A - Effective and Base Shear Force Data on the 65 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -10.59 143.70 4.27 1977.19 1995.41 1280.95 2 -10.59 147.90 4.27 4183.07 3268.98 2098.51 3 4.90 152.50 5.02 4449.48 3572.57 2293.40 4 4.90 157.50 5.02 5626.56 4252.15 2729.66 5 4.90 162.50 5.02 6803.63 4931.74 3165.92 6 4.90 167.50 5.02 7980.71 5611.33 3602.17 7 4.90 172.50 5.02 9157.78 6290.91 4038.43 8 4.90 177.50 5.02 10334.86 6970.50 4474.69 9 4.90 182.50 5.02 11511.94 7650.08 4910.95 10 4.90 187.50 5.02 12689.01 8329.67 5347.21 11 4.90 192.50 5.02 13866.09 9009.25 5783.46 12 4.90 197.50 5.02 15043.16 9688.84 6219.72 13 4.90 202.50 5.02 16220.24 10368.42 6655.98 14 4.90 207.50 5.02 17397.32 11048.01 7092.24 15 4.90 212.50 5.02 18574.39 11727.59 7528.49 16 4.90 217.50 5.02 19751.47 12407.18 7964.75 17 4.90 222.50 5.02 20928.55 13086.76 8401.01 18 4.90 227.50 5.02 22105.62 13766.35 8837.27 19 4.90 232.50 5.02 23282.70 14445.93 9273.53 20 4.90 237.50 5.02 24459.77 15125.52 9709.78 21 4.90 242.50 5.02 25636.85 15805.10 10146.04 22 4.90 247.50 5.02 26813.93 16484.69 10582.30 23 4.90 252.50 5.02 27991.00 17164.27 11018.56 24 4.90 257.50 5.02 29168.08 17843.86 11454.81 25 4.90 262.50 5.02 30345.15 18523.44 11891.07 26 4.90 267.50 5.02 31522.23 19203.03 12327.33 27 4.90 272.50 5.02 32699.31 19882.61 12763.59 28 4.90 277.50 5.02 33876.38 20562.20 13199.85 29 4.90 282.50 5.02 35053.46 21241.78 13636.10 30 4.90 287.50 5.02 36230.53 21921.37 14072.36 31 4.90 293.00 6.02 43960.64 26584.62 17065.92 32 4.90 299.00 6.02 43549.81 26347.43 16913.66 33 20.38 304.34 5.00 25878.63 15941.04 10233.30 34 20.38 309.03 5.00 25073.54 15476.21 9934.91 35 20.38 313.71 5.00 24268.44 15011.39 9636.52 36 20.38 318.40 5.00 23463.34 14546.57 9338.13 37 20.38 323.09 5.00 22658.24 14081.74 9039.74 38 20.38 327.77 5.00 21853.15 13616.92 8741.34 39 20.38 332.46 5.00 21048.05 13152.10 8442.95 40 20.38 337.15 5.00 20242.95 12687.27 8144.56 41 20.38 341.83 5.00 19437.85 12222.45 7846.17 42 20.38 346.52 5.00 18632.76 11757.63 7547.78 43 20.38 351.21 5.00 17827.66 11292.80 7249.38 44 20.38 355.90 5.00 17022.56 10827.98 6950.99 45 20.38 360.58 5.00 16217.46 10363.16 6652.60 46 20.38 365.27 5.00 15412.37 9898.33 6354.21 47 20.38 369.96 5.00 14607.27 9433.51 6055.82 48 20.38 374.64 5.00 13802.17 8968.69 5757.42 49 20.38 379.33 5.00 12997.07 8503.86 5459.03 50 20.38 384.02 5.00 12191.98 8039.04 5160.64 51 20.38 388.70 5.00 11386.88 7574.22 4862.25 52 20.38 393.39 5.00 10581.78 7109.39 4563.86 53 20.38 398.08 5.00 9776.68 6644.57 4265.46 54 20.38 402.77 5.00 8971.59 6179.75 3967.07 55 20.38 407.45 5.00 8166.49 5714.92 3668.68 56 20.38 412.14 5.00 7361.39 5250.10 3370.29 57 20.38 416.83 5.00 6556.29 4785.28 3071.90 58 20.38 421.51 5.00 5751.20 4320.45 2773.50 59 20.38 426.20 5.00 4946.10 3855.63 2475.11 60 20.38 430.89 5.00 4141.00 3390.81 2176.72 61 20.38 435.57 5.00 3335.90 2925.98 1878.33 62 20.38 440.26 5.00 2530.81 2461.16 1579.94 63 24.00 444.45 4.05 1293.20 1556.12 998.94 64 24.00 448.15 4.05 718.08 1224.07 785.79 65 24.00 451.11 2.44 160.91 581.05 373.01 Average Effective Normal Stress = 3393.7038(psf) Average Available Shear Strength = 2159.3558(psf) Total Length of Failure Surface = 321.6264(ft) SUM OF MOMENTS = -0.359421E-02 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.3134784E-08 SUM OF FORCES = 0.153846E-05 (lbs);Imbalance (Fraction of Total Weight) = 0.1341808E- 11 Sum of Available Shear Forces = 694505.78(lbs) Sum of Mobilized Shear Forces = 445836.05(lbs) FS Balance Check: FS = 1.557760 The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Circular (Seismic)Ninyo & Moore / WRM\B-B' East Slope Circular Seismic.gsdSpencer MethodPLATE E-8 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.098 2 1.099 3 1.107 4 1.107 5 1.108 6 1.109 7 1.113 8 1.115 9 1.11710 1.120GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.098 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.098 2 1.099 3 1.107 4 1.107 5 1.108 6 1.109 7 1.113 8 1.115 9 1.117 10 1.120 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Circular Seismic.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Circular Seismic.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope - Circular (Seismic) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 640.000 30.000 643.000 1 2 30.000 643.000 57.000 657.000 1 3 57.000 657.000 155.000 708.000 2 4 155.000 708.000 205.000 710.000 2 5 205.000 710.000 828.000 710.000 2 6 828.000 710.000 876.000 686.000 2 7 876.000 686.000 900.000 686.000 1 8 57.000 657.000 57.100 652.000 1 9 57.100 652.000 71.900 652.000 1 10 71.900 652.000 72.000 658.000 1 11 72.000 658.000 245.000 683.000 1 12 245.000 683.000 371.000 705.000 1 13 371.000 705.000 700.000 705.000 1 14 700.000 705.000 700.100 709.000 1 15 700.100 709.000 813.000 709.000 1 16 813.000 709.000 861.000 686.000 1 17 861.000 686.000 876.000 686.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity = 1.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity = 0.0 will result in default Peak Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor = 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.1920(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 0.00(ft) and X = 80.00(ft) Each Surface Enters within a Range Between X = 130.00(ft) and X = 600.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 500.00(ft) Specified Maximum Radius = 5000.000(ft) 20.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 1231 Number of Trial Surfaces With Valid FS = 3769 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 24.6 % Statistical Data On All Valid FS Values: FS Max = 3.375 FS Min = 1.098 FS Ave = 2.168 Standard Deviation = 0.529 Coefficient of Variation = 24.38 % Critical Surface is Sequence Number 908 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 43.988802(ft) ; Y = 798.171438(ft); and Radius = 158.753135(ft) Circular Trial Failure Surface Generated With 11 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 17.107 641.711 2 36.993 639.573 3 56.989 639.952 4 76.779 642.842 5 96.049 648.197 6 114.492 655.933 7 131.817 665.926 8 147.747 678.018 9 162.031 692.018 10 174.441 707.702 11 175.107 708.804 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.261973 1.042377 0.268 0.2195959E+00 2 19.9500 1.240119 1.057185 0.363 0.1829341E+00 3 44.6444 0.000000 1.185282 0.988 0.1185282E+01 4 23.2510 1.216857 1.068154 0.430 0.1487032E+00 5 25.6396 1.192798 1.076774 0.480 0.1160239E+00 6 34.1183 0.946170 1.113848 0.678 0.1676778E+00 7 29.1064 1.138970 1.090539 0.557 0.4843103E-01 8 30.2304 1.113536 1.095376 0.583 0.1815981E-01 9 30.9045 1.095345 1.098376 0.599 0.3031443E-02 10 30.8081 1.098107 1.097942 0.596 0.1647498E-03 11 30.8131 1.097966 1.097965 0.596 0.8357895E-06 Factor Of Safety For The Preceding Specified Surface = 1.098 Theta (fx = 1.0) = 30.81 Deg Lambda = 0.596 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 21.40 642.76 1.000+ 2505.56 1.000 30.81 1283.4 2 25.70 643.69 1.000+ 5373.16 1.000 30.81 2752.3 3 30.00 644.56 1.000+ 8602.77 1.000 30.81 4406.7 4 33.50 645.13 1.000+ 11739.05 1.000 30.81 6013.2 5 36.99 645.51 0.842 15598.23 1.000 30.81 7990.0 6 41.99 646.67 0.733 19861.04 1.000 30.81 10173.6 7 46.99 647.65 0.655 24752.03 1.000 30.81 12679.0 