

July 29, 2015

Project No. 603541-003

Sharp Healthcare 8695 Spectrum Center Boulevard San Diego, California 92123

Attention: Mr. Matthew Teichner

- Subject: Site-Specific Ground Motion Response Spectra Sharp Chula Vista Medical Center Master Plan Chula Vista, California
- Reference: Leighton Consulting, Inc. 2013, Geotechnical Investigation, Sharp Chula Vista Medical Center Master Plan, California, Project No. 603541-002, dated July 18, 2013, Revised August 29, 2013.

Leighton Consulting, Inc. (Leighton) is pleased to submit this letter-report for the subject project. This letter-report presents site-specific ground motion response spectra for the subject project per your authorization of our supplemental scope on July 17, 2015.

Site-Specific Response Spectra

Site-specific response spectra were developed for the site based on a uniform-hazard approach using the computer program *EZ-FRISK* (Risk Engineering, 2015). The uniform-hazard approach assumes that the same level of hazard is uniformly applied to the entire response spectra. The spectral values were developed for a seismic event associated with the Maximum Considered Earthquake (MCE_G) with a return period of 2,475 years (2 percent chance of exceedance in 50 year). The response spectral values were calculated for 5 percent damping.

Attenuation relationships (Ground Motion Prediction Equations or GMPEs) describe the relation of ground motion levels with earthquake magnitude and distance (between the site and seismic source), site geology, and subsurface characterization. These relationships can be used to describe the variation of peak ground acceleration and response spectral acceleration with earthquake magnitude and distance, and to also incorporate the local geological conditions and near-source effects. An averaging of the following next-generation attenuation relationships (NGAs) was used with equal weights to calculate site-specific peak horizontal ground acceleration and spectra:

- Boore-Atkinson (2008),
- Campbell-Bozorgnia (2008), and
- Chiou-Youngs (2008)

We have used the Shahi and Baker (2014) $Sa_{RotD100}/Sa_{RotD50}$ factors to convert geometric mean values into maximum component values required to develop the MCE_R ground motions.

Suspension Logging

The survey was performed by GEOVision (attached). The primary purpose of performing suspension logging at Boring S-1 (referred to as B-1 in GEOVision report) was to develop subsurface compressional-wave (P) and shear-wave (S) velocity models down to a depth of approximately 100 feet below the bottom of excavation. See the attached Figure 2 for Boring S-1 location. Velocity measurements were performed using the PS logging system at 1.6 foot intervals, manufactured by OYO Corporation, and their subsidiary, Robertson Logging. The acquired data were analyzed and a profile of velocity versus depth was produced for both compressional and shear waves.

The results of the geophysical testing indicated an average shear wave velocity of approximately 1,300 feet/second (396 m/s) for the upper 100 feet below the bottom of excavation.

Site Characterization (Site Class)

Utilizing the 2013 California Building Code (CBC) procedures, we have characterized the site soil profile to be Site Class C based on the measured shear wave velocity profile in the upper 30 meters (Vs_{30}) at Boring S-1.

<u>Methodology</u>

The 2013 CBC requires the procedures of Chapter 21, Site-Specific Ground Motion Procedures for Seismic Design, of ASCE 7-10 be used to determine site-specific seismic response spectra and design parameters. We performed both deterministic and probabilistic seismic hazard analyses (DSHA and PSHA) and processed the results in accordance with the procedures in Chapter 21 of ASCE 7-10.

Conclusions

Results of the analysis are presented on Figure 1, which shows the probabilistic MCE_R spectrum, deterministic MCE spectrum, site-specific MCE_R spectrum, and design response spectrum. Digitized values of the design response spectrum are presented in Table A-1 (attached).

Seismic Design Parameters

To accommodate effects of ground shaking produced by regional seismic events, seismic design can, at the discretion of the designing Structural Engineer, be performed in accordance with the 2013 Edition of the California Building Code (CBC). Table 1, *Seismic Design Parameters* (below), lists code-based and site-specific seismic design parameters based on the 2013 CBC methodology:

Categorization/Coefficients	Code- Based	Site- Specific
Site Longitude (decimal degrees) West	-11	7.0227
Site Latitude (decimal degrees) North	32	.6191
Site Class		С
Mapped Spectral Response Acceleration at 0.2s Period, S_s	0.878	-
Mapped Spectral Response Acceleration at 1s Period, S_1	0.335	-
Short Period Site Coefficient at 0.2s Period, F_a	1.049	-
Long Period Site Coefficient at 1s Period, F_v	1.465	-
Adjusted Spectral Response Acceleration at 0.2s Period, S_{MS}	0.921	1.146
Adjusted Spectral Response Acceleration at 1s Period, S_{M1}	0.491	0.583
Design Spectral Response Acceleration at 0.2s Period, S_{DS}	0.614	0.764
Design Spectral Response Acceleration at 1s Period, S_{D1}	0.327	0.389

We appreciate the opportunity to work with you on this project. If you have any questions or if we can be of further service, please contact us at (866) *LEIGHTON*.

Respectfully submitted,

LEIGHTON CONSULTING, INC.

Sreekar Pulijala, PE 82535 Project Engineer

Robert Steels

Robert C. Stroh, CEG 2099 Senior Project Geologist

Carl C. Kim, PE, GE 2620 Senior Principal Engineer

SP/CCK/RCS/lr

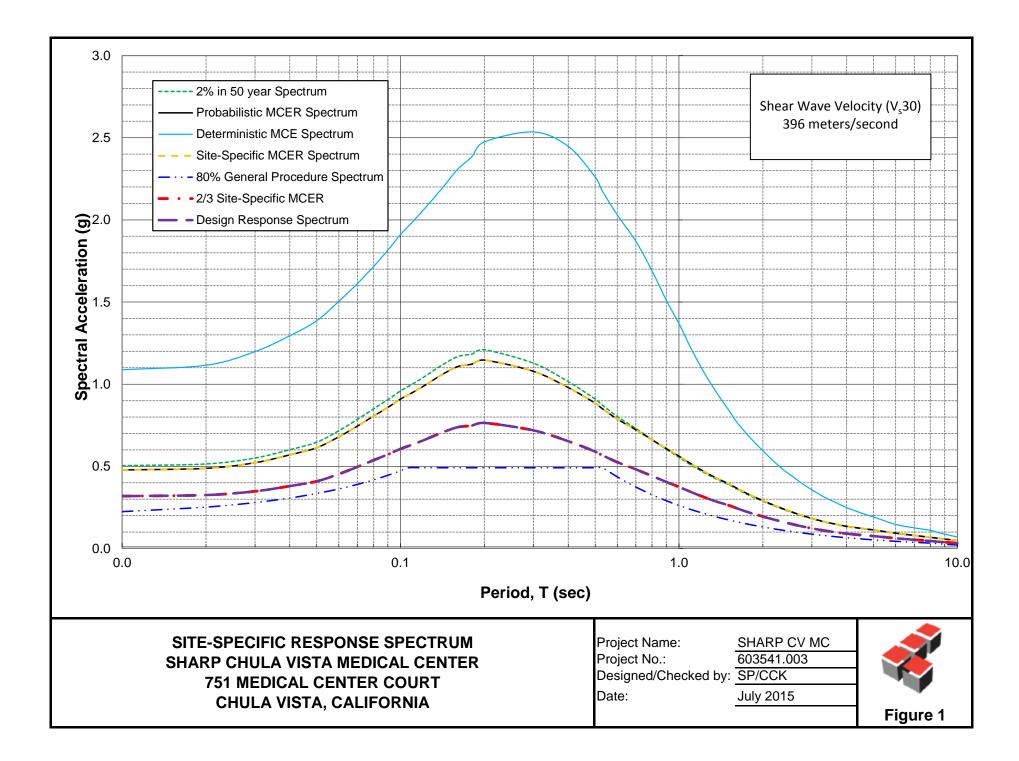

Attachments: Figure 1 – Site Specific Response Spectra

Table A-1 – Site Specific Seismic Ground Motion Hazard Analysis per ASCE 7-10

Figure 2 – Existing Site Conditions and Exploration Map GEOVision Report

Distribution: (1) Addressee

Project Name: Sharp Chula Vista Medical Center						Date: July 2015 Seismic Design Coefficients: Per ASCE 7-10/2013 CBC (USGS Seismic D					C. Colomia Daoi	an Mono)
Project Number: 603541.003			Site Coor	dinates	Seismic		EI AGUE /-10/2			gri waps)		
					Latitude	Longitude	Ss	0.878	S _{MS}	0.921	T ₀	0.107
	Site Class:	С	Chapter 20		32.61914	-117.02279	S ₁	0.335	S _{M1}	0.491	T _s	0.533
She	ear Wave Velocity:	396	m/sec				F _a	1.049	S _{DS}	0.614	TL	8
	Return Period:	2475	years (2 percent	t probability of e	xceedance in 50	years)	F _v	1.465	S _{D1}	0.327	Design S _{DS}	0.764
	Percent Damping:	5	%				C _{RS}	0.948	C _{R1}	1.014	Design S _{D1}	0.389
	Sec. 21.2.1	.1 Method 1 Pr	obabilistic	Sec.	21.2.2 Determin	istic	Sec. 21.2.3 Site - Specific	Section 11.4.5 General Procedure	Sec. 21.3 De	esign Respons	e Spectrum	Section 11.4.6 Risk-Targeted MCE _R
Period (sec.)	Spectral Acceleration (g)	Siesmic Risk Coefficients from Figs. 22- 17 and 22-18 (C _{RS} and C _{R1})		Spectral Acceleration at 84th- percentile (g)	Lower Limit on MCE _R Response Spectrum Figure 21.2-1	MCE _R Response Spectrum (g)	MCE _R S _{aM} (g)	Response Spectral Accelerations-Sa (g)	Lower Limit of General Procedure Spectrum-80% of Sa (g)	(2/3)*S _{aM}	Design Response Spectrum (g)	1.5* Final Design Response Spectrum (g)
0.01	0.504	0.948	0.478	1.088	0.629	1.088	0.478	0.280	0.224	0.319	0.319	0.478
0.02	0.514	0.948	0.488	1.115	0.722	1.115	0.488	0.315	0.252	0.325	0.325	0.488
0.03	0.551	0.948	0.522	1.198	0.815	1.198	0.522	0.349	0.279	0.348	0.348	0.522
0.04	0.601	0.948	0.570	1.295	0.908	1.295	0.570	0.384	0.307	0.380	0.380	0.570
0.05	0.647	0.948	0.613	1.386	1.001	1.386	0.613	0.418	0.335	0.409	0.409	0.613
0.06	0.717	0.948	0.680	1.504	1.093	1.504	0.680	0.453	0.362	0.453	0.453	0.680
0.07	0.786	0.948	0.745	1.612	1.186	1.612	0.745	0.488	0.390	0.497	0.497	0.745
0.08	0.850	0.948	0.806	1.716	1.279	1.716	0.806	0.522	0.418	0.537	0.537	0.806
0.09	0.905	0.948	0.858	1.816	1.372	1.816	0.858	0.557	0.445	0.572	0.572	0.858
0.10	0.960	0.948	0.910	1.911	1.465	1.911	0.910	0.591	0.473	0.606	0.606	0.910
0.11	0.988	0.948	0.936	1.964	1.574	1.964	0.936	0.614	0.491	0.624	0.624	0.936
0.12	1.038	0.948	0.984	2.055	1.574	2.055	0.984	0.614	0.491	0.656	0.656	0.984
0.14	1.113	0.948	1.055	2.186	1.574	2.186	1.055	0.614	0.491	0.704	0.704	1.055
0.16	1.167	0.948	1.107	2.306	1.574	2.306	1.107	0.614	0.491	0.738	0.738	1.107
0.18	1.183	0.948	1.122	2.383	1.574	2.383	1.122	0.614	0.491	0.748	0.748	1.122
0.2	1.209	0.948	1.147	2.474	1.574	2.474	1.147	0.614	0.491	0.764	0.764	1.147
0.3	1.128	0.956	1.078	2.535	1.574	2.535	1.078	0.614	0.491	0.719	0.719	1.078
0.4	1.015	0.965	0.979	2.448	1.574	2.448	0.979	0.614	0.491	0.653	0.653	0.979
0.5	0.909	0.973	0.885	2.261	1.574	2.261	0.885	0.614	0.491	0.590	0.590	0.885
0.53	0.873	0.975	0.851	2.177	1.500	2.177	0.851	0.614	0.491	0.568	0.568	0.851
0.6	0.804	0.981	0.788	2.031	1.465	2.031	0.788	0.545	0.436	0.526	0.526	0.788
0.7	0.730	0.989	0.722	1.870	1.256	1.870	0.722	0.467	0.374	0.482	0.482	0.722
0.8	0.663	0.998	0.662	1.690	1.099	1.690	0.662	0.409	0.327	0.441	0.441	0.662
0.9	0.604	1.006	0.608	1.512	0.977	1.512	0.608	0.364	0.291	0.405	0.405	0.608
1	0.554	1.014	0.562	1.369	0.879	1.369	0.562	0.327	0.262	0.375	0.375	0.562