8 51.99 648.52 0.596 30271.22 1.000 30.81 15506.1 9 56.99 649.32 0.550 36418.59 1.000 30.81 18655.0 10 57.00 649.32 0.550 36426.30 1.000 30.81 18659.0 11 57.10 649.35 0.549 36497.74 1.000 30.81 18695.6 12 62.03 650.79 0.534 40114.77 1.000 30.81 20548.4 13 66.97 652.15 0.517 43913.59 1.000 30.81 22494.3 14 71.90 653.43 0.499 47894.18 1.000 30.81 24533.3 15 72.00 653.45 0.499 47976.75 1.000 30.81 24575.6 16 76.78 654.63 0.482 52009.97 1.000 30.81 26641.5 17 81.60 656.41 0.477 53299.45 1.000 30.81 27302.1 18 86.41 658.13 0.471 54572.94 1.000 30.81 27954.4 19 91.23 659.80 0.463 55830.44 1.000 30.81 28598.5 20 96.05 661.41 0.454 57071.95 1.000 30.81 29234.5 21 100.66 663.50 0.452 55698.15 1.000 30.81 28530.8 22 105.27 665.56 0.449 54279.06 1.000 30.81 27803.9 23 109.88 667.57 0.445 52814.69 1.000 30.81 27053.8 24 114.49 669.55 0.439 51305.04 1.000 30.81 26280.5 25 120.27 672.71 0.439 46646.32 1.000 30.81 23894.1 26 126.04 675.85 0.437 42056.24 1.000 30.81 21542.9 27 131.82 678.94 0.434 37534.81 1.000 30.81 19226.8 28 132.98 679.72 0.434 36171.81 1.000 30.81 18528.6 29 137.91 683.04 0.437 30558.17 1.000 30.81 15653.1 30 142.83 686.40 0.443 25213.84 1.000 30.81 12915.5 31 147.75 689.50 0.438 19705.21 0.866 27.31 9041.4 32 151.37 692.15 0.431 15026.67 0.751 24.13 6143.1 33 155.00 694.66 0.417 10807.61 0.636 20.78 3834.7 34 158.52 696.98 0.430 7288.71 0.525 17.39 2178.2 35 162.03 699.21 0.442 4469.11 0.414 13.86 1070.9 36 168.24 706.73 0.792 577.07 0.217 7.39 74.2 37 174.44 708.21 0.471 34.22 0.021 0.72 0.4 38 175.11 708.80 0.000 242.55 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 38 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 4.30 0.45 19.26 641.48 641.93 -6.14 5.71 4.32 2 4.30 1.34 23.55 641.02 642.36 -6.14 5.71 4.32 3 4.30 2.23 27.85 640.56 642.79 -6.14 5.71 4.32 4 3.50 3.77 31.75 640.14 643.91 -6.14 27.41 3.52 5 3.50 5.96 35.24 639.76 645.72 -6.14 27.41 3.52 6 5.00 8.30 39.49 639.62 647.92 1.09 27.41 5.00 7 5.00 10.80 44.49 639.71 650.51 1.09 27.41 5.00 8 5.00 13.30 49.49 639.81 653.11 1.09 27.41 5.00 9 5.00 15.79 54.49 639.90 655.70 1.09 27.41 5.00 10 0.01 17.04 56.99 639.95 657.00 8.31 27.41 0.01 11 0.10 17.07 57.05 639.96 657.03 8.31 27.49 0.10 12 4.93 18.01 59.57 640.33 658.34 8.31 27.49 4.99 13 4.93 19.85 64.50 641.05 660.90 8.31 27.49 4.99 14 4.93 21.70 69.43 641.77 663.47 8.31 27.49 4.99 15 0.10 22.64 71.95 642.14 664.78 8.31 27.49 0.10 16 4.78 23.56 74.39 642.49 666.05 8.31 27.49 4.83 17 4.82 25.04 79.19 643.51 668.55 15.53 27.49 5.00 18 4.82 26.20 84.01 644.85 671.05 15.53 27.49 5.00 19 4.82 27.37 88.82 646.19 673.56 15.53 27.49 5.00 20 4.82 28.54 93.64 647.53 676.07 15.53 27.49 5.00 21 4.61 29.36 98.35 649.16 678.52 22.75 27.49 5.00 22 4.61 29.82 102.97 651.10 680.92 22.75 27.49 5.00 23 4.61 30.29 107.58 653.03 683.32 22.75 27.49 5.00 24 4.61 30.75 112.19 654.97 685.72 22.75 27.49 5.00 25 5.77 30.82 117.38 657.60 688.42 29.98 27.49 6.67 26 5.77 30.50 123.15 660.93 691.43 29.98 27.49 6.67 27 5.77 30.17 128.93 664.26 694.43 29.98 27.49 6.67 28 1.17 29.87 132.40 666.37 696.24 37.20 27.49 1.47 29 4.92 29.14 135.45 668.68 697.82 37.20 27.49 6.18 30 4.92 27.97 140.37 672.42 700.38 37.20 27.49 6.18 31 4.92 26.79 145.29 676.15 702.95 37.20 27.49 6.18 32 3.63 25.37 149.56 679.80 705.17 44.42 27.49 5.08 33 3.63 23.71 153.19 683.35 707.06 44.42 27.49 5.08 34 3.52 21.22 156.76 686.85 708.07 44.42 2.29 4.92 35 3.52 17.92 160.27 690.29 708.21 44.42 2.29 4.92 36 6.21 12.47 165.13 695.94 708.41 51.65 2.29 10.00 37 6.21 4.87 171.34 703.78 708.65 51.65 2.29 10.00 38 0.67 0.54 174.77 708.25 708.79 58.87 2.29 1.29 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 17.107421 641.710742 2 21.404948 641.248642 3 25.702474 640.786543 4 30.000000 640.324443 5 33.496397 639.948486 6 36.992794 639.572529 7 41.991896 639.667273 8 46.990999 639.762017 9 51.990101 639.856760 10 56.989203 639.951504 11 57.000000 639.953081 12 57.100000 639.967685 13 62.033333 640.688150 14 66.966667 641.408615 15 71.900000 642.129080 16 72.000000 642.143684 17 76.779278 642.841651 18 81.596689 644.180514 19 86.414100 645.519376 20 91.231510 646.858238 21 96.048921 648.197101 22 100.659765 650.131039 23 105.270610 652.064977 24 109.881454 653.998915 25 114.492298 655.932853 26 120.267093 659.263946 27 126.041889 662.595039 28 131.816685 665.926132 29 132.984845 666.812839 30 137.905603 670.548002 31 142.826361 674.283166 32 147.747119 678.018330 33 151.373560 681.572552 34 155.000000 685.126774 35 158.515382 688.572150 36 162.030764 692.017526 37 168.235841 699.859530 38 174.440917 707.701534 39 175.106928 708.804277 ***Table 3 - Force and Pore Pressure Data On The 38 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 230.0 0.0 0.0 0.0 0.0 46.0 0.0 0.00 2 689.9 0.0 0.0 0.0 0.0 138.0 0.0 0.00 3 1149.8 0.0 0.0 0.0 0.0 230.0 0.0 0.00 4 1581.8 0.0 0.0 0.0 0.0 316.4 0.0 0.00 5 2500.2 0.0 0.0 0.0 0.0 500.0 0.0 0.00 6 4980.3 0.0 0.0 0.0 0.0 996.1 0.0 0.00 7 6478.5 0.0 0.0 0.0 0.0 1295.7 0.0 0.00 8 7976.7 0.0 0.0 0.0 0.0 1595.3 0.0 0.00 9 9474.8 0.0 0.0 0.0 0.0 1895.0 0.0 0.00 10 22.1 0.0 0.0 0.0 0.0 4.4 0.0 0.00 11 204.8 0.0 0.0 0.0 0.0 41.0 0.0 0.00 12 10660.6 0.0 0.0 0.0 0.0 2132.1 0.0 0.00 13 11754.0 0.0 0.0 0.0 0.0 2350.8 0.0 0.00 14 12847.3 0.0 0.0 0.0 0.0 2569.5 0.0 0.00 15 271.7 0.0 0.0 0.0 0.0 54.3 0.0 0.00 16 13510.3 0.0 0.0 0.0 0.0 2702.1 0.0 0.00 17 14472.9 0.0 0.0 0.0 0.0 2894.6 0.0 0.00 18 15148.2 0.0 0.0 0.0 0.0 3029.6 0.0 0.00 19 15823.5 0.0 0.0 0.0 0.0 3164.7 0.0 0.00 20 16498.8 0.0 0.0 0.0 0.0 3299.8 0.0 0.00 21 16243.3 0.0 0.0 0.0 0.0 3248.7 0.0 0.00 22 16500.9 0.0 0.0 0.0 0.0 3300.2 0.0 0.00 23 16758.5 0.0 0.0 0.0 0.0 3351.7 0.0 0.00 24 17016.1 0.0 0.0 0.0 0.0 3403.2 0.0 0.00 25 21360.1 0.0 0.0 0.0 0.0 4272.0 0.0 0.00 26 21134.3 0.0 0.0 0.0 0.0 4226.9 0.0 0.00 27 20908.5 0.0 0.0 0.0 0.0 4181.7 0.0 0.00 28 4187.1 0.0 0.0 0.0 0.0 837.4 0.0 0.00 29 17208.7 0.0 0.0 0.0 0.0 3441.7 0.0 0.00 30 16515.3 0.0 0.0 0.0 0.0 3303.1 0.0 0.00 31 15821.8 0.0 0.0 0.0 0.0 3164.4 0.0 0.00 32 11042.0 0.0 0.0 0.0 0.0 2208.4 0.0 0.00 33 10316.5 0.0 0.0 0.0 0.0 2063.3 0.0 0.00 34 8951.9 0.0 0.0 0.0 0.0 1790.4 0.0 0.00 35 7557.8 0.0 0.0 0.0 0.0 1511.6 0.0 0.00 36 9282.9 0.0 0.0 0.0 0.0 1856.6 0.0 0.00 37 3628.5 0.0 0.0 0.0 0.0 725.7 0.0 0.00 38 43.0 0.0 0.0 0.0 0.0 8.6 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 380753.31(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 380753.31(lbs) TOTAL AREA OF SLIDING MASS = 3172.94(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 38 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 1 300.00 28.00 19 1 300.00 28.00 20 1 300.00 28.00 21 1 300.00 28.00 22 1 300.00 28.00 23 1 300.00 28.00 24 1 300.00 28.00 25 1 300.00 28.00 26 1 300.00 28.00 27 1 300.00 28.00 28 1 300.00 28.00 29 2 200.00 30.00 30 2 200.00 30.00 31 2 200.00 30.00 32 2 200.00 30.00 33 2 200.00 30.00 34 2 200.00 30.00 35 2 200.00 30.00 36 2 200.00 30.00 37 2 200.00 30.00 38 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 38 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -6.14 19.26 4.32 402.50 53.51 7.522 2 -6.14 23.55 4.32 560.92 160.53 3.494 3 -6.14 27.85 4.32 719.34 267.56 2.689 4 -6.14 31.75 3.52 992.97 452.40 2.195 5 -6.14 35.24 3.52 1381.79 715.07 1.932 6 1.09 39.49 5.00 1414.88 996.25 1.420 7 