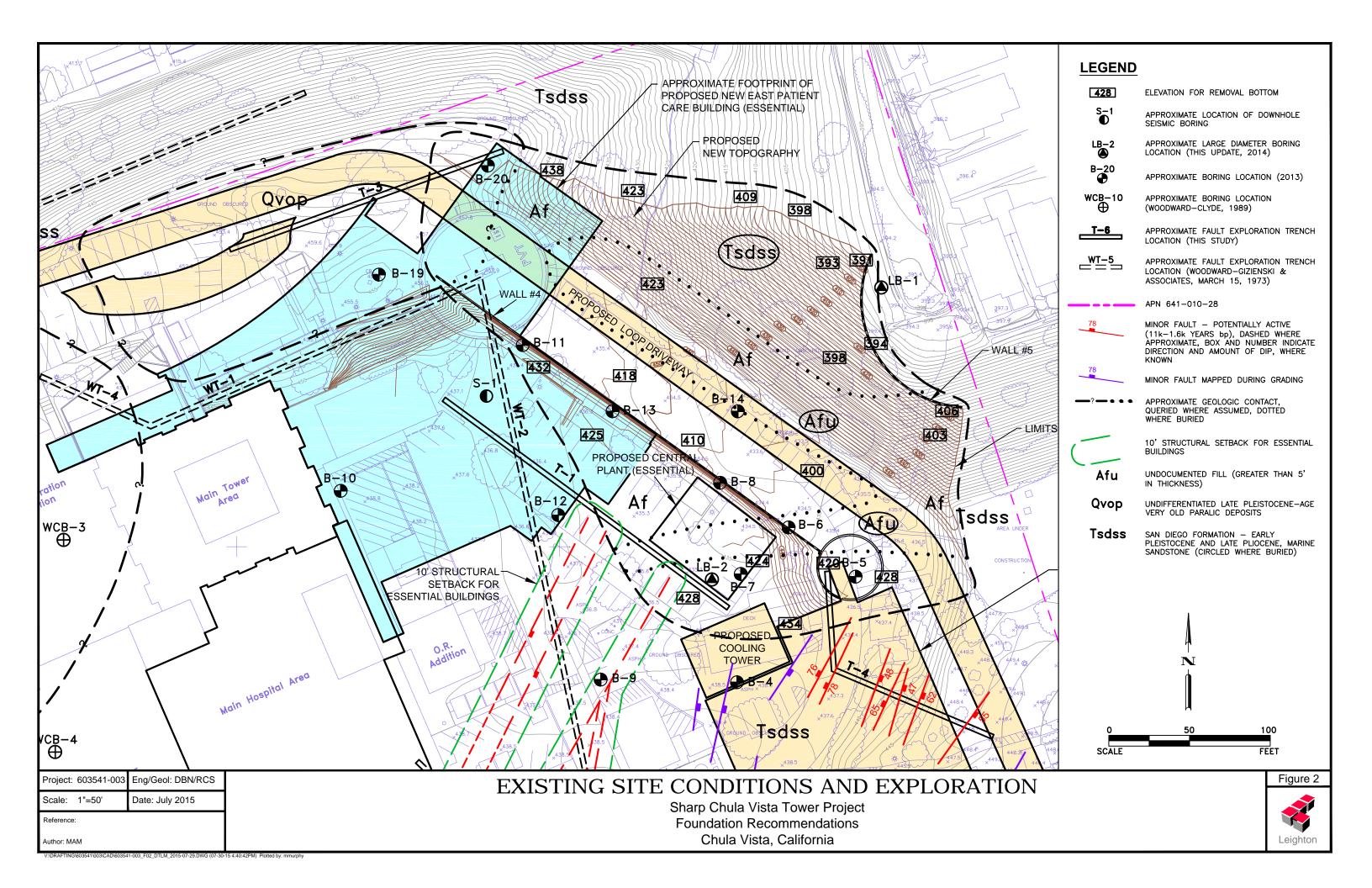

Table A-1: Site-Specific Seismic Ground Motion Hazard Analysis per ASCE 7-10

Table A-1: Site-Specific Seismic Ground Motion Hazard Analysis per ASCE 7-10

Project Name: Sharp Chula Vista Medical Center		•		July 2015	Seismic Design Coefficients: Per ASCE 7-10/2013 CBC (USGS Seismic Design Maps)							
	Project Number: 603541.003 Site Coordinates		· · · · · · · · · · · · · · · · · · ·					gn Maps)				
					Latitude	Longitude	Ss	0.878	S _{MS}	0.921	T ₀	0.107
	Site Class:	С	Chapter 20		32.61914	-117.02279	S ₁	0.335	S _{M1}	0.491	T _s	0.533
She	ear Wave Velocity:	396	m/sec				F _a	1.049	S _{DS}	0.614	TL	8
	Return Period:	2475	years (2 percent	t probability of e	xceedance in 50	years)	F _v	1.465	S _{D1}	0.327	Design S _{DS}	0.764
	Percent Damping:	5	%				C _{RS}	0.948	C _{R1}	1.014	Design S _{D1}	0.389
	Sec. 21.2.1	.1 Method 1 Pr	obabilistic	Sec.	21.2.2 Determin	istic	Sec. 21.2.3 Site - Specific	Section 11.4.5 General Procedure	Sec. 21.3 D	esign Respons	e Spectrum	Section 11.4.6 Risk-Targeted MCE _R
Period (sec.)	Spectral Acceleration (g)	Siesmic Risk Coefficients from Figs. 22- 17 and 22-18 (C _{RS} and C _{R1})	MCE _R Response Spectrum (g)	Spectral Acceleration at 84th- percentile (g)	Lower Limit on MCE _R Response Spectrum Figure 21.2-1	MCE _R Response Spectrum (g)	MCE _R S _{aM} (g)	Response Spectral Accelerations-Sa (g)	Lower Limit of General Procedure Spectrum-80% of Sa (g)	(2/3)*S _{aM}	Design Response Spectrum (g)	1.5* Final Design Response Spectrum (g)
1.1	0.510	1.014	0.517	1.224	0.799	1.224	0.517	0.297	0.238	0.345	0.345	0.517
1.2	0.472	1.014	0.479	1.104	0.733	1.104	0.479	0.273	0.218	0.319	0.319	0.479
1.3	0.440	1.014	0.446	1.005	0.676	1.005	0.446	0.252	0.201	0.297	0.297	0.446
1.4	0.413	1.014	0.419	0.920	0.628	0.920	0.419	0.234	0.187	0.279	0.279	0.419
1.5	0.390	1.014	0.396	0.849	0.586	0.849	0.396	0.218	0.174	0.264	0.264	0.396
1.6	0.365	1.014	0.370	0.777	0.549	0.777	0.370	0.204	0.164	0.247	0.247	0.370
1.7	0.341	1.014	0.346	0.722	0.517	0.722	0.346	0.192	0.154	0.231	0.231	0.346
1.8	0.321	1.014	0.326	0.675	0.488	0.675	0.326	0.182	0.145	0.217	0.217	0.326
1.9	0.304	1.014	0.308	0.633	0.463	0.633	0.308	0.172	0.138	0.205	0.205	0.308
2	0.288	1.014	0.292	0.596	0.440	0.596	0.292	0.164	0.131	0.195	0.195	0.292
2.1	0.273	1.014	0.276	0.560	0.419	0.560	0.276	0.156	0.125	0.184	0.184	0.276
2.2	0.259	1.014	0.263	0.527	0.400	0.527	0.263	0.149	0.119	0.175	0.175	0.263
2.3	0.247	1.014	0.250	0.498	0.382	0.498	0.250	0.142	0.114	0.167	0.167	0.250
2.4	0.234	1.014	0.237	0.472	0.366	0.472	0.237	0.136	0.109	0.158	0.158	0.237
2.5	0.224	1.014	0.227	0.451	0.352	0.451	0.227	0.131	0.105	0.152	0.152	0.227
2.6	0.214	1.014	0.217	0.429	0.338	0.429	0.217	0.126	0.101	0.144	0.144	0.217
2.7	0.204	1.014	0.207	0.409	0.326	0.409	0.207	0.121	0.097	0.138	0.138	0.207
2.8	0.196	1.014	0.199	0.390	0.314	0.390	0.199	0.117	0.093	0.132	0.132	0.199
2.9	0.188	1.014	0.191	0.373	0.303	0.373	0.191	0.113	0.090	0.127	0.127	0.191
3	0.181	1.014	0.184	0.357	0.293	0.357	0.184	0.109	0.087	0.122	0.122	0.184
3.2	0.168	1.014	0.170	0.329	0.275	0.329	0.170	0.102	0.082	0.114	0.114	0.170
3.4	0.157	1.014	0.159	0.304	0.259	0.304	0.159	0.096	0.077	0.106	0.106	0.159
3.6	0.149	1.014	0.151	0.285	0.244	0.285	0.151	0.091	0.073	0.100	0.100	0.151
3.8	0.140	1.014	0.142	0.266	0.231	0.266	0.142	0.086	0.069	0.095	0.095	0.142
4	0.133	1.014	0.135	0.249	0.220	0.249	0.135	0.082	0.065	0.090	0.090	0.135

Table A-1: Site-Specific Seismic Ground Motion Hazard Analysis per ASCE 7-10

		Sharp Chula Vista Medical Center			Date:	Date: July 2015 Seismic I		Seismic Design Coefficients: Per ASCE 7-10/2013 CBC (USGS Seismic Design Maps)				
	Project Number:	603541.003			Site Coor	dinates	Ocisitiic	, Design Oberneients. T	_			gir Maps)
					Latitude	Longitude	Ss	0.878	S _{MS}	0.921	T ₀	0.107
	Site Class:	С	Chapter 20		32.61914	-117.02279	S ₁	0.335	S _{M1}	0.491	Ts	0.533
She	ear Wave Velocity:	396	m/sec				F _a	1.049	S _{DS}	0.614	TL	8
	Return Period:	2475	years (2 percent	t probability of e	xceedance in 50	years)	F _v	1.465	S _{D1}	0.327	Design S _{DS}	0.764
	Percent Damping:	5	%				C _{RS}	0.948	C _{R1}	1.014	Design S _{D1}	0.389
	Sec. 21.2.1	.1 Method 1 Pr	obabilistic	Sec.	21.2.2 Determin	istic	Sec. 21.2.3 Site - Specific	Section 11.4.5 General Procedure	Sec. 21.3 D	esign Respons	e Spectrum	Section 11.4.6 Risk-Targeted MCE _R
Period (sec.)	Spectral Acceleration (g)	Siesmic Risk Coefficients from Figs. 22- 17 and 22-18 (C _{RS} and C _{R1})	MCE _R Response Spectrum (g)	Spectral Acceleration at 84th- percentile (g)	Lower Limit on MCE _R Response Spectrum Figure 21.2-1	MCE _R Response Spectrum (g)	MCE _R S _{aM} (g)	Response Spectral Accelerations-Sa (g)	Lower Limit of General Procedure Spectrum-80% of Sa (g)	(2/3)*S _{aM}	Design Response Spectrum (g)	1.5* Final Design Response Spectrum (g)
4.2	0.128	1.014	0.130	0.235	0.209	0.235	0.130	0.078	0.062	0.087	0.087	0.130
4.4	0.123	1.014	0.125	0.223	0.200	0.223	0.125	0.074	0.059	0.083	0.083	0.125
4.6	0.119	1.014	0.121	0.211	0.191	0.211	0.121	0.071	0.057	0.080	0.080	0.121
4.8	0.115	1.014	0.117	0.201	0.183	0.201	0.117	0.068	0.055	0.078	0.078	0.117
5	0.112	1.014	0.113	0.192	0.176	0.192	0.113	0.065	0.052	0.075	0.075	0.113
6	0.092	1.014	0.093	0.144	0.147	0.147	0.093	0.055	0.044	0.062	0.062	0.093
7	0.079	1.014	0.080	0.114	0.126	0.126	0.080	0.047	0.037	0.053	0.053	0.080
8	0.067	1.014	0.068	0.089	0.110	0.110	0.068	0.041	0.033	0.045	0.045	0.068
9	0.056	1.014	0.057	0.071	0.087	0.087	0.057	0.032	0.026	0.038	0.038	0.057
10	0.049	1.014	0.049	0.060	0.070	0.070	0.049	0.026	0.021	0.033	0.033	0.049

SUSPENSION P & S VELOCITIES AND Vs30 CHULA VISTA HOSPITAL BORING B-1

Report 14242-01 rev 0

September 16, 2014

SUSPENSION P & S VELOCITIES AND Vs30 CHULA VISTA HOSPITAL BORING B-1

Report 14242-01 rev 0

September 16, 2014

Prepared for:

Leighton Consulting, Inc. 3934 Murphy Canyon Road, Suite B-205 San Diego, California 92123 (858) 300-4090

Prepared by

GEOVision Geophysical Services 1124 Olympic Drive Corona, California 92881 (951) 549-1234

TABLE OF CONTENTS

TABLE OF CONTENTS	3
TABLE OF FIGURES	4
TABLE OF TABLES	4
INTRODUCTION	5
SCOPE OF WORK	6
INSTRUMENTATION	7
MEASUREMENT PROCEDURES	
DATA ANALYSIS	
RESULTS	
SUMMARY	14
DISCUSSION OF SUSPENSION RESULTS	14
DISCUSSION OF VS30	
QUALITY ASSURANCE	
SUSPENSION DATA RELIABILITY	15

Table of Figures

Figure 1:	Concept illustration of P-S logging system	16
Figure 2:	Example of filtered (1400 Hz lowpass) record	17
Figure 3:	Example of unfiltered record	18
Figure 4:	Boring B-1, Suspension R1-R2 P- and $S_{\rm H}\mbox{-wave velocities with Vs30 values}$	19
Figure 5:	Boring B-1, Suspension P- and $S_{\text{H}}\text{-wave travel times with Vs30 values}$	22

Table of Tables

Table 1:	Boring locations and logging dates	6
Table 2:	Logging dates and depth ranges1	0
Table 3:	Boring B-1, Suspension R1-R2 depths and P- and S _H -wave velocities	20

APPENDICES

APPENDIX A SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

APPENDIX B GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS

INTRODUCTION

Boring geophysical measurements were collected in one 4 inch diameter uncased boring at the Chula Vista Hospital in Chula Vista, California. Geophysical data acquisition was performed on August 29, 2014 by Victor Gonzalez of **GEO***Vision*. Data analysis and report preparation was performed by Emily Feldman and reviewed by John Diehl of **GEO***Vision*. The work was performed under subcontract with Leighton Consulting, Inc. (Leighton), with Bob Stroh serving as the point of contact.

This report describes the field measurements, data analysis, and results of this work.

SCOPE OF WORK

This report presents the results of suspension velocity measurements in one uncased boring, as detailed in Table 1. The purpose of the study was to supplement stratigraphic information obtained during Leighton's soil sampling program and to acquire shear wave velocities and compressional wave velocities as a function of depth, as well as to determine Vs30 for the site.

BORING	DATES	BORING DEPTH	LOCATION*
DESIGNATION	LOGGED	(FEET)	(ESTIMATED ON GOOGLE EARTH)
B-1	8/29/2014	140	32° 37.168' N, 117° 1.364' W

 Table 1: Boring locations and logging dates

 *Location data not available at time of report issuance

The OYO Suspension Logging System was used to obtain in-situ horizontal shear and compressional wave velocity measurements at 1.6-foot intervals. The acquired data were analyzed and a profile of velocity versus depth was produced for both compressional and horizontally polarized shear waves.

A detailed reference for the velocity measurement techniques used in this study is:

<u>Guidelines for Determining Design Basis Ground Motions</u>, Report TR-102293, Electric Power Research Institute, Palo Alto, California, November 1993, Sections 7 and 8.

INSTRUMENTATION

Suspension soil velocity measurements were performed using the PS suspension logging system, manufactured by OYO Corporation, and their subsidiary, Robertson Geologging. This system directly determines the average velocity of a 3.3-foot high segment of the soil column surrounding the boring of interest by measuring the elapsed time between arrivals of a wave propagating upward through the soil column. The receivers that detect the wave, and the source that generates the wave, are moved as a unit in the boring producing relatively constant amplitude signals at all depths.

The suspension system probe consists of a combined reversible polarity solenoid horizontal shear-wave source (S_H) and compressional-wave source (P), joined to two biaxial receivers by a flexible isolation cylinder, as shown in Figure 1. The separation of the two receivers is 3.3 feet, allowing average wave velocity in the region between the receivers to be determined by inversion of the wave travel time between the two receivers. The typical total length of the probe is 21 feet, with the center point of the receiver pair 12.5 feet above the bottom end of the probe.

The probe receives control signals from, and sends the receiver signals to, instrumentation on the surface via an armored 4 conductor cable. The cable is wound onto the drum of a winch and is used to support the probe. Cable travel is measured to provide probe depth data, using a 3.28-foot circumference sheave fitted with a digital rotary encoder.

The entire probe is suspended in the boring by the cable, therefore, source motion is not coupled directly to the boring walls; rather, the source motion creates a horizontally propagating impulsive pressure wave in the fluid filling the boring and surrounding the source. This pressure wave is converted to P and S_H -waves in the surrounding soil and rock as it impinges upon the wall of the boring. These waves propagate through the soil and rock surrounding the boring, in turn causing a pressure wave to be generated in the fluid surrounding the receivers as the soil waves pass their location. Separation of the P and S_H -waves at the receivers is performed using the following steps:

- Orientation of the horizontal receivers is maintained parallel to the axis of the source, maximizing the amplitude of the recorded S_H -wave signals.
- At each depth, S_H-wave signals are recorded with the source actuated in opposite directions, producing S_H-wave signals of opposite polarity, providing a characteristic S_Hwave signature distinct from the P-wave signal.
- 3. The 6.3-foot separation of source and receiver 1 permits the P-wave signal to pass and damp significantly before the slower S_H-wave signal arrives at the receiver. In saturated soils, the received P-wave signal is typically of much higher frequency than the received S_H-wave signal, permitting additional separation of the two signals by low pass filtering.
- 4. Direct arrival of the original pressure pulse in the fluid is not detected at the receivers because the wavelength of the pressure pulse in fluid is significantly greater than the dimension of the fluid annulus surrounding the probe, preventing significant energy transmission through the fluid medium.

In operation, a distinct, repeatable pattern of impulses is generated at each depth as follows:

- 1. The source is fired in one direction producing dominantly horizontal shear with some vertical compression, and the signals from the horizontal receivers situated parallel to the axis of motion of the source are recorded.
- 2. The source is fired again in the opposite direction and the horizontal receiver signals are recorded.
- 3. The source is fired again and the vertical receiver signals are recorded. The repeated source pattern facilitates the picking of the P and S_H-wave arrivals; reversal of the source changes the polarity of the S_H-wave pattern but not the P-wave pattern.

The data from each receiver during each source activation is recorded as a different channel on the recording system. The Suspension PS system has six channels (two simultaneous recording channels), each with a 1024 sample record. The recorded data are displayed as six channels with a common time scale. Data are stored on disk for further processing. Up to 8 sampling sequences can be summed to improve the signal to noise ratio of the signals.

Review of the displayed data on the recorder or computer screen allows the operator to set the gains, filters, delay time, pulse length (energy), sample rate, and summing number to optimize the quality of the data before recording. Verification of the calibration of the Suspension PS digital recorder is performed at least every twelve months using a NIST traceable frequency source and counter, as presented in Appendix B.

MEASUREMENT PROCEDURES

The boring was logged uncased, filled with bentonite based drilling mud. Measurements followed the **GEO***Vision* Procedure for P-S Suspension Seismic Velocity Logging, revision 1.5. Prior to each logging run, the suspension probe was positioned with the mid-point of the receiver spacing at grade, and the mechanical and electronic depth counters were set to zero. The probe was lowered to the bottom of the boring or until probe descent was inhibited, stopping at 1.6-foot intervals to collect data, as summarized in Table 2.

At each measurement depth, the measurement sequence of two opposite horizontal records and one vertical record was performed and the gains were adjusted as required. The data from each depth were viewed on the computer display, checked, and recorded on disk before moving to the next depth.

Upon completion of the measurements, the probe zero depth indication at the stationary reference point was verified and recorded on the field logs prior to removal from the boring. Field data were backed up to USB flash drive upon completion of data acquisition.