1.09 44.49 5.00 1775.62 1295.93 1.370 8 1.09 49.49 5.00 2136.36 1595.62 1.339 9 1.09 54.49 5.00 2497.11 1895.30 1.318 10 8.31 56.99 0.01 2214.59 2045.39 1.083 11 8.31 57.05 0.10 2217.11 2047.88 1.083 12 8.31 59.57 4.99 2331.69 2160.94 1.079 13 8.31 64.50 4.99 2556.31 2382.56 1.073 14 8.31 69.43 4.99 2780.92 2604.19 1.068 15 8.31 71.95 0.10 2895.51 2717.25 1.066 16 8.31 74.39 4.83 3006.59 2826.85 1.064 17 15.53 79.19 5.00 2701.83 3004.29 0.899 18 15.53 84.01 5.00 2823.88 3144.47 0.898 19 15.53 88.82 5.00 2945.93 3284.64 0.897 20 15.53 93.64 5.00 3067.98 3424.82 0.896 21 22.75 98.35 5.00 2705.99 3522.85 0.768 22 22.75 102.97 5.00 2748.25 3578.72 0.768 23 22.75 107.58 5.00 2790.50 3634.59 0.768 24 22.75 112.19 5.00 2832.76 3690.46 0.768 25 29.98 117.38 6.67 2445.00 3698.84 0.661 26 29.98 123.15 6.67 2419.20 3659.74 0.661 27 29.98 128.93 6.67 2393.39 3620.64 0.661 28 37.20 132.40 1.47 2032.25 3584.36 0.567 29 37.20 135.45 6.18 1983.03 3497.17 0.567 30 37.20 140.37 6.18 1902.34 3356.25 0.567 31 37.20 145.29 6.18 1868.31 3215.33 0.581 32 44.42 149.56 5.08 1556.35 3044.85 0.511 33 44.42 153.19 5.08 1492.80 2844.81 0.525 34 44.42 156.76 4.92 1366.74 2546.50 0.537 35 44.42 160.27 4.92 1173.74 2149.93 0.546 36 51.65 165.13 10.00 710.48 1496.02 0.475 37 51.65 171.34 10.00 212.31 584.76 0.363 38 58.87 174.77 1.29 -126.71 64.57 -1.963 ***TABLE 5A - Total Base Force Data on the 38 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -6.14 19.26 4.32 1739.72 229.97 7.565 2 -6.14 23.55 4.32 2424.47 689.90 3.514 3 -6.14 27.85 4.32 3109.22 1149.83 2.704 4 -6.14 31.75 3.52 3491.82 1581.77 2.208 5 -6.14 35.24 3.52 4859.14 2500.17 1.944 6 1.09 39.49 5.00 7074.38 4980.34 1.420 7 1.09 44.49 5.00 8878.10 6478.50 1.370 8 1.09 49.49 5.00 10681.81 7976.66 1.339 9 1.09 54.49 5.00 12485.53 9474.82 1.318 10 8.31 56.99 0.01 24.16 22.08 1.094 11 8.31 57.05 0.10 224.06 204.79 1.094 12 8.31 59.57 4.99 11625.05 10660.62 1.090 13 8.31 64.50 4.99 12744.90 11753.97 1.084 14 8.31 69.43 4.99 13864.75 12847.32 1.079 15 8.31 71.95 0.10 292.62 271.72 1.077 16 8.31 74.39 4.83 14521.73 13510.28 1.075 17 15.53 79.19 5.00 13509.13 14472.88 0.933 18 15.53 84.01 5.00 14119.39 15148.18 0.932 19 15.53 88.82 5.00 14729.65 15823.48 0.931 20 15.53 93.64 5.00 15339.91 16498.78 0.930 21 22.75 98.35 5.00 13529.94 16243.30 0.833 22 22.75 102.97 5.00 13741.23 16500.91 0.833 23 22.75 107.58 5.00 13952.51 16758.52 0.833 24 22.75 112.19 5.00 14163.79 17016.13 0.832 25 29.98 117.38 6.67 16300.01 21360.06 0.763 26 29.98 123.15 6.67 16127.98 21134.26 0.763 27 29.98 128.93 6.67 15955.95 20908.46 0.763 28 37.20 132.40 1.47 2980.45 4187.11 0.712 29 37.20 135.45 6.18 12250.77 17208.75 0.712 30 37.20 140.37 6.18 11752.32 16515.30 0.712 31 37.20 145.29 6.18 11542.05 15821.85 0.730 32 44.42 149.56 5.08 7902.75 11041.95 0.716 33 44.42 153.19 5.08 7580.08 10316.52 0.735 34 44.42 156.76 4.92 6727.42 8951.93 0.752 35 44.42 160.27 4.92 5777.45 7557.83 0.764 36 51.65 165.13 10.00 7104.79 9282.90 0.765 37 51.65 171.34 10.00 2123.10 3628.48 0.585 38 58.87 174.77 1.29 -163.24 43.00 -3.796 ***TABLE 6 - Effective and Base Shear Stress Data on the 38 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -6.14 19.26 4.32 402.50 514.01 468.15 2 -6.14 23.55 4.32 560.92 598.25 544.87 3 -6.14 27.85 4.32 719.34 682.48 621.59 4 -6.14 31.75 3.52 992.97 827.97 754.09 5 -6.14 35.24 3.52 1381.79 1034.71 942.39 6 1.09 39.49 5.00 1414.88 1052.30 958.41 7 1.09 44.49 5.00 1775.62 1244.11 1133.11 8 1.09 49.49 5.00 2136.36 1435.92 1307.80 9 1.09 54.49 5.00 2497.11 1627.73 1482.50 10 8.31 56.99 0.01 2214.59 1477.52 1345.69 11 8.31 57.05 0.10 2217.11 1478.86 1346.91 12 8.31 59.57 4.99 2331.69 1539.78 1402.40 13 8.31 64.50 4.99 2556.31 1659.21 1511.17 14 8.31 69.43 4.99 2780.92 1778.64 1619.95 15 8.31 71.95 0.10 2895.51 1839.57 1675.43 16 8.31 74.39 4.83 3006.59 1898.63 1729.23 17 15.53 79.19 5.00 2701.83 1736.59 1581.64 18 15.53 84.01 5.00 2823.88 1801.48 1640.75 19 15.53 88.82 5.00 2945.93 1866.38 1699.85 20 15.53 93.64 5.00 3067.98 1931.27 1758.96 21 22.75 98.35 5.00 2705.99 1738.80 1583.66 22 22.75 102.97 5.00 2748.25 1761.27 1604.12 23 22.75 107.58 5.00 2790.50 1783.74 1624.58 24 22.75 112.19 5.00 2832.76 1806.20 1645.05 25 29.98 117.38 6.67 2445.00 1600.03 1457.27 26 29.98 123.15 6.67 2419.20 1586.31 1444.77 27 29.98 128.93 6.67 2393.39 1572.59 1432.28 28 37.20 132.40 1.47 2032.25 1380.57 1257.39 29 37.20 135.45 6.18 1983.03 1344.90 1224.90 30 37.20 140.37 6.18 1902.34 1298.32 1182.48 31 37.20 145.29 6.18 1868.31 1278.67 1164.58 32 44.42 149.56 5.08 1556.35 1098.56 1000.54 33 44.42 153.19 5.08 1492.80 1061.87 967.12 34 44.42 156.76 4.92 1366.74 989.09 900.84 35 44.42 160.27 4.92 1173.74 877.66 799.35 36 51.65 165.13 10.00 710.48 610.20 555.75 37 51.65 171.34 10.00 212.31 322.58 293.80 38 58.87 174.77 1.29 0.00 0.00 0.00 ***TABLE 6A - Effective and Base Shear Force Data on the 38 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -6.14 19.26 4.32 1739.72 2221.71 2023.48 2 -6.14 23.55 4.32 2424.47 2585.80 2355.09 3 -6.14 27.85 4.32 3109.22 2949.89 2686.69 4 -6.14 31.75 3.52 3491.82 2911.60 2651.81 5 -6.14 35.24 3.52 4859.14 3638.61 3313.96 6 1.09 39.49 5.00 7074.38 5261.52 4792.06 7 1.09 44.49 5.00 8878.10 6220.57 5665.54 8 1.09 49.49 5.00 10681.81 7179.62 6539.02 9 1.09 54.49 5.00 12485.53 8138.67 7412.51 10 8.31 56.99 0.01 24.16 16.12 14.68 11 8.31 57.05 0.10 224.06 149.45 136.12 12 8.31 59.57 4.99 11625.05 7676.85 6991.88 13 8.31 64.50 4.99 12744.90 8272.28 7534.19 14 8.31 69.43 4.99 13864.75 8867.72 8076.50 15 8.31 71.95 0.10 292.62 185.91 169.32 16 8.31 74.39 4.83 14521.73 9170.33 8352.12 17 15.53 79.19 5.00 13509.13 8682.93 7908.20 18 15.53 84.01 5.00 14119.39 9007.41 8203.73 19 15.53 88.82 5.00 14729.65 9331.89 8499.26 20 15.53 93.64 5.00 15339.91 9656.37 8794.79 21 22.75 98.35 5.00 13529.94 8694.00 7918.28 22 22.75 102.97 5.00 13741.23 8806.34 8020.60 23 22.75 107.58 5.00 13952.51 8918.68 8122.92 24 22.75 112.19 5.00 14163.79 9031.02 8225.23 25 29.98 117.38 6.67 16300.01 10666.87 9715.12 26 29.98 123.15 6.67 16127.98 10575.40 9631.82 27 29.98 128.93 6.67 15955.95 10483.93 9548.51 28 37.20 132.40 1.47 2980.45 2024.71 1844.05 29 37.20 135.45 6.18 12250.77 8308.55 7567.22 30 37.20 140.37 6.18 11752.32 8020.76 7305.12 31 37.20 145.29 6.18 11542.05 7899.37 7194.55 32 44.42 149.56 5.08 7902.75 5578.21 5080.49 33 44.42 153.19 5.08 7580.08 5391.91 4910.82 34 44.42 156.76 4.92 6727.42 4868.53 4434.14 35 44.42 160.27 4.92 5777.45 4320.06 3934.61 36 51.65 165.13 10.00 7104.79 6101.95 5557.51 37 51.65 171.34 10.00 2123.10 3225.77 2937.96 38 58.87 174.77 1.29 0.00 0.00 0.00 Average Effective Normal Stress = 1903.5370(psf) Average Available Shear Strength = 1296.5061(psf) Total Length of Failure Surface = 181.2883(ft) SUM OF MOMENTS = -0.486694E-01 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.1278241E-06 SUM OF FORCES = 0.412015E-02 (lbs);Imbalance (Fraction of Total Weight) = 0.1082104E- 07 Sum of Available Shear Forces = 235041.34(lbs) Sum of Mobilized Shear Forces = 214069.92(lbs) FS Balance Check: FS = 1.097965 The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Easterly Slope - Block (Seismic)Ninyo & Moore / WRM\B-B' East Slope Block Seismic.gsdSpencer MethodPLATE E-9 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.377 2 1.377 3 1.377 4 1.377 5 1.377 6 1.377 7 1.377 8 1.377 9 1.37710 1.377GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.377 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 B 7 B 8 B 9 B 10 B 11 B 12 B 13 B 14 B 15 B 16 B 17 0 112 225 337 450 562 675 787 90050061272583795010625006127258379501062No. FS1 1.377 2 1.377 3 1.377 4 1.377 5 1.377 6 1.377 7 1.377 8 1.377 9 1.377 10 1.377 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Block Seismic.