BORING NUMBER	TOOL AND RUN NUMBER	DEPTH RANGE (FEET)	DEPTH TO BOTTOM OF BORING (FEET)	SAMPLE INTERVAL (FEET)	DATE LOGGED
B-1	SUSPENSION PS 1	4.92 - 125.0	140	1.6	8/29/2014

 Table 2: Logging dates and depth ranges

DATA ANALYSIS

Using the proprietary OYO program PSLOG.EXE version 1.0, the recorded digital waveforms were analyzed to locate the most prominent first minima, first maxima, or first break on the vertical axis records, indicating the arrival of P-wave energy. The difference in travel time between receiver 1 and receiver 2 (R1-R2) arrivals was used to calculate the P-wave velocity for that 3.3-foot segment of the soil column. When observable, P-wave arrivals on the horizontal axis records were used to verify the velocities determined from the vertical axis data. The time picks were then transferred into a Microsoft Excel[®] template (version 2003 SP2) to complete the velocity calculations based on the arrival time picks made in PSLOG.

The P-wave velocity over the 6.3-foot interval from source to receiver 1 (S-R1) was also picked using PSLOG, and calculated and plotted in Microsoft Excel[®], for quality assurance of the velocity derived from the travel time between receivers. In this analysis, the depth values as recorded were increased by 5.15 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the P-wave signal at receiver 1 and subtracting the calculated and experimentally verified delay from source trigger pulse (beginning of record) to source impact, typically 4 milliseconds. This delay corresponds to the duration of acceleration of the solenoid before impact.

As with the P-wave records, using PSLOG, the recorded digital waveforms were analyzed to locate the presence of clear S_H -wave pulses, as indicated by the presence of opposite polarity pulses on each pair of horizontal records. Ideally, the S_H -wave signals from the 'normal' and 'reverse' source pulses are very nearly inverted images of each other. Digital FFT - IFFT low-pass filtering can be used to remove the higher frequency P-wave signal from the S_H -wave signal.

Generally, the first maxima were picked for the 'normal' signals and the first minima for the 'reverse' signals, although other points on the waveform were used if the first pulse was distorted. The absolute arrival time of the 'normal' and 'reverse' signals may vary by $\pm - 0.2$ milliseconds, due to differences in the actuation time of the solenoid source caused by constant mechanical

bias in the source or by boring inclination. This variation does not affect the R1-R2 velocity determinations, as the differential time is measured between arrivals of waves created by the same source actuation. The final velocity value is the average of the values obtained from the 'normal' and 'reverse' source actuations.

As with the P-wave data, S_H -wave velocity calculated from the travel time over the 6.33-foot interval from source to receiver 1 was calculated and plotted for verification of the velocity derived from the travel time between receivers. In this analysis, the depth values were increased by 5.15 feet to correspond to the mid-point of the 6.3-foot S-R1 interval. Travel times were obtained by picking the first break of the S_H -wave signal at the near receiver and subtracting the calculated and experimentally verified delay from the beginning of the record at the source trigger pulse to source impact, typically 4 milliseconds.

These data and analysis were reviewed by John Diehl as a component of **GEO***Vision*'s in-house QA-QC program.

Figure 2 shows an example of R1 - R2 measurements on a sample filtered suspension record. In Figure 2, the time difference over the 3.3-foot interval of 1.88 milliseconds for the horizontal signals is equivalent to an S_H -wave velocity of 1,745 feet/second. Whenever possible, time differences were determined from several phase points on the S_H -waveform records to verify the data obtained from the first arrival of the S_H -wave pulse. Figure 3 displays the same record before filtering of the S_H -waveform record with a 1400 Hz FFT - IFFT digital low-pass filter, illustrating the presence of higher frequency P-wave energy at the beginning of the record, and distortion of the lower frequency S_H -wave by residual P-wave signal.

Vs30 was calculated by summing the calculated travel times over each 1.64 ft interval from 0 ft (0 m) to a depth of 98.4 ft (30.0 m).

RESULTS

Suspension P- and S_H -wave velocities for boring B-1 are plotted with the calculated Vs30 of 396 m/sec (1300 ft/sec) in Figure 4. The calculated suspension travel time curves for boring B-1 are presented with the calculated Vs30 in Figure 5. Tabulated measurement depths, pick times and velocities are presented in Table 3. These plots and data are included in the Microsoft Excel[®] analysis files accompanying this report.

P- and S_H -wave velocity data from R1-R2 analysis and quality assurance analysis of S-R1 data are plotted together in Figure A-1 to aid in visual comparison. It should be noted that R1-R2 data are an average velocity over a 3.3-foot segment of the soil column; S-R1 data are an average over 6.3 feet, creating a significant smoothing relative to the R1-R2 plots. S-R1 data are presented in Table A-1, and included in the Microsoft Excel[®] analysis files.

Calibration procedures and records for the suspension PS measurement system are presented in Appendix B.

SUMMARY

Discussion of Suspension Results

Suspension PS velocity data are ideally collected in an uncased fluid filled boring, drilled with rotary mud (rotary wash) methods, as this boring was.

Suspension PS velocity data quality is judged based upon 5 criteria:

- Consistent data between receiver to receiver (R1 R2) and source to receiver (S R1) data.
- Consistent relationship between P-wave and S_H -wave (excluding transition to saturated soils)
- 3. Consistency between data from adjacent depth intervals.
- 4. Clarity of P-wave and S_H-wave onset, as well as damping of later oscillations.
- 5. Consistency of profile between adjacent borings, if available.

These data show excellent correlation between R1 - R2 and S - R1 data, as well as good correlation between P-wave and S_H -wave velocities. P-wave and S_H -wave onsets are generally clear, and later oscillations are well damped. These are excellent quality velocity data. Both borings provide velocity profiles indicative of soft rock transitioning into hard rock, overlain by a layer of weathered rock or soil.

Discussion of Vs30

Vs30 for B-1 from 6.6 to 105 ft (2.0 - 32.0 m) was calculated at 1300 ft/sec (396 m/sec), classifying it as a NEHRP site class C.

Quality Assurance

These boring geophysical measurements were performed using industry-standard or better methods for measurements and analyses. All work was performed under **GEO***Vision* quality assurance procedures, which include:

- Use of NIST-traceable calibrations, where applicable, for field and laboratory instrumentation
- Use of standard field data logs
- Use of independent verification of velocity data by comparison of receiver-to-receiver and source-to-receiver velocities
- Independent review of calculations and results by a registered professional engineer, geologist, or geophysicist.

Suspension Data Reliability

P- and S_H-wave velocity measurement using the Suspension Method gives average velocities over a 3.3-foot interval of depth. This high resolution results in the scatter of values shown in the graphs. In uncased borings, individual measurements are very reliable, with estimated precision of \pm 5%. Standardized field procedures and quality assurance checks contribute to the reliability of the data.

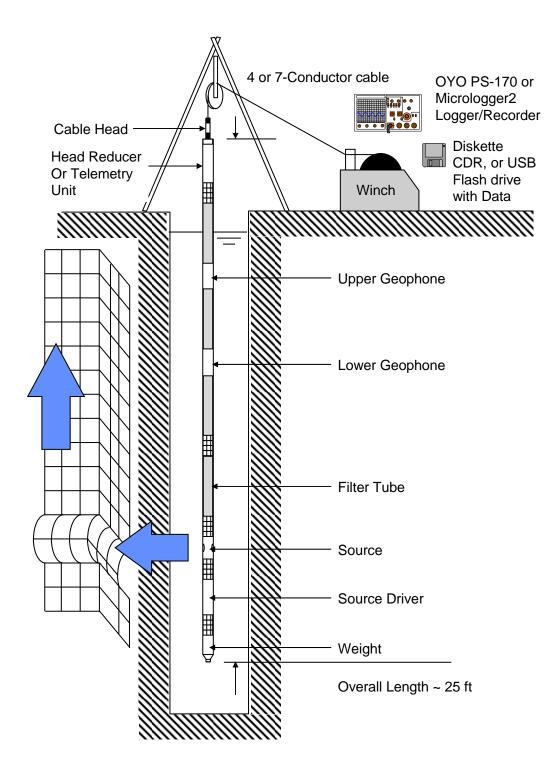


Figure 1: Concept illustration of P-S logging system

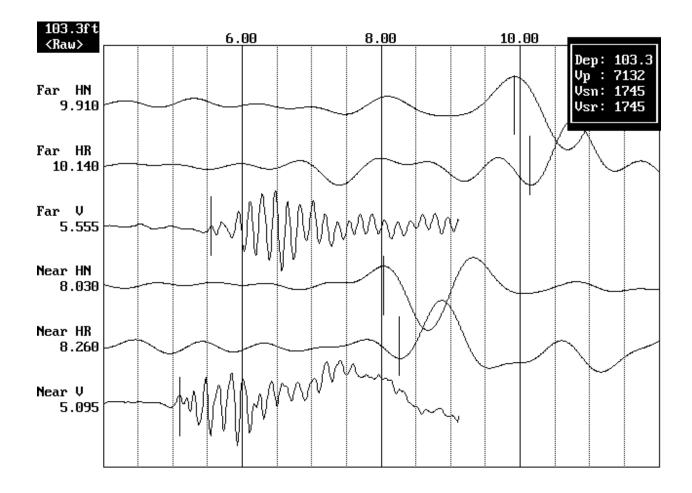


Figure 2: Example of filtered (1400 Hz lowpass) record

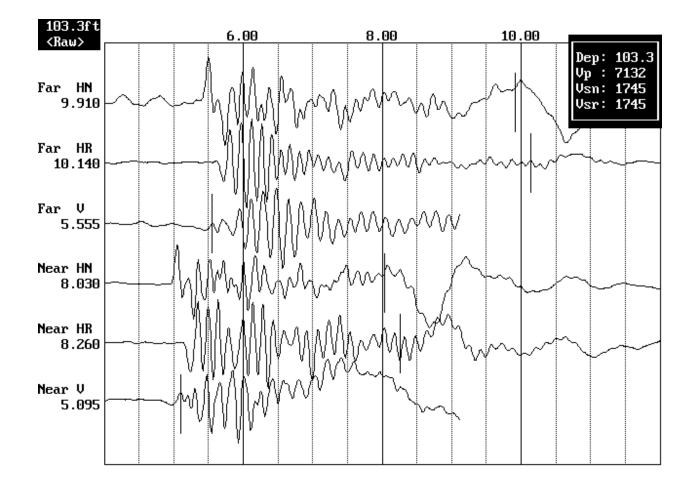
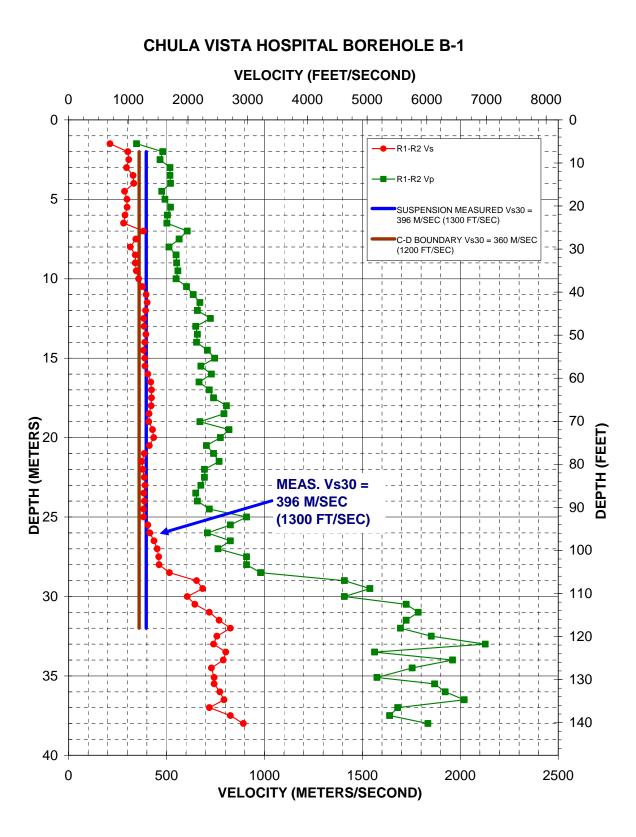
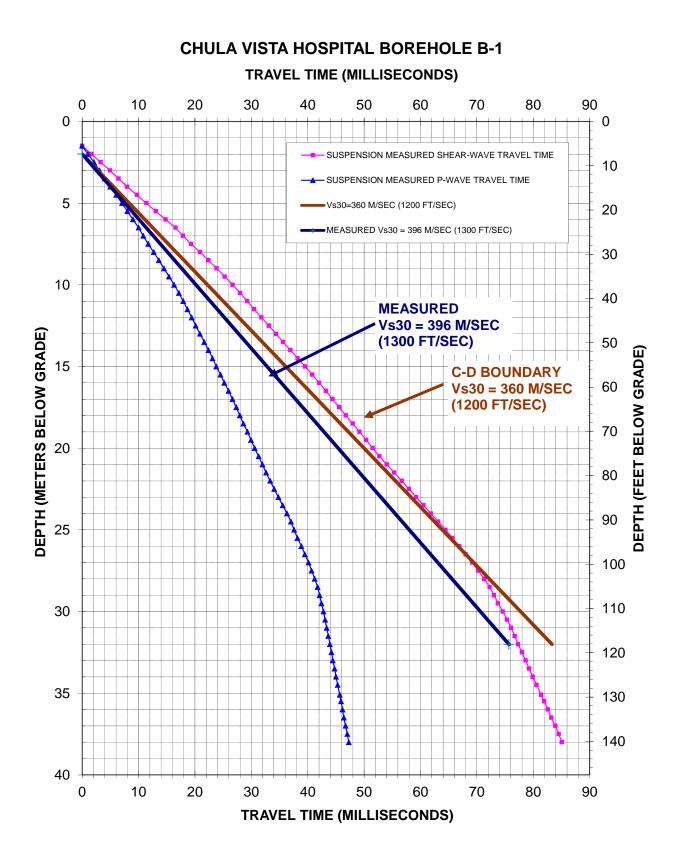


Figure 3: Example of unfiltered record




Figure 4: Boring B-1, Suspension R1-R2 P- and S_H-wave velocities with Vs30 values

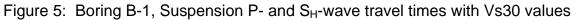

RECEIVER 1 - RECEIVER 2 VELOCITY DATA											
	METRIC			ENGLISH							
DEPTH	Vs	Vp	DEPTH	Vs	Vp						
(M)	(M/SEC)	(M/SEC)	(FT)	(FT/SEC)	(FT/SEC)						
1.5	212	347	4.92	694	1139						
2.0	303	481	6.56	994	1577						
2.5	308	467	8.20	1009	1533						
3.0	296	518	9.84	972	1700						
3.5	330	518	11.48	1083	1700						
4.0	333	521	13.12	1094	1709						
4.5	287	476	14.76	940	1562						
5.0	299	493	16.40	979	1616						
5.5	299	521	18.04	982	1709						
6.0	288	505	19.69	945	1657						
6.5	282	503	21.33	924	1649						
7.0	383	606	22.97	1257	1988						
7.5	344	565	24.61	1127	1854						
8.0	315	513	26.25	1035	1682						
8.5	341	549	27.89	1120	1803						
9.0	341	552	29.53	1120	1813						
9.5	346	559	31.17	1135	1833						
10.0	358	549	32.81	1176	1803						
10.5	377	602	34.45	1238	1976						
11.0	397	637	36.09	1302	2090						
11.5	402	671	37.73	1318	2202						
12.0	394	658	39.37	1292	2158						
12.5	385	725	41.01	1262	2377						
13.0	386	649	42.65	1267	2130						
13.5	395	658	44.29	1297	2158						
14.0	389	654	45.93	1277	2144						
14.5	383	709	47.57	1257	2327						
15.0	389	746	49.21	1277	2448						
15.5	391	676	50.85	1282	2217						
16.0	405	730	52.49	1328	2395						
16.5	420	667	54.13	1379	2187						
17.0	424	719	55.77	1390	2360						
17.5	424	741	57.41	1390	2430						
18.0	422	806	59.06	1384	2646						
18.5	412	794	60.70	1350	2604						
19.0	410	671	62.34	1345	2202						