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' East Slope Block Seismic.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Easterly Slope - Block (Seismic) BOUNDARY DATA 7 Surface Boundaries 17 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 640.000 30.000 643.000 1 2 30.000 643.000 57.000 657.000 1 3 57.000 657.000 155.000 708.000 2 4 155.000 708.000 205.000 710.000 2 5 205.000 710.000 828.000 710.000 2 6 828.000 710.000 876.000 686.000 2 7 876.000 686.000 900.000 686.000 1 8 57.000 657.000 57.100 652.000 1 9 57.100 652.000 71.900 652.000 1 10 71.900 652.000 72.000 658.000 1 11 72.000 658.000 245.000 683.000 1 12 245.000 683.000 371.000 705.000 1 13 371.000 705.000 700.000 705.000 1 14 700.000 705.000 700.100 709.000 1 15 700.100 709.000 813.000 709.000 1 16 813.000 709.000 861.000 686.000 1 17 861.000 686.000 876.000 686.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 500.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity = 1.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity = 0.0 will result in default Peak Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor = 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices A Non-Circular Zone Search Has Been Selected For Analysis Using Random Generation Within Specified Zones. 2 Zones Defined For Generation Of Non-Circular Surfaces 5000 Trial Surfaces Have Been Generated. Length Of Line Segments For Active And Passive Portions Of Non-Circular Zone Search = 25.00(ft) Zone X - 1 Y - 1 X - 2 Y - 2 Height No. (ft) (ft) (ft) (ft) (ft) 1 72.00 658.50 72.00 658.50 0.10 2 72.10 658.50 370.00 704.50 0.10 The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 3640 Number of Trial Surfaces With Valid FS = 1360 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 72.8 % Statistical Data On All Valid FS Values: FS Max = 18.439 FS Min = 1.377 FS Ave = 2.223 Standard Deviation = 1.621 Coefficient of Variation = 72.91 % Critical Surface is Sequence Number 32 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.439362 1.213403 0.268 0.2259582E+00 2 19.9500 1.435144 1.249919 0.363 0.1852253E+00 3 42.4547 0.000000 1.131334 0.915 0.1131334E+01 4 23.1155 1.428559 1.277321 0.427 0.1512379E+00 5 25.3994 1.420794 1.299971 0.475 0.1208233E+00 6 34.4702 1.307135 1.437779 0.687 0.1306439E+00 7 29.7568 1.393295 1.353420 0.572 0.3987502E-01 8 30.8597 1.381702 1.369990 0.598 0.1171238E-01 9 31.3183 1.375972 1.377357 0.608 0.1385114E-02 10 31.2698 1.376608 1.376564 0.607 0.4374176E-04 11 31.2713 1.376588 1.376588 0.607 0.1028740E-06 Factor Of Safety For The Preceding Specified Surface = 1.377 Theta (fx = 1.0) = 31.27 Deg Lambda = 0.607 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 68.86 661.74 0.544 4577.35 1.000 31.27 2376.1 2 72.00 661.35 0.449 13158.97 1.000 31.27 6830.7 3 77.09 663.83 0.555 14438.51 1.000 31.27 7494.9 4 82.17 666.06 0.596 15795.63 1.000 31.27 8199.4 5 87.26 668.06 0.605 17230.35 1.000 31.27 8944.1 6 92.34 669.85 0.597 18742.66 1.000 31.27 9729.2 7 97.43 671.46 0.578 20332.55 1.000 31.27 10554.5 8 102.51 672.89 0.553 22000.03 1.000 31.27 11420.0 9 107.60 674.16 0.526 23745.11 1.000 31.27 12325.9 10 112.68 675.30 0.496 25567.77 1.000 31.27 13272.0 11 117.77 676.31 0.466 27468.01 1.000 31.27 14258.4 12 122.85 677.21 0.436 29445.85 1.000 31.27 15285.1 13 127.94 678.00 0.406 31501.28 1.000 31.27 16352.0 14 133.64 683.09 0.417 22354.62 1.000 31.27 11604.1 15 139.33 688.49 0.447 14474.49 0.996 31.18 7493.6 16 145.03 693.64 0.473 7810.98 0.687 22.63 3005.9 17 150.01 699.77 0.493 2511.13 0.415 14.16 614.3 18 155.00 676.49 0.000- -9.54 0.144 5.01 -0.8 19 157.22 707.66 0.510 24.43 0.023 0.81 0.3 20 157.65 708.11 0.000 178.38 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 20 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 3.14 1.57 67.29 660.79 662.35 -25.54 27.49 3.48 2 3.14 4.70 70.43 659.28 663.99 -25.54 27.49 3.48 3 5.09 7.20 74.54 658.92 666.13 8.75 27.49 5.15 4 5.09 9.07 79.63 659.71 668.78 8.75 27.49 5.15 5 5.09 10.93 84.71 660.49 671.42 8.75 27.49 5.15 6 5.09 12.80 89.80 661.27 674.07 8.75 27.49 5.15 7 5.09 14.66 94.88 662.05 676.72 8.75 27.49 5.15 8 5.09 16.53 99.97 662.84 679.36 8.75 27.49 5.15 9 5.09 18.39 105.05 663.62 682.01 8.75 27.49 5.15 10 5.09 20.25 110.14 664.40 684.65 8.75 27.49 5.15 11 5.09 22.12 115.22 665.18 687.30 8.75 27.49 5.15 12 5.09 23.98 120.31 665.97 689.95 8.75 27.49 5.15 13 5.09 25.85 125.40 666.75 692.59 8.75 27.49 5.15 14 5.70 25.22 130.79 670.18 695.40 46.87 27.49 8.33 15 5.70 22.10 136.48 676.26 698.36 46.87 27.49 8.33 16 5.70 18.99 142.18 682.34 701.33 46.87 27.49 8.33 17 4.99 14.26 147.52 689.85 704.11 60.81 27.49 10.22 18 4.99 7.93 152.51 698.77 706.70 60.81 27.49 10.22 19 2.22 2.83 156.11 705.22 708.04 60.81 2.29 4.56 20 0.43 0.44 157.44 707.66 708.10 64.39 2.29 1.00 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 65.715803 661.535775 2 68.857901 660.034571 3 72.000000 658.533368 4 77.085279 659.315708 5 82.170558 660.098047 6 87.255837 660.880387 7 92.341116 661.662727 8 97.426394 662.445067 9 102.511673 663.227406 10 107.596952 664.009746 11 112.682231 664.792086 12 117.767510 665.574426 13 122.852789 666.356765 14 127.938068 667.139105 15 133.635309 673.220708 16 139.332550 679.302310 17 145.029792 685.383913 18 150.014896 694.306946 19 155.000000 703.229978 20 157.222909 707.208851 21 157.652988 708.106120 ***Table 3 - Force and Pore Pressure Data On The 20 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 591.3 0.0 0.0 0.0 0.0 118.3 0.0 0.00 2 1773.9 0.0 0.0 0.0 0.0 354.8 0.0 0.00 3 4396.6 0.0 0.0 0.0 0.0 879.3 0.0 0.00 4 5534.1 0.0 0.0 0.0 0.0 1106.8 0.0 0.00 5 6671.7 0.0 0.0 0.0 0.0 1334.3 0.0 0.00 6 7809.2 0.0 0.0 0.0 0.0 1561.8 0.0 0.00 7 8946.7 0.0 0.0 0.0 0.0 1789.3 0.0 0.00 8 10084.2 0.0 0.0 0.0 0.0 2016.8 0.0 0.00 9 11221.8 0.0 0.0 0.0 0.0 2244.4 0.0 0.00 10 12359.3 0.0 0.0 0.0 0.0 2471.9 0.0 0.00 11 13496.8 0.0 0.0 0.0 0.0 2699.4 0.0 0.00 12 14634.3 0.0 0.0 0.0 0.0 2926.9 0.0 0.00 13 15771.9 0.0 0.0 0.0 0.0 3154.4 0.0 0.00 14 17241.6 0.0 0.0 0.0 0.0 3448.3 0.0 0.00 15 15110.8 0.0 0.0 0.0 0.0 3022.2 0.0 0.00 16 12980.0 0.0 0.0 0.0 0.0 2596.0 0.0 0.00 17 8532.4 0.0 0.0 0.0 0.0 1706.5 0.0 0.00 18 4746.5 0.0 0.0 0.0 0.0 949.3 0.0 0.00 19 753.6 0.0 0.0 0.0 0.0 150.7 0.0 0.00 20 22.7 0.0 0.0 0.0 0.0 4.5 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 172679.35(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 172679.35(lbs) TOTAL AREA OF SLIDING MASS = 1438.99(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 20 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 2 200.00 30.00 2 2 200.00 30.00 3 2 200.00 30.00 4 2 200.00 30.00 5 2 200.00 30.00 6 2 200.00 30.00 7 2 200.00 30.00 8 2 200.00 30.00 9 2 200.00 30.00 10 2 200.00 30.00 11 2 200.00 30.00 12 2 200.00 30.00 13 2 200.00 30.00 14 2 200.00 30.00 15 2 200.00 30.00 16 2 200.00 30.00 17 2 200.00 30.00 18 2 200.00 30.00 19 2 200.00 30.00 20 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 20 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -25.54 67.29 3.48 1267.85 188.18 6.737 2 -25.54 70.43 3.48 2565.83 564.55 4.545 3 8.75 74.54 5.15 913.87 864.58 1.057 4 8.75 79.63 5.15 1131.44 1088.27 1.040 5 8.75 84.71 5.15 1349.01 1311.95 1.028 6 8.75 89.80 5.15 1566.58 1535.64 1.020 7 8.75 94.88 5.15 1784.16 1759.33 1.014 8 8.75 99.97 5.15 2001.73 1983.02 1.009 9 8.75 105.05 5.15 2219.30 2206.71 1.006 10 8.75 110.14 5.15 2436.87 2430.40 1.003 11 8.75 115.22 5.15 2654.44 2654.09 1.000 12 8.75 120.31 5.15 2872.01 2877.78 0.998 13 8.75 125.40 5.15 3089.58 3101.47 0.996 14 46.87 130.79 8.33 1407.64 3026.31 0.465 15 46.87 136.48 8.33 1230.62 2652.31 0.464 16 46.87 142.18 8.33 1160.61 2278.30 0.509 17 60.81 147.52 10.22 668.65 1711.58 0.391 18 60.81 152.51 10.22 367.82 952.13 0.386 19 60.81 156.11 4.56 45.22 339.01 0.133 20 64.39 157.44 1.00 -133.50 52.80 -2.528 ***TABLE 5A - Total Base Force Data on the 20 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -25.54 67.29 3.48 4415.04 591.29 7.467 2 -25.54 70.43 3.48 8934.99 1773.87 5.037 3 8.75 74.54 5.15 4701.96 4396.61 1.069 4 8.75 79.63 5.15 5821.39 5534.13 1.052 5 8.75 84.71 5.15 6940.81 6671.66 1.040 6 8.75 89.80 5.15 8060.24 7809.18 1.032 7 8.75 94.88 5.15 9179.67 8946.71 1.026 8 8.75 99.97 5.15 10299.10 10084.23 1.021 9 8.75 105.05 5.15 11418.52 11221.75 1.018 10 8.75 110.14 5.15 12537.95 12359.28 1.014 11 8.75 115.22 5.15 13657.38 13496.80 1.012 12 8.75 120.31 5.15 14776.81 14634.33 1.010 13 8.75 125.40 5.15 15896.23 15771.85 1.008 14 46.87 130.79 8.33 11730.37 17241.64 0.680 15 46.87 136.48 8.33 10255.13 15110.85 0.679 16 46.87 142.18 8.33 9671.74 12980.05 0.745 17 60.81 147.52 10.22 6834.42 8532.39 0.801 18 60.81 152.51 10.22 3759.53 4746.45 0.792 19 60.81 156.11 4.56 206.11 753.58 0.274 20 64.39 157.44 1.00 -132.83 22.71 -5.849 ***TABLE 6 - Effective and Base Shear Stress Data on the 20 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -25.54 67.29 3.48 1267.85 931.99 677.03 2 -25.54 70.43 3.48 2565.83 1681.38 1221.41 3 8.75 74.54 5.15 913.87 727.62 528.57 4 8.75 79.63 5.15 1131.44 853.24 619.82 5 8.75 84.71 5.15 1349.01 978.85 711.07 6 8.75 89.80 5.15 1566.58 1104.47 802.32 7 8.75 94.88 5.15 1784.16 1230.08 893.57 8 8.75 99.97 5.15 2001.73 1355.70 984.82 9 8.75 105.05 5.15 2219.30 1481.31 1076.07 10 8.75 110.14 5.15 2436.87 1606.93 1167.33 11 8.75 115.22 5.15 2654.44 1732.54 1258.58 12 8.75 120.31 5.15 2872.01 1858.16 1349.83 13 8.75 125.40 5.15 3089.58 1983.77 1441.08 14 46.87 130.79 8.33 1407.64 1012.70 735.66 15 46.87 136.48 8.33 1230.62 910.50 661.42 16 46.87 142.18 8.33 1160.61 870.08 632.05 17 60.81 147.52 10.22 668.65 586.05 425.72 18 60.81 152.51 10.22 367.82 412.36 299.55 19 60.81 156.11 4.56 45.22 226.11 164.25 20 64.39 157.44 1.00 0.00 0.00 0.00 ***TABLE 6A - Effective and Base Shear Force Data on the 20 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -25.54 67.29 3.48 4415.04 3245.48 2357.63 2 -25.54 70.43 3.48 8934.99 5855.08 4253.33 3 8.75 74.54 5.15 4701.96 3743.70 2719.55 4 8.75 79.63 5.15 5821.39 4390.00 3189.04 5 8.75 84.71 5.15 6940.81 5036.30 3658.54 6 8.75 89.80 5.15 8060.24 5682.60 4128.03 7 8.75 94.88 5.15 9179.67 6328.91 4597.53 8 8.75 99.97 5.15 10299.10 6975.21 5067.02 9 8.75 105.05 5.15 11418.52 7621.51 5536.52 10 8.75 110.14 5.15 12537.95 8267.81 6006.02 11 8.75 115.22 5.15 13657.38 8914.11 6475.51 12 8.75 120.31 5.15 14776.81 9560.41 6945.01 13 8.75 125.40 5.15 15896.23 10206.72 7414.50 14 46.87 130.79 8.33 11730.37 8439.20 6130.52 15 46.87 136.48 8.33 10255.13 7587.47 5511.79 16 46.87 142.18 8.33 9671.74 7250.65 5267.11 17 60.81 147.52 10.22 6834.42 5990.08 4351.40 18 60.81 152.51 10.22 3759.53 4214.79 3061.77 19 60.81 156.11 4.56 206.11 1030.54 748.62 20 64.39 157.44 1.00 0.00 0.00 0.00 Average Effective Normal Stress = 1474.9544(psf) Average Available Shear Strength = 1050.4976(psf) Total Length of Failure Surface = 114.5558(ft) SUM OF MOMENTS = -0.550249E-04 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.3186534E-09 SUM OF FORCES = -.188141E-01 (lbs);Imbalance (Fraction of Total Weight) = -0.1089538E- 06 Sum of Available Shear Forces = 120340.57(lbs) Sum of Mobilized Shear Forces = 87419.43(lbs) FS Balance Check: FS = 1.376588 The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT **** Acadia Medical Facility, Chula Vista, CASection B-B' Stability Fill (Seismic)Ninyo & Moore / WRM\B-B' Stability Fill Seismic.gsdSpencer MethodPLATE E-10 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options 1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0No. FS 1 1.504 2 1.510 3 1.513 4 1.524 5 1.530 6 1.531 7 1.532 8 1.533 9 1.53310 1.534GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREGEOSTASE FS =1.504 GEOSTASE® by GREGORY GEOTECHNICAL SOFTWAREB 1 B 2 B 3 B 4 B 5 B 6 0 25 50 75 100 125 150 175 200650675700725750775650675700725750775No. FS1 1.504 2 1.510 3 1.513 4 1.524 5 1.530 6 1.531 7 1.532 8 1.533 9 1.533 10 1.534 Soil Moist Wt Sat Wt c Phi ru Pconst Piez Surf SoilNo. (pcf) (pcf) (psf) (deg) (ratio) (psf) No. Options1 Otay Formation 120.0 130.0 300.0 28.0 0.000 0.0 0 2 Fill 120.0 130.0 200.0 30.0 0.000 0.0 0 *** GEOSTASE(R) *** ** GEOSTASE(R) (c)Copyright by Garry H. Gregory, Ph.D., P.E.,D.GE ** ** Current Version 4.30.30-Double Precision, January 2019 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SOFTWARE Simplified Bishop, Simplified Janbu, or General Equilibrium (GE) Options. (Spencer, Morgenstern-Price, USACE, and Lowe & Karafiath) Including Pier/Pile, Planar Reinf, Nail, Tieback, Line Loads Applied Forces, Fiber-Reinforced Soil (FRS), Distributed Loads Nonlinear Undrained Shear Strength, Curved Strength Envelope, Anisotropic Strengths, Water Surfaces, 3-Stage Rapid Drawdown 2- or 3-Stage Pseudo-Static & Simplified Newmark Seismic Analyses. ********************************************************************************* Analysis Date: 3/ 5/ 2019 Analysis Time: Analysis By: Ninyo & Moore / WRM Input File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' Stability Fill Seismic.gsd Output File Name: G:\File Share\WRM.temp\108727001 Acadia\Slope Stability Calcs\B-B'\Stability Fill\B-B' Stability Fill Seismic.OUT Unit System: English PROJECT: Acadia Medical Facility, Chula Vista, CA DESCRIPTION: Section B-B' Stability Fill (Seismic) BOUNDARY DATA 3 Surface Boundaries 6 Total Boundaries Boundary X - 1 Y - 1 X - 2 Y - 2 Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.000 686.000 24.000 686.000 1 2 24.000 686.000 72.000 710.000 2 3 72.000 710.000 200.000 710.000 2 4 24.000 686.000 39.000 686.000 1 5 39.000 686.000 87.000 709.000 1 6 87.000 709.000 200.000 709.000 1 User Specified X-Origin = 0.000(ft) User Specified Y-Origin = 650.000(ft) MOHR-COULOMB SOIL PARAMETERS 2 Type(s) of Soil Defined Soil Number Moist Saturated Cohesion Friction Pore Pressure Water Water and Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface Option Description (pcf) (pcf) (psf) (deg) Ratio(ru) (psf) No. 1 Otay Formation 120.0 130.0 300.00 28.00 0.000 0.0 0 0 2 Fill 120.0 130.0 200.00 30.00 0.000 0.0 0 0 SEISMIC (EARTHQUAKE) DATA Specified Peak Ground Acceleration Coefficient (PGA) = 0.374(g) Default Velocity = 1.870(ft) per second Specified Horizontal Earthquake Coefficient (kh) = 0.2000(g) Specified Vertical Earthquake Coefficient (kv) = 0.000(g) (NOTE:Input Velocity = 0.0 will result in default Peak Velocity = 2 times(PGA) times 2.5 fps or 0.762 mps) Specified Seismic Pore-Pressure Factor = 0.000 Horizontal Seismic Force is Applied at Center of Gravity of Slices TRIAL FAILURE SURFACE DATA Circular Trial Failure Surfaces Have Been Generated Using A Random Procedure. 5000 Trial Surfaces Have Been Generated. 5000 Surfaces Generated at Increments of 0.0360(in) Equally Spaced Within the Start Range Along The Specified Surface Between X = 15.00(ft) and X = 30.00(ft) Each Surface Enters within a Range Between X = 65.00(ft) and X = 200.00(ft) Unless XCLUDE Lines Were Specified, The Minimum Elevation To Which A Surface Extends Is Y = 650.00(ft) Specified Maximum Radius = 5000.000(ft) 8.000(ft) Line Segments Were Used For Each Trial Failure Surface. The Spencer Method Was Selected for FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR SPENCER METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Allowable negative side force = -1000.0(lbs) Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Specified Tension Crack Water Depth Factor = 0.000 Total Number of Trial Surfaces Attempted = 5000 WARNING! The Factor of Safety Calculation for one or More Trial Surfaces Did Not Converge in 50 Iterations. Number of Trial Surfaces with Non-Converged FS = 973 Number of Trial Surfaces With Valid FS = 4027 Percentage of Trial Surfaces With Non-Converged and/or Non-Valid FS Solutions of the Total Attempted = 19.5 % Statistical Data On All Valid FS Values: FS Max = 3.230 FS Min = 1.504 FS Ave = 2.301 Standard Deviation = 0.421 Coefficient of Variation = 18.31 % Critical Surface is Sequence Number 2355 of Those Analyzed. *****BEGINNING OF DETAILED GEOSTASE OUTPUT FOR CRITICAL SURFACE FROM A SEARCH***** BACK-CALCULATED CIRCULAR SURFACE PARAMETERS: Circle Center At X = 34.835015(ft) ; Y = 741.325658(ft); and Radius = 56.571786(ft) Circular Trial Failure Surface Generated With 10 Coordinate Points Point X-Coord. Y-Coord. No. (ft) (ft) 1 23.027 686.000 2 30.949 684.888 3 38.949 684.904 4 46.867 686.048 5 54.544 688.298 6 61.827 691.608 7 68.570 695.913 8 74.638 701.126 9 79.911 707.142 10 81.776 710.000 Iter. Theta FS FS No. (deg) (Moment) (Force) (fx=1.0) Lambda Delta FS 1 15.0000 1.775816 1.427048 0.268 0.3487675E+00 2 19.9500 1.737002 1.449784 0.363 0.2872182E+00 3 43.0444 0.000000 1.616067 0.934 0.1616067E+01 4 23.4344 1.690233 1.467403 0.433 0.2228301E+00 5 25.8141 1.641901 1.480397 0.484 0.1615036E+00 6 32.0798 1.337240 1.519496 0.627 0.1822560E+00 7 28.7573 1.548547 1.497772 0.549 0.5077562E-01 8 29.4817 1.516229 1.502302 0.565 0.1392772E-01 9 29.7555 1.502619 1.504042 0.572 0.1422601E-02 10 29.7302 1.503916 1.503880 0.571 0.3635844E-04 11 29.7308 1.503884 1.503884 0.571 0.1797223E-06 Factor Of Safety For The Preceding Specified Surface = 1.504 Theta (fx = 1.0) = 29.73 Deg Lambda = 0.571 The Spencer Method Has Been Selected For FS Analysis. Selected fx function = Bi-linear SELECTED CONVERGENCE PARAMETERS FOR ANALYSIS METHOD: Initial estimate of FS = 1.500 FS tolerance = 0.000001000 Initial estimate of theta(deg) = 15.00 Theta tolerance(radians) = 0.0001000 Minimum theta(deg) = -45.00 ; Maximum theta(deg) = 45.00 Theta convergence Step Factor = 5000.00 Maximum number of iterations = 50 Maximum force imbalance = 100.000000(lbs) Maximum moment imbalance(if Applicable) = 100.000000 (ft/lbs) Selected Lambda Coefficient = 1.00 Tension Crack Water Force = 0.00(lbs) Specified Tension Crack Water Depth Factor = 0.000 Depth of Tension Crack (zo) at Side of Last Slice = 0.000(ft) Depth of Water in Tension Crack = 0.000(ft) Theoretical Tension Crack Depth = 5.774(ft) NOTE: In Table 1 following, when a tension crack with water is present on the first slice (right facing slope) or on the last slice (left facing slope), the "side force" in the tension crack is set equal to the water pressure resultant. *** Table 1 - Line of Thrust(if applicable) and Slice Force Data *** Slice X Y Side Force fx Force Angle Vert. Shear No. Coord. Coord. h/H (lbs) (Deg) Force(lbs) 1 24.00 686.21 1.000+ 345.41 1.000 29.73 171.3 2 27.47 686.87 0.632 1836.18 1.000 29.73 910.6 3 30.95 687.29 0.523 3812.84 1.000 29.73 1890.9 4 34.95 688.15 0.495 5545.59 1.000 29.73 2750.2 5 38.95 688.88 0.463 7486.72 1.000 29.73 3712.9 6 39.00 688.89 0.463 7499.51 1.000 29.73 3719.2 7 42.93 690.03 0.455 8483.00 1.000 29.73 4206.9 8 46.87 691.06 0.440 9465.51 1.000 29.73 4694.2 9 50.71 692.49 0.437 9424.46 1.000 29.73 4673.8 10 54.54 693.85 0.428 9320.26 1.000 29.73 4622.2 11 58.19 695.57 0.427 8352.33 1.000 29.73 4142.1 12 61.83 697.24 0.423 7361.61 1.000 29.73 3650.8 13 65.20 699.26 0.428 5822.08 1.000 29.73 2887.3 14 68.57 701.28 0.434 4365.51 1.000 29.73 2165.0 15 72.00 703.82 0.445 2522.84 0.832 25.41 1082.7 16 74.64 705.59 0.503 1434.88 0.607 19.13 470.3 17 77.59 707.64 0.572 593.04 0.357 11.51 118.3 18 79.91 708.49 0.470 278.16 0.159 5.18 25.1 19 81.78 710.00 0.000 522.85 0.000 0.00 0.0 NOTE: A value of 0.000- for h/H indicates that the line of thrust is at or below the lower boundary of the sliding mass. A value of 1.000+ for h/H indicates that the line of thrust is at or above the upper boundary of the sliding mass. ***Table 2 - Geometry Data on the 19 Slices*** Slice Width Height X-Cntr Y-Cntr-Base Y-Cntr-Top Alpha Beta Base Length No. (ft) (ft) (ft) (ft) (ft) (deg) (deg) (ft) 1 0.97 0.07 23.51 685.93 686.00 -7.99 0.00 0.98 2 3.47 1.25 25.74 685.62 686.87 -7.99 26.57 3.51 3 3.47 3.47 29.21 685.13 688.61 -7.99 26.57 3.51 4 4.00 5.58 32.95 684.89 690.47 0.12 26.57 4.00 5 4.00 7.57 36.95 684.90 692.47 0.12 26.57 4.00 6 0.05 8.58 38.97 684.91 693.49 8.22 26.57 0.05 7 3.93 9.29 40.97 685.20 694.48 8.22 26.57 3.97 8 3.93 10.69 44.90 685.76 696.45 8.22 26.57 3.97 9 3.84 11.78 48.79 686.61 698.39 16.33 26.57 4.00 10 3.84 12.58 52.62 687.74 700.31 16.33 26.57 4.00 11 3.64 13.06 56.36 689.13 702.18 24.44 26.57 4.00 12 3.64 13.22 60.01 690.78 704.00 24.44 26.57 4.00 13 3.37 13.07 63.51 692.68 705.76 32.55 26.57 4.00 14 3.37 12.61 66.88 694.84 707.44 32.55 26.57 4.00 15 3.43 11.76 70.28 697.39 709.14 40.66 26.57 4.52 16 2.64 10.01 73.32 699.99 710.00 40.66 0.00 3.48 17 2.95 7.19 76.11 702.81 710.00 48.77 0.00 4.47 18 2.32 4.18 78.75 705.82 710.00 48.77 0.00 3.53 19 1.86 1.43 80.84 708.57 710.00 56.88 0.00 3.41 ***Table 2A - Coordinates of Slice Points Defining the Slip Surface*** Point X-Pt Y-Pt No. (ft) (ft) 1 23.026605 686.000000 2 24.000000 685.863310 3 27.474438 685.375409 4 30.948875 684.887507 5 34.948867 684.895577 6 38.948859 684.903648 7 39.000000 684.911040 8 42.933288 685.479569 9 46.866575 686.048099 10 50.705131 687.173037 11 54.543688 688.297975 12 58.185180 689.953129 13 61.826672 691.608283 14 65.198279 693.760554 15 68.569885 695.912824 16 72.000000 698.859164 17 74.638478 701.125518 18 77.586267 704.489253 19 79.911093 707.142123 20 81.775568 710.000000 ***Table 3 - Force and Pore Pressure Data On The 19 Slices (Excluding Reinforcement)*** Ubeta Ubeta Ualpha Earthquake Force Stress Force Pore Force Distributed Slice Weight Top Top Bot Pressure Hor Ver Load No. (lbs) (lbs) (psf) (lbs) (psf) (lbs) (lbs) (lbs) 1 8.0 0.0 0.0 0.0 0.0 1.6 0.0 0.00 2 520.9 0.0 0.0 0.0 0.0 104.2 0.0 0.00 3 1448.6 0.0 0.0 0.0 0.0 289.7 0.0 0.00 4 2679.8 0.0 0.0 0.0 0.0 536.0 0.0 0.00 5 3635.9 0.0 0.0 0.0 0.0 727.2 0.0 0.00 6 52.7 0.0 0.0 0.0 0.0 10.5 0.0 0.00 7 4383.9 0.0 0.0 0.0 0.0 876.8 0.0 0.00 8 5043.8 0.0 0.0 0.0 0.0 1008.8 0.0 0.00 9 5427.3 0.0 0.0 0.0 0.0 1085.5 0.0 0.00 10 5793.2 0.0 0.0 0.0 0.0 1158.6 0.0 0.00 11 5705.5 0.0 0.0 0.0 0.0 1141.1 0.0 0.00 12 5777.8 0.0 0.0 0.0 0.0 1155.6 0.0 0.00 13 5288.8 0.0 0.0 0.0 0.0 1057.8 0.0 0.00 14 5100.0 0.0 0.0 0.0 0.0 1020.0 0.0 0.00 15 4839.1 0.0 0.0 0.0 0.0 967.8 0.0 0.00 16 3168.6 0.0 0.0 0.0 0.0 633.7 0.0 0.00 17 2544.3 0.0 0.0 0.0 0.0 508.9 0.0 0.00 18 1167.3 0.0 0.0 0.0 0.0 233.5 0.0 0.00 19 319.7 0.0 0.0 0.0 0.0 63.9 0.0 0.00 TOTAL WEIGHT OF SLIDING MASS = 62905.06(lbs) EFFECTIVE WEIGHT OF SLIDING MASS = 62905.06(lbs) TOTAL AREA OF SLIDING MASS = 524.21(ft2) ***TABLE 4 - SOIL STRENGTH & SOIL OPTIONS DATA ON THE 19 SLICES*** Slice Soil Cohesion Phi(Deg) Options No. Type (psf) 1 1 300.00 28.00 2 1 300.00 28.00 3 1 300.00 28.00 4 1 300.00 28.00 5 1 300.00 28.00 6 1 300.00 28.00 7 1 300.00 28.00 8 1 300.00 28.00 9 1 300.00 28.00 10 1 300.00 28.00 11 1 300.00 28.00 12 1 300.00 28.00 13 1 300.00 28.00 14 1 300.00 28.00 15 1 300.00 28.00 16 1 300.00 28.00 17 1 300.00 28.00 18 2 200.00 30.00 19 2 200.00 30.00 SOIL OPTIONS: A = ANISOTROPIC, C = CURVED STRENGTH ENVELOPE (TANGENT PHI & C), F = FIBER-REINFORCED SOIL (FRS), N = NONLINEAR UNDRAINED SHEAR STRENGTH, R = RAPID DRAWDOWN OR RAPID LOADING (SEISMIC) SHEAR STRENGTH NOTE: Phi and C in Table 4 are modified values based on specified Soil Options (if any). ***TABLE 5 - Total Base Stress Data on the 19 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Stress Vert. Stress Normal/Vert. * (ft) (ft) (psf) (psf) Stress Ratio 1 -7.99 23.51 0.98 223.28 8.20 27.224 2 -7.99 25.74 3.51 411.12 149.91 2.742 3 -7.99 29.21 3.51 765.06 416.92 1.835 4 0.12 32.95 4.00 883.74 669.95 1.319 5 0.12 36.95 4.00 1148.42 908.98 1.263 6 8.22 38.97 0.05 1070.13 1029.58 1.039 7 8.22 40.97 3.97 1150.91 1114.56 1.033 8 8.22 44.90 3.97 1310.41 1282.34 1.022 9 16.33 48.79 4.00 1223.36 1413.88 0.865 10 16.33 52.62 4.00 1302.34 1509.20 0.863 11 24.44 56.36 4.00 1158.19 1566.80 0.739 12 24.44 60.01 4.00 1172.63 1586.67 0.739 13 32.55 63.51 4.00 991.14 1568.62 0.632 14 32.55 66.88 4.00 955.42 1512.64 0.632 15 40.66 70.28 4.52 777.38 1410.78 0.551 16 40.66 73.32 3.48 686.57 1200.92 0.572 17 48.77 76.11 4.47 409.87 863.11 0.475 18 48.77 78.75 3.53 234.50 502.12 0.467 19 56.88 80.84 3.41 -20.38 171.47 -0.119 ***TABLE 5A - Total Base Force Data on the 19 Slices*** Slice Alpha X-Coord. Base Total Total Total No. (deg) Slice Cntr Leng. Normal Force Vert. Force Normal/Vert. * (ft) (ft) (lbs) (lbs) Force Ratio 1 -7.99 23.51 0.98 219.47 7.98 27.492 2 -7.99 25.74 3.51 1442.43 520.85 2.769 3 -7.99 29.21 3.51 2684.24 1448.58 1.853 4 0.12 32.95 4.00 3534.97 2679.78 1.319 5 0.12 36.95 4.00 4593.69 3635.91 1.263 6 8.22 38.97 0.05 55.30 52.65 1.050 7 8.22 40.97 3.97 4573.92 4383.89 1.043 8 8.22 44.90 3.97 5207.79 5043.80 1.033 9 16.33 48.79 4.00 4893.44 5427.27 0.902 10 16.33 52.62 4.00 5209.36 5793.16 0.899 11 24.44 56.36 4.00 4632.75 5705.49 0.812 12 24.44 60.01 4.00 4690.53 5777.85 0.812 13 32.55 63.51 4.00 3964.55 5288.76 0.750 14 32.55 66.88 4.00 3821.69 5100.03 0.749 15 40.66 70.28 4.52 3515.16 4839.13 0.726 16 40.66 73.32 3.48 2388.04 3168.60 0.754 17 48.77 76.11 4.47 1833.17 2544.28 0.721 18 48.77 78.75 3.53 827.16 1167.34 0.709 19 56.88 80.84 3.41 -69.54 319.71 -0.218 ***TABLE 6 - Effective and Base Shear Stress Data on the 19 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Stress Shear Strength Shear Stress * (ft) (ft) (psf) (psf) (psf) 1 -7.99 23.51 0.98 223.28 418.72 278.43 2 -7.99 25.74 3.51 411.12 518.60 344.84 3 -7.99 29.21 3.51 765.06 706.79 469.98 4 0.12 32.95 4.00 883.74 769.89 511.94 5 0.12 36.95 4.00 1148.42 910.63 605.52 6 8.22 38.97 0.05 1070.13 869.00 577.84 7 8.22 40.97 3.97 1150.91 911.95 606.40 8 8.22 44.90 3.97 1310.41 996.76 662.79 9 16.33 48.79 4.00 1223.36 950.47 632.01 10 16.33 52.62 4.00 1302.34 992.47 659.94 11 24.44 56.36 4.00 1158.19 915.82 608.97 12 24.44 60.01 4.00 1172.63 923.50 614.08 13 32.55 63.51 4.00 991.14 827.00 549.91 14 32.55 66.88 4.00 955.42 808.01 537.28 15 40.66 70.28 4.52 777.38 713.34 474.33 16 40.66 73.32 3.48 686.57 665.06 442.23 17 48.77 76.11 4.47 409.87 517.93 344.39 18 48.77 78.75 3.53 234.50 335.39 223.01 19 56.88 80.84 3.41 0.00 0.00 0.00 ***TABLE 6A - Effective and Base Shear Force Data on the 19 Slices*** Slice Alpha X-Coord. Base Effective Available Mobilized No. (deg) Slice Cntr Leng. Normal Force Shear Force Shear Force * (ft) (ft) (lbs) (lbs) (lbs) 1 -7.99 23.51 0.98 219.47 411.58 273.68 2 -7.99 25.74 3.51 1442.43 1819.51 1209.87 3 -7.99 29.21 3.51 2684.24 2479.79 1648.93 4 0.12 32.95 4.00 3534.97 3079.58 2047.75 5 0.12 36.95 4.00 4593.69 3642.51 2422.07 6 8.22 38.97 0.05 55.30 44.90 29.86 7 8.22 40.97 3.97 4573.92 3624.25 2409.92 8 8.22 44.90 3.97 5207.79 3961.28 2634.03 9 16.33 48.79 4.00 4893.44 3801.89 2528.05 10 16.33 52.62 4.00 5209.36 3969.86 2639.74 11 24.44 56.36 4.00 4632.75 3663.28 2435.88 12 24.44 60.01 4.00 4690.53 3694.00 2456.31 13 32.55 63.51 4.00 3964.55 3307.99 2199.63 14 32.55 66.88 4.00 3821.69 3232.03 2149.12 15 40.66 70.28 4.52 3515.16 3225.58 2144.83 16 40.66 73.32 3.48 2388.04 2313.20 1538.15 17 48.77 76.11 4.47 1833.17 2316.49 1540.34 18 48.77 78.75 3.53 827.16 1183.04 786.66 19 56.88 80.84 3.41 0.00 0.00 0.00 Average Effective Normal Stress = 860.6457(psf) Average Available Shear Strength = 738.3039(psf) Total Length of Failure Surface = 67.4123(ft) SUM OF MOMENTS = -0.758897E-03 (ft/lbs);Imbalance (Fraction of Total Weight) = - 0.1206416E-07 SUM OF FORCES = -.116901E-04 (lbs);Imbalance (Fraction of Total Weight) = -0.1858371E- 09 Sum of Available Shear Forces = 49770.76(lbs) Sum of Mobilized Shear Forces = 33094.81(lbs) FS Balance Check: FS = 1.503884 The FS Calculation To Determine The Seismic Yield Coefficient (ky) Did Not Converge in 50 Iterations. **** END OF GEOSTASE OUTPUT **** Problem Description:Surficial Stability of Existing Cut Slopes Acadia San Diego Medical Facility, Chula Vista, CA Parameters Depth of Saturation (ft), z =4.0 Buoyant Unit Weight of Soil (pcf), Yb =67.6 Total Unit Weight of Soil (pcf), Yt =130 Slope Angle, α =26.6 Angle of Internal Friction, Φ =28.0 Cohesion (psf), c =300.0 Driving Force Acting in Downslope Direction FD = (1/2) z.Yt.sin2α =208.19 lb/ft Resisting Force Acting in Upslope Direction FR = z.Yb.cos 2α.tanΦ + c =414.95 lb/ft Factor of Safety, F.S. F.S. = 2.z.Yb.cos2 α.tanΦ2c z.Yt.sin2α =1.99 Project Name: Acadia San Diego Medical Project No: 108727001 Designed/Checked: WRM/KHM SURFICIAL SLOPE STABILITY ANALYSIS FLOWLINES z  FR FD Surficial Stability Evaluation of Cut Slopes Problem Description:Surficial Stability of Existing Fill Slopes Acadia San Diego Medical Facility, Chula Vista, CA Parameters Depth of Saturation (ft), z =4.0 Buoyant Unit Weight of Soil (pcf), Yb =67.6 Total Unit Weight of Soil (pcf), Yt =130 Slope Angle, α =26.6 Angle of Internal Friction, Φ =30.0 Cohesion (psf), c =200.0 Driving Force Acting in Downslope Direction FD = (1/2) z.Yt.sin2α =208.19 lb/ft Resisting Force Acting in Upslope Direction FR = z.Yb.cos 2α.tanΦ + c =324.82 lb/ft Factor of Safety, F.S. F.S. = 2.z.Yb.cos2 α.tanΦ2c z.Yt.sin2α =1.56 Project Name: Acadia San Diego Medical Project No: 108727001 Designed/Checked: WRM/KHM SURFICIAL SLOPE STABILITY ANALYSIS FLOWLINES z  FR FD Surficial Stability Evaluation of Fill Slopes APPENDIX F Derivation of Pseudostatic Coefficient Ninyo & Moore | 830 Showroom Place, Chula Vista, California | 108727001 | March 6, 2019 DETERMINATION OF PSEUDOSTATIC PARAMETER FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY References: Given: Modal Magnitude, M = 6.69 Modal Distance, r = 17.5 km Screening Threshold, u = 5 cm 0.37 g For r > 10 km For r < 10 km ln(D 5-95 ) = 2.4858 (D 5-95 ) = 12.01 sec Abrahamson, N.A. and Silva, W.J., 1996, Empirical Ground Motion Models, report prepared for Brookhaven National Laboratory, New York, NY, 144 p. Design Ground Acceleration (rock), MHA = Duration (D5-95) Blake, T.F., Hollingsworth, R.A. and Stewart, J.P., 2002, Recommended Procedures for Implementation of DMG Special Publication 117-Guidelines for Analyzing and Mitigating Landslide Hazards in California: Committee Organized Through the ASCE, Los Angeles Section Geotechnical Group, Document Published by the Southern California Earthquake Center, 101p. Bray, J.D., Rathje E.M., Auguello, A.J. and Merry, S.M., 1998, Simplified Seismic Design Procedure for Geosynthetic-Lined Solid Waste Landfills: Geosynthetics International, V.5, No. 1-2, pp. 203-235. Stewart, J.P., Blake, T.F. and Hollingsworth, R.A., 2003, A Screen Analysis Procedure for Seismic Slope Stability: Earthquake Spectra, Vol. 19, No. 3, pp. 697-712. 8664.0107.15 10/6851.0204.5expln)ln(6 3/105.165.1 955           MMD 8664.0)10(063.0107.15 10/6851.0204.5expln)ln(6 3/105.165.1 955         rMD M DETERMINATION OF PSEUDOSTATIC PARAMETER FOR SCREENING ANALYSIS FOR SEISMIC SLOPE STABILITY Non-Linear Response Factor (NRF) NRF ≈1.0192 Seismicity Factor (f eq ) f eq =0.54 Seismic Coefficient (k) k =0.20 4449.0/exp9196.06225.0 MHANRF        )()()(log87.1477.3/ 955 10 DNRFMHA uNRFfeq MHAfkeq 3/5/2019 Unified Hazard Tool https://earthquake.usgs.gov/hazards/interactive/1/5 Unied Hazard Tool Input U.S. Geological Survey - Earthquake Hazards Program Please do not use this tool to obtain ground motion parameter values for the design code reference documents covered by the U.S. Seismic Design Maps web tools (e.g., the International Building Code and the ASCE 7 or 41 Standard). The values returned by the two applications are not identical.  Edition Dynamic: Conterminous U.S. 2008 (v3.3. Latitude Decimal degrees 32.65539 Longitude Decimal degrees, negative values for western longitudes -116.95575 Site Class 760 m/s (B/C boundar y) Spectral Period Peak ground acceleration Time Horizon Return period in years 2475 3/5/2019 Unified Hazard Tool https://earthquake.usgs.gov/hazards/interactive/2/5 Hazard Curve View Raw Data Hazard Curves 1e-2 1e-1 1e+0 Ground Motion (g) 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 Annual Frequency of ExceedanceUniform Hazard Response Spectrum 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Spectral Period (s) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ground Motion (g)Please select “Edition”, “Location” & “Site Class” above to compute a hazard curve.  Compute Hazard Cur veCompute Hazard Cur veCompute Hazard Cur ve 3/5/2019 Unified Hazard Tool https://earthquake.usgs.gov/hazards/interactive/3/5 Deaggregation Component Total ε = (-∞ .. -2.5) ε = [-2.5 .. -2) ε = [-2 .. -1.5) ε = [-1.5 .. -1) ε = [-1 .. -0.5) ε = [-0.5 .. 0) ε = [0 .. 0.5) ε = [0.5 .. 1) ε = [1 .. 1.5) ε = [1.5 .. 2) ε = [2 .. 2.5) ε = [2.5 .. +∞) 5 25 45 Closest Distance, rRup (km) 65 85 10598.587.5M agn itu de (M w )76.565.554.55% Contribution to Hazard10155 25 45 65 Closest Distance, rRup (km)85 105 98.587.576.5M agn itu de (M w )65.554.5 3/5/2019 Unified Hazard Tool https://earthquake.usgs.gov/hazards/interactive/4/5 Summary statistics for, Deaggregation: Total Deaggregation targets Return period:2475 yrs Exceedance rate:0.0004040404 yr⁻¹ PGA ground motion:0.30518296 g Recovered targets Return period:2722.9266 yrs Exceedance rate:0.00036725191 yr⁻¹ Totals Binned:100 % Residual:0 % Trace:0.06 % Mean (for all sources) r:18.03 km m:6.39 ε₀:1.12 σ Mode (largest r-m bin) r:17.48 km m:6.69 ε₀:1.16 σ Contribution:9.85 % Mode (largest ε₀ bin) r:19.14 km m:6.71 ε₀:1.35 σ Contribution:6.32 % Discretization r:min = 0.0, max = 1000.0, Δ = 20.0 km m:min = 4.4, max = 9.4, Δ = 0.2 ε:min = -3.0, max = 3.0, Δ = 0.5 σ Epsilon keys ε0:[-∞ ‥ -2.5) ε1:[-2.5 ‥ -2.0) ε2:[-2.0 ‥ -1.5) ε3:[-1.5 ‥ -1.0) ε4:[-1.0 ‥ -0.5) ε5:[-0.5 ‥ 0.0) ε6:[0.0 ‥ 0.5) ε7:[0.5 ‥ 1.0) ε8:[1.0 ‥ 1.5) ε9:[1.5 ‥ 2.0) ε10:[2.0 ‥ 2.5) ε11:[2.5 ‥ +∞] 3/5/2019 Unified Hazard Tool https://earthquake.usgs.gov/hazards/interactive/5/5 Deaggregation Contributors Source Set  Source Type r m ε0 lon lat az % bFault.ch Fault 22.76 Rose Canyon 19.13 6.79 1.33 117.151°W 32.603°N 252.43 9.45 Coronado Bank 33.91 7.37 1.64 117.298°W 32.552°N 250.35 3.62 Palos Verdes Connected 33.91 7.72 1.37 117.298°W 32.552°N 250.35 3.57 Newport Inglewood Connected alt 2 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.07 Newport Inglewood Connected alt 1 19.13 7.51 0.84 117.151°W 32.603°N 252.43 3.05 CAmap.21.ch.in (opt)Grid 20.28 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.97 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46 PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70 PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41 PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38 CAmap.24.ch.in (opt)Grid 20.27 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 5.96 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 3.38 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 2.46 PointSourceFinite: -116.956, 32.795 14.55 6.03 1.17 116.956°W 32.795°N 0.00 1.70 PointSourceFinite: -116.956, 32.804 15.31 6.06 1.23 116.956°W 32.804°N 0.00 1.41 PointSourceFinite: -116.956, 32.786 13.91 5.96 1.14 116.956°W 32.786°N 0.00 1.38 bFault.gr Fault 14.00 Rose Canyon 19.55 6.66 1.44 117.151°W 32.603°N 252.43 6.33 Coronado Bank 34.27 7.00 1.91 117.298°W 32.552°N 250.35 2.92 Palos Verdes Connected 34.58 7.30 1.70 117.298°W 32.552°N 250.35 2.64 Newport Inglewood Connected alt 2 22.65 7.12 1.27 117.151°W 32.603°N 252.43 1.06 Newport Inglewood Connected alt 1 22.66 7.12 1.27 117.151°W 32.603°N 252.43 1.05 CAmap.24.gr.in (opt)Grid 9.98 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23 CAmap.21.gr.in (opt)Grid 9.98 PointSourceFinite: -116.956, 32.723 8.74 5.76 0.60 116.956°W 32.723°N 0.00 2.98 PointSourceFinite: -116.956, 32.714 8.07 5.73 0.51 116.956°W 32.714°N 0.00 1.69 PointSourceFinite: -116.956, 32.732 9.42 5.79 0.68 116.956°W 32.732°N 0.00 1.23 Ninyo & Moore | Imperial Avenue Bikeway, San Diego, California | 108478004 | October 22, 2018 5710 Ruffin Road | San Diego, California 92123 | p. 858.576.1000 ARIZONA | CALIFORNIA | COLORADO | NEVADA | TEXAS | UTAH www.ninyoandmoore.com