Table 3: Boring B-1, Suspension R1-R2 depths and P- and S_H -wave velocities

RECEIVER 1 - RECEIVER 2 VELOCITY DATA											
	METRIC			ENGLISH							
DEPTH	Vs	Vp	DEPTH	Vs	Vp						
(M)	(M/SEC)	(M/SEC)	(FT)	(FT/SEC)	(FT/SEC)						
19.5	429	820	63.98	1408	2689						
20.0	435	775	65.62	1426	2543						
20.5	413	704	67.26	1356	2310						
21.0	388	741	68.90	1272	2430						
21.5	375	769	70.54	1229	2524						
22.0	379	694	72.18	1243	2278						
22.5	388	694	73.82	1272	2278						
23.0	391	676	75.46	1282	2217						
23.5	385	649	77.10	1262	2130						
24.0	388	658	78.74	1272	2158						
24.5	383	719	80.38	1257	2360						
25.0	383	909	82.02	1257	2983						
25.5	405	826	83.66	1328	2711						
26.0	415	709	85.30	1361	2327						
26.5	437	826	86.94	1433	2711						
27.0	452	763	88.58	1485	2504						
27.5	461	909	90.22	1512	2983						
28.0	463	909	91.86	1519	2983						
28.5	515	980	93.50	1691	3217						
29.0	654	1408	95.14	2144	4621						
29.5	685	1538	96.78	2247	5047						
30.0	606	1408	98.43	1988	4621						
30.5	645	1724	100.07	2117	5657						
31.0	719	1786	101.71	2360	5859						
31.5	769	1724	103.35	2524	5657						
32.0	826	1695	104.99	2711	5561						
32.5	758	1852	106.63	2485	6076						
33.0	741	2128	108.27	2430	6981						
33.5	803	1563	109.91	2635	5126						
34.0	791	1961	111.55	2594	6433						
34.5	730	1754	113.19	2395	5756						
35.1	743	1575	115.16	2439	5167						
35.5	743	1869	116.47	2439	6132						
36.0	772	1923	118.11	2533	6309						
36.5	794	2020	119.75	2604	6628						
37.0	719	1681	121.39	2360	5514						
37.5	826	1639	123.03	2711	5378						
38.0	893	1835	124.67	2929	6020						

L

APPENDIX A

SUSPENSION VELOCITY MEASUREMENT QUALITY ASSURANCE SUSPENSION SOURCE TO RECEIVER ANALYSIS RESULTS

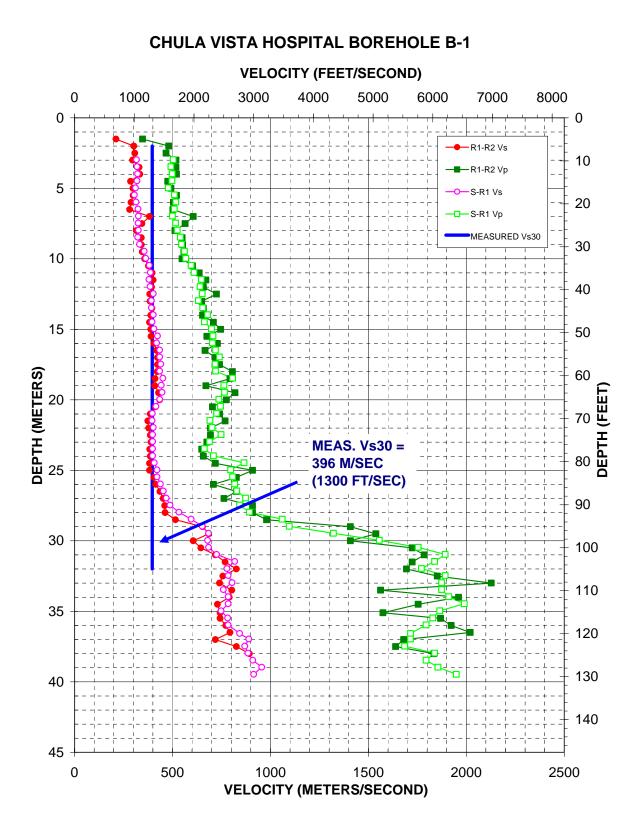


Figure A-1. Boring B-1, R1 - R2 high resolution analysis and S - R1 quality assurance analysis P- and S_H -wave data

SOURCE - RECEIVER 1 VELOCITY DATA								
	METRIC			ENGLISH				
DEPTH	Vs	Vp	DEPTH	Vs	Vp			
(M)	(M/SEC)	(M/SEC)	(FT)	(FT/SEC)	(FT/SEC)			
3.0	316	504	9.73	1038	1653			
3.5	319	492	11.37	1047	1615			
4.0	322	499	13.01	1055	1636			
4.5	319	497	14.65	1047	1632			
5.0	311	479	16.29	1021	1571			
5.5	305	511	17.93	1002	1675			
6.0	314	517	19.57	1031	1698			
6.5	324	509	21.21	1062	1671			
7.0	326	500	22.85	1070	1640			
7.5	325	516	24.49	1066	1693			
8.0	326	524	26.13	1070	1721			
8.5	323	541	27.77	1059	1774			
9.0	332	547	29.41	1088	1794			
9.5	356	561	31.05	1168	1841			
10.0	364	568	32.69	1195	1862			
10.5	381	596	34.33	1251	1954			
11.0	388	611	35.97	1271	2004			
11.5	380	648	37.61	1246	2125			
12.0	386	641	39.26	1266	2104			
12.5	402	652	40.90	1319	2139			
13.0	392	633	42.54	1287	2076			
13.5	392	654	44.18	1287	2146			
14.0	402	680	45.82	1319	2230			
14.5	395	663	47.46	1298	2176			
15.0	405	699	49.10	1330	2294			
15.5	423	707	50.74	1389	2319			
16.0	420	704	52.38	1377	2311			
16.5	435	720	54.02	1426	2363			
17.0	435	739	55.66	1426	2426			
17.5	441	717	57.30	1446	2354			
18.0	435	720	58.94	1426	2363			
18.5	451	808	60.58	1479	2649			
19.0	443	763	62.22	1452	2503			
19.5	447	766	63.86	1466	2513			
20.0	435	737	65.50	1426	2417			
20.5	416	745	67.14	1365	2445			
21.0	397	726	68.78	1303	2380			

Table A-1. Boring B-1, S - R1 quality assurance analysis P- and $S_{\text{H}}\text{-wave data}$

SOURCE - RECEIVER 1 VELOCITY DATA								
	METRIC			ENGLISH				
DEPTH	Vs	Vp	DEPTH	Vs	Vp			
(M)	(M/SEC)	(M/SEC)	(FT)	(FT/SEC)	(FT/SEC)			
21.5	395	692	70.42	1298	2270			
22.0	402	702	72.06	1319	2303			
22.5	399	748	73.70	1308	2454			
23.0	399	689	75.34	1308	2261			
23.5	399	663	76.98	1308	2176			
24.0	399	710	78.63	1308	2328			
24.5	407	865	80.27	1336	2839			
25.0	421	798	81.91	1383	2617			
25.5	421	808	83.55	1383	2649			
26.0	439	818	85.19	1439	2683			
26.5	453	828	86.83	1486	2718			
27.0	468	873	88.47	1537	2865			
27.5	487	843	90.11	1599	2765			
28.0	533	894	91.75	1749	2931			
28.5	596	1060	93.39	1954	3479			
29.0	652	1097	95.03	2139	3598			
29.5	684	1322	96.67	2245	4337			
30.0	680	1556	98.31	2230	5106			
30.5	684	1755	99.95	2245	5756			
31.0	726	1892	101.59	2380	6208			
31.5	818	1838	103.23	2683	6030			
32.0	778	1771	104.87	2553	5809			
32.5	785	1892	106.51	2574	6208			
33.0	804	1874	108.15	2638	6148			
33.5	760	1874	109.79	2493	6148			
34.0	785	1911	111.43	2574	6269			
34.5	785	1990	113.07	2574	6528			
35.0	748	1865	114.71	2454	6118			
35.5	781	1829	116.35	2564	6002			
36.0	785	1795	118.00	2574	5890			
36.6	843	1716	119.96	2765	5628			
37.0	889	1716	121.28	2918	5628			
37.5	869	1686	122.92	2852	5530			
38.0	885	1838	124.56	2905	6030			
38.5	910	1795	126.20	2987	5890			
39.0	955	1856	127.84	3135	6088			
39.5	915	1949	129.48	3001	6396			

L

APPENDIX B

BORING GEOPHYSICAL LOGGING SYSTEMS - NIST TRACEABLE CALIBRATION RECORDS

MICRO PRECISION CALIBRATION, INC 12686 HOOVER ST GARDEN GROVE CA 92841 714-901-5659

Certificate of Calibration

Date: Aug 27, 2014

Cert No. 222008122227166

Customer:

GEOVISION

1124 OLYMPIC DRIVE CORONA CA 92881

		Work Order #:	LA-90014973
MPC Control #:	AM6768	Serial Number:	160024
Asset ID:	160024	Department:	N/A
Gage Type:	LOGGER	Performed By:	STEVE BORING
Manufacturer:	OYO	Received Condition:	IN TOLERANCE
Model Number:	3403	Returned Condition:	IN TOLERANCE
Size:	N/A	Cal. Date:	August 26, 2014
Temp/RH:	71°F / 52 %	Cal. Interval:	12 MONTHS
Calibration No	tes:	Cal. Due Date:	August 26, 2015

See attached data sheet for calculations. Calibrated IAW customer supplied data form Rev 2.1 Frequency measurement uncertainty = 0.0005 Hz Unit calibrated with Laptop Panasonic s/n: 5KKSA84231 Calibrated to 4:1 accuracy ratio.

Standards Used to Calibrate Equipment

I.D.	Description.	Model	Serial	Manufacturer	Cal. Due Date	Traceability #
BD7715	UNIVERSAL COUNTER	53131A	3416A05377	HEWLETT PACKARD	Aug 1, 2015	222008122225973
CC8416	MULTIFUNCTION CALIBRATOR	5700A	5860909	FLUKE	Dec 3, 2014	220081202213692

Procedures Used in this Event

Procedure Name	Description
GEOVISION SEISMIC	Suspension PS Seismic Logger/Recorder Calibration Procedure

Calibrating Technician:

QC Approval:

Will

Jim Williams

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for normal distribution corresponds to a coverage probability of approximately 95%. The standard uncertainty of measurement has been determined in accordance with EA's Publication and NIST Technical Note 1297, 1994 Edition. Services rendered comply with ISO 17025:2005, ANSI/NCSL Z540-1, MPC Quality Manual, MPC CSD and with customer purchase order instructions.

Calibration cycles and resulting due dates were submitted/approved by the customer. Any number of factors may cause an instrument to drift out of tolerance before the next scheduled calibration. Recalibration cycles should be based on frequency of use, environmental conditions and customer's established systematic accuracy. The information on this report, pertains only to the instrument identified.

All standards are traceable to SI through the National Institute of Standards and Technology (NIST) and/or recognized national or international standards laboratories. Services rendered include proper manufacturer's service instruction and are warranted for no less than thirty (30) days. This report may not be reproduced in part or in a whole without the prior written approval of the issuing MPC lab.

Page 1 of 1

GEOVision Report 14242-01 Chula Vista Hospital Vs30 rev 0

Page 28 of 29

(CERT, Rev 3)

SUSPENSION PS SEISMIC LOGGER/RECORDER CALIBRATION DATA FORM

INSTRUMENT DATA					
System mfg.:	Ōyo	5-11-25-004-30-41-112-11-10-5-11-10-5-11-10-5-10-5-10-5-	Model no .:	3403	
Serial no.:	160024		Calibration date:	8/26/2014	
By:	Charles Carter		Due date:	8/26/2015	
Counter mfg.:	Hewlett-Packard		Model no .:	53131A	
Serial no.:	3146A05377		Calibration date:	8/1/2014	
By:	Microprecision		Due date:	8/1/2015	
Signal generator mfg.:	Fluke		Model no.:	5700A	
Serial no.:	5860909		Calibration date:	12/3/2014	
By:	Microprecision		Due date:	12/3/2015	
Laptop controller mfg.:	Panasonic		Model no.:	Toughbook CF-29	
Serial no.:	5KKSA84231		Calibration date:	N/A	2
SYSTEM SETTINGS:		2			
Gain:		10KHz			
Filter			ole period in table bel	747	
Range:		0		9 9	
Delay:		0			

PROCEDURE:

System date = correct date and time

Stack (1 std)

Set sine wave frequency to target frequency with amplitude of approximately 0.25 volt peak Note actual frequency on data form.

1

8/26/2014 10:55

Set sample period and record data file to disk. Note file name on data form.

Pick duration of 9 cycles using PSLOG.EXE program, note duration on data form, and save as .sps file. Calculate average frequency for each channel pair and note on data form.

Average frequency must be within +/- 1% of actual frequency at all data points.

Maximum error ((AVG-ACT)/ACT*100)%			As found		+ 0.12%		As left	+ 0.12%
\ctual	Sample	File	Time for	Average	Time for	Average	Time for	Average
quency	Period	Name	9 cycles	Frequency	9 cycles	Frequency	9 cycles	Frequency
(Hz)	(microS)		Hn (msec)	Hn (Hz)	Hr (msec)	Hr (Hz)	V (msec)	V (Hz)
50.00	200	019	180.0	50.00	180.0	50.00	180.2	49.94
100.0	100	020	90.00	100.0	90.10	99.9	90.10	99.9
200.0	50	021	45.05	199.8	45.00	200.0	45.00	200.0
500.0	20	022	18.00	500.0	18.02	499.4	18.00	500.0
99.97	10	023	9.000	1000	9.000	1000.0	8.990	1001.1
999.92	5	024	4.500	2000	4.495	2002	A .495	2002
	Steve Bo	rina			8/26/2014	Stu	Mart	
-					A REAL PROPERTY AND A REAL		Signature)
							- (
						21	1 A	4
Witnessed by:		arter			8/26/2014	Cha	lis Carl	li
-	Name				Date		Signature	
Suspension PS Seismic Recorder/Logger Calibration Data Form Rev 2.1 February 7, 2012								
	ctual quency (Hz) 00.00 200.0 500.0 99.97 999.92	ctual Sample quency Period (Hz) (microS) 00.00 200 00.0 50 00.0 20 99.97 10 99.92 5 Steve Bor Name Charles C Name	ctual Sample File quency Period Name (Hz) (microS) Name 00.00 200 019 00.0 100 020 200.0 50 021 200.0 20 022 99.97 10 023 999.92 5 024 Steve Boring Name Charles Carter Name Charles Carter	ctual Sample File Time for quency Period Name 9 cycles (Hz) (microS) Hn (msec) 00.00 200 019 180.0 00.0 100 020 90.00 200.0 50 021 45.05 00.0 20 022 18.00 99.97 10 023 9.000 99.92 5 024 4.500 Steve Boring Name Charles Carter Name Name	ctual Sample File Time for 9 cycles Average Frequency (Hz) (microS) 9 cycles Frequency (Hz) (microS) 9 cycles Frequency (0.00 200 019 180.0 50.00 00.0 100 020 90.00 100.0 200.0 50 021 45.05 199.8 500.0 20 022 18.00 500.0 99.97 10 023 9.000 1000 99.92 5 024 4.500 2000 Steve Boring Name Charles Carter Name Charles Carter	ctual quency (Hz) Sample (microS) File Name Time for 9 cycles Average Frequency Time for 9 cycles (Hz) (microS) Hn (msec) Hn (Hz) Hr (msec) 00.00 200 019 180.0 50.00 180.0 00.0 100 020 90.00 100.0 90.10 00.0 50 021 45.05 199.8 45.00 00.0 20 022 18.00 500.0 18.02 99.97 10 023 9.000 1000 9.000 99.92 5 024 4.500 2000 4.495 Steve Boring 8/26/2014 Name Date 204 Charles Carter 8/26/2014 8/26/2014 104	ctual quency quency (Hz) Sample Period (microS) File Name Time for 9 cycles Average Frequency Time for 9 cycles Average Frequency (Hz) (microS) Hn (msec) Hn (Hz) Hr (msec) Hr (Hz) 00.00 200 019 180.0 50.00 180.0 50.00 00.0 100 020 90.00 100.0 90.10 99.9 200.0 50 021 45.05 199.8 45.00 200.0 00.0 20 022 18.00 500.0 18.02 499.4 99.97 10 023 9.000 1000 9.000 1000.0 99.92 5 024 4.500 2000 4.495 2002 Steve Boring 8/26/2014 Mame Date Mame Date	ctual Sample File Time for Average Time for Average Time for Period Name 9 cycles Frequency 9 cycles Hr (Hz) Hr (Hz) V (msec) 00.00 200 019 180.0 50.00 180.0 50.00 180.2 50.00 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 180.2 00.0 45.00 00.0 45.00 00.0 45.00 00.0 45.00 00.0 45.00 00.0 49.4 18.00 00.0 100.0 8.990 99.97 10 023 9.000 1000 9.000 1000.0 8.990 99.99 5 024 